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a b s t r a c t

In the present paper, by approximating the derivatives in the well known fourth-order
Ostrowski’s method and in a sixth-order improved Ostrowski’s method by central-
difference quotients, we obtain newmodifications of these methods free from derivatives.
We prove the important fact that the methods obtained preserve their convergence orders
4 and 6, respectively, without calculating any derivatives. Finally, numerical tests confirm
the theoretical results and allow us to compare these variants with the corresponding
methods that make use of derivatives and with the classical Newton’s method.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

In the last few years, a lot of papers have developed the idea of removing derivatives from the iteration function in order
to avoid defining new functions such as the first or second derivative, and calculate iterates only by using the function
that describes the problem, obviously trying to preserve the convergence order. In this sense, in the literature of nonlinear
equations there can frequently be found the expression ‘‘derivative free’’, referring in most cases to the second derivative
(see [1–3]). The interest of these methods is for being applied with nonlinear equations f (x) = 0, when there are many
problems, in order to obtain and evaluate the derivatives involved.

The procedure of removing the derivatives usually increases the number of functional evaluations per iteration. Com-
monly in the literature the efficiency of an iterative method is measured by the efficiency index defined as p1/d, where p is
the order of convergence and d is the total number of functional evaluations per step.

There are different methods for computing a zero α of a nonlinear equation f (x) = 0; the most well known of these
methods is the classical Newton’s method (NM):

xn+1 = xn −
f (xn)
f ′(xn)

, n = 0, 1, . . . , (1)

that, under certain conditions, has quadratic convergence.
Newton’s method has been modified in a number of ways to avoid the use of derivatives without affecting the order of

convergence. For example, on replacing in (1) the derivative by the forward approximation

f ′(xn) ≈
f (xn + f (xn)) − f (xn)

f (xn)
.
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Newton’s method becomes

xn+1 = xn −
f (xn)2

f (xn + f (xn)) − f (xn)
,

which is called Steffensen’s method (SM). This method still has quadratic convergence, in spite of being derivative free and
using only two functional evaluations per step.

When an iterative method is free from first derivatives, authors refer to it as a ‘‘Steffensen like method’’. Some of these
methods use forward differences for approximating the derivatives. For example, in [4] Jain proposed a Steffensen-secant
method (JM) deformed from the Newton-secant one. This method only uses three functional evaluations per step and gets
third-order convergence. Another Steffensen like method of third order, based on the homotopy perturbation theory, is
presented in [5] (FM). It uses three functional evaluations per step.

By applying forward-difference approximation to the Weerakoon–Fernando formula [6], Zheng et al. derived in [7] a
family of Steffensen like methods (ZM) which have order of convergence 3 and use four functional evaluations per iteration.

In order to control the approximation of the derivative and the stability of the iteration, a Steffensen type method, with
quadratic convergence and two functional evaluations per step, has been proposed in [8], (AM). The recent paper [9] has
extended it to Banach spaces, obtaining its semilocal and local convergence theorems.

If we try to use forward-difference approximation, with the fourth-order Ostrowski’s method [10]:

yn = xn −
f (xn)
f ′(xn)

,

xn+1 = xn −
f (xn)
f ′(xn)

f (yn) − f (xn)
2f (yn) − f (xn)

,

(2)

the order of convergence of the newmethod goes down to 3. For this reason, we have used the central-difference form in (2),
obtaining a variant of Ostrowski’s method that preserves the convergence order 4 and is derivative free. Recently, Dehghan
and Hajarian [11] proposed a derivative free iterative method (DM) by replacing the forward-difference approximation in
Steffensen’s method by the central-difference approximation. However, it is still a method of third order and requires four
functional evaluations per iteration.

In the sameway, we consider the sixth-ordermethod proposed in [12] as an improvement on the Ostrowski root-finding
method, whose iteration scheme is

yn = xn −
f (xn)
f ′(xn)

,

zn = yn −
yn − xn

2f (yn) − f (xn)
f (yn),

xn+1 = zn −
yn − xn

2f (yn) − f (xn)
f (zn).

(3)

We are going to replace in (3) the first derivative by a symmetric difference in order to obtain a newmethod that preserves
the sixth convergence order and is derivative free.

The rest of this paper is organized as follows. In Section 2, we describe our methods that are free from derivatives
as variants of Ostrowski’s method and the improved Ostrowski’s method, respectively. In Section 3, we establish the
convergence order of these methods. Finally, in Section 4 different numerical tests confirm the theoretical results and allow
us to compare these variants with the original methods (which make use of derivatives) and also with Newton’s method.

2. Description of the methods

By using a symmetric difference quotient

f ′(xn) ≃
f (xn + f (xn)) − f (xn − f (xn))

2f (xn)
,

to approximate the derivative in the fourth-order Ostrowski’s method (2), we obtain a new method free from derivatives
that we call themodified Ostrowski’s method free from derivatives (ODF ):

yn = xn −
2f (xn)2

f (xn + f (xn)) − f (xn − f (xn))
,

xn+1 = xn −
2f (xn)2

f (xn + f (xn)) − f (xn − f (xn))
f (yn) − f (xn)
2f (yn) − f (xn)

.

(4)
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As we have said, in [12], Grau et al. proposed an improvement of Ostrowski’s method (3) and proved that it has sixth
order of convergence. By approximating the derivative by the central-difference method we obtain a newmethod free from
derivatives, that we call the improved Ostrowski’s method free from derivatives (IODF ):

yn = xn −
2f (xn)2

f (xn + f (xn)) − f (xn − f (xn))
,

zn = yn −
yn − xn

2f (yn) − f (xn)
f (yn),

xn+1 = zn −
yn − xn

2f (yn) − f (xn)
f (zn).

(5)

In the next section, we are going to prove that the methods ODF and IODF have orders of convergence 4 and 6, respectively.

3. Analysis of convergence

In this section we analyze the orders of convergence of the methods described previously.

Theorem 1. Let α ∈ I be a simple zero of a sufficiently differentiable function f : I ⊆ R −→ R in an open interval I. If x0 is
sufficiently close to α, then the modified Ostrowski’s method free from derivatives defined by (4) has order of convergence 4 and
satisfies the error equation

en+1 = −c2


−

c22
c31

+ c3 +
c3
c21


e4n + O(e5n).

Proof. Let en = xn − α. The Taylor series of f (xn) about α is

f (xn) = c1en + c2e2n + c3e3n + c4e4n + O(e5n), (6)

where ck =
f (k)(α)

k! , k = 1, 2, . . ..
Computing the Taylor series of f (xn + f (xn)) and substituting f (xn) by (6) we have

f (xn + f (xn)) = c1(1 + c1)en + (c1c2 + (1 + c1)2c2)e2n + (2(1 + c1)c22 + c1c3 + (1 + c1)3c3)e3n

+ (3(1 + c1)2c2c3 + c2(c22 + 2(1 + c1)c3) + c1c4 + (1 + c1)4c4)e4n + O(e5n). (7)

Analogously, the Taylor series of f (xn − f (xn)) is

f (xn − f (xn)) = (1 − c1)c1en + ((1 − c1)2c2 − c1c2)e2n + (−2(1 − c1)c22 + (1 − c1)3c3 − c1c3)e3n

+ (−3(1 − c1)2c2c3 + c2(c22 − 2(1 − c1)c3) + (1 − c1)4c4 − c1c4)e4n + O(e5n). (8)

Then, the quotient that appears in the expression of yn in (4) is

2f (xn)2

f (xn + f (xn)) − f (xn − f (xn))
= en −

c2e2n
c1

+
(2c22 − c1(2 + c21 )c3)e

3
n

c21

+


−

4c32
c31 + c2c3

+
7c2
c3

c21 −
3c4

c1 − 4c1c4


e4n + O(e5n). (9)

We obtain yn − α taking into account (9):

yn − α = en −
2f (xn)2

f (xn + f (xn)) − f (xn − f (xn))

=
c2e2n
c1

−
(2c22 − c1(2 + c21 )c3)e

3
n

c21
+


4c32

c31 − c2c3
−

7c2c3
c21

+
3c4

c1 + 4c1c4


e4n + O(e5n). (10)

Now, substituting (10) in the Taylor series of f (yn), we have

f (yn) = c2e2n −
(2c22 − c1(2 + c21 )c3)e

3
n

c1
+


c32
c21

+ c1


4c32

c31 − c2c3
−

7c2c3
c21

+
3c4

c1 + 4c1c4


e4n + O(e5n). (11)

From (6) and (11) we obtain
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f (yn) − f (xn) = −c1en +


−c3 −

2c22 − c1(2 + c21 )c3
c1


e3n

+


c32

c21 − c4 + c1


4c32

c31 − c2c3
−

7c2c3
c21

+
3c4

c1 + 4c1c4


e4n + O(e5n) (12)

and

2f (yn) − f (xn) = −c1en + c2e2n +


−c3 −

2(2c22 − c1(2 + c21 )c3)
c1


e3n

+


−c4 + 2


c32
c21

+ c1


4c32
c31

− c2c3 −
7c2c3
c21

+
3c4
c1

+ 4c1c4


e4n + O(e5n).

Taking into account (9), (12) and the last expression, we finally obtain

en+1 = −c2


−

c22
c31

+ c3 +
c3
c21


e4n + O(e5n).

This proves that the method is of fourth order. �

Theorem 2. Let α ∈ I be a simple zero of a sufficiently differentiable function f : I ⊆ R −→ R in an open interval I. If x0 is
sufficiently close to α, then the improved Ostrowski’s method free from derivatives defined by (5) has order of convergence 6 and
satisfies the error equation

en+1 =
(−2c22 + c1(1 + c21 )c3)(−c32 + c1(1 + c21 )c2c3)

c51
e6n + O(e7n).

Proof. Let en = xn − α. The Taylor series of f (xn) about α is

f (xn) = c1en + c2e2n + c3e3n + c4e4n + c5e5n + c6e6n + O(e7n), (13)

where ck =
f (k)(α)

k! , k = 1, 2, . . ..
Computing the Taylor series of f (xn + f (xn)) and substituting f (xn) by (13) we have

f (xn + f (xn)) = c1(1 + c1)en + (c1 + (1 + c1)2)c2e2n + (2(1 + c1)c22 + c1c3 + (1 + c1)3c3)e3n
+ (3(1 + c1)2c2c3 + c2(c22 + 2(1 + c1)c3) + c1c4 + (1 + c1)4c4)e4n
+ (3(1 + c1)c3(c22 + c3 + c1c3) + 4(1 + c1)3c2c4 + 2c2(c2c3 + c4 + c1c4) + c1c5
+ (1 + c1)5c5)e5n + (2(1 + c1)2(3c22 + 2(1 + c1)c3)c4 + c3(c32 + 6(1 + c1)c2c3 + 3(1 + c1)2c4)

+ 5(1 + c1)4c2c5 + c2(c23 + 2(c2c4 + c5 + c1c5)) + c1c6 + (1 + c1)6c6)e6n + O(e7n). (14)

The Taylor series of f (xn − f (xn)) is

f (xn − f (xn)) = −(−1 + c1)c1en + (1 − 3c1 + c21 )c2e
2
n + (2(−1 + c1)c22 − (−1 + c1)3c3 − c1c3)e3n

+ (−3(−1 + c1)2c2c3 + c2(c22 + 2(−1 + c1)c3) + (−1 + c1)4c4 − c1c4)e4n
+ (−3(−1 + c1)c3(c22 + (−1 + c1)c3) + 4(−1 + c1)3c2c4
+ 2c2(c2c3 + (−1 + c1)c4) − (−1 + c1)5c5 − c1c5)e5n + (−c32c3 + 2(4 − 6c1 + 3c21 )c

2
2c4

+ (−1 + c1)2(−7 + 4c1)c3c4 + c2((7 − 6c1)c23 + (−7 + 22c1 − 30c21 + 20c31 − 5c41 )c5)

+ (1 − 7c1 + 15c21 − 20c31 + 15c41 − 6c51 + c61 )c6)e
6
n + O(e7n). (15)

Substituting (14) and (15) in the expression for yn in (5) gives us

yn − α = xn − α −
2f (xn)2

f (xn + f (xn)) − f (xn − f (xn))

= en −
2f (xn)2

f (xn + f (xn)) − f (xn − f (xn))

=
c2e2n
c1

−
(2c22 − c1(2 + c21 )c3)e

3
n

c21
+


4c32
c31

− c2c3 −
7c2c3
c21

+
3c4
c1

+ 4c1c4


e4n

−
1
c41

(8c42 − c1(20 + 3c21 )c
2
2c3 + 2c21 (5 + 2c21 )c2c4 + c21 ((6 + 3c21 + c41 )c

2
3 − c1(4 + 10c21 + c41 )c5))e

5
n
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−
1
c51

(−16c52 + c1(52 + 7c21 )c
3
2c3 − 4c21 (7 + 3c21 )c

2
2c4 − c21c2((33 + 12c21 + c41 )c

2
3

+ c1(−13 − 10c21 + c41 )c5) + c31 ((17 + 17c21 + 8c41 )c3c4 − c1(5 + 20c21 + 6c41 )c6))e
6
n + O(e7n). (16)

Now, substituting (16) in the Taylor series of f (yn) we have

f (yn) = c2e2n +


−

2c22
c1

+ 2c3 + c21c3


e3n +


5c32
c21

−
7c2c3
c1

− c1c2c3 + 3c4 + 4c21c4


e4n

+
1
c31

(−12c42 + c1(24 + 5c21 )c
2
2c3 − 2c21 (5 + 2c21 )c2c4 + c21 (−(6 + 3c21 + c41 )c

2
3

+ c1(4 + 10c21 + c41 )c5))e
5
n +

1
c41

(28c52 − c1(73 + 13c21 )c
3
2c3 + 2c21 (17 + 10c21 )c

2
2c4

+ c21c2((37 + 16c21 + 2c41 )c
2
3 + c1(−13 − 10c21 + c41 )c5) + c31 (−(17 + 17c21 + 8c41 )c3c4

+ c1(5 + 20c21 + 6c41 )c6))e
6
n + O(e7n). (17)

Using (13), (16) and (17) in (5) gives

zn − α = yn − µnf (yn) =
c2(c22 − c1(1 + c21 )c3)e

4
n

c31

−
(4c42 − 2c1(4 + c21 )c

2
2c3 + c21 (2 + 3c21 + c41 )c

2
3 + 2c21 (1 + 2c21 )c2c4)e

5
n

c41

−
1
c51

(−10c52 + 2c1(15 + 2c21 )c
3
2c3 − 4c21 (3 + 2c21 )c

2
2c4 + c31 (7 + 17c21 + 8c41 )c3c4

+ c21c2((−18 − 8c21 + c41 )c
2
3 + c1(3 + 10c21 + c41 )c5))e

6
n + O(e7n) (18)

and substituting (18) in the Taylor series of f (zn) we have

f (zn) =
c2(c22 − c1(1 + c21 )c3)e

4
n

c21
−

(4c42 − 2c1(4 + c21 )c
2
2c3 + c21 (2 + 3c21 + c41 )c

2
3 + 2c21 (1 + 2c21 )c2c4)e

5
n

c31

−
1
c41

(−10c52 + 2c1(15 + 2c21 )c
3
2c3 − 4c21 (3 + 2c21 )c

2
2c4 + c31 (7 + 17c21 + 8c41 )c3c4

+ c21c2((−18 − 8c21 + c41 )c
2
3 + c1(3 + 10c21 + c41 )c5))e

6
n + O(e7n). (19)

Taking into account (18) and (19), we finally obtain

en+1 = zn − α − µnf (zn)

=
(−2c22 + c1(1 + c21 )c3)(−c32 + c1(1 + c21 )c2c3)

c51
e6n + O(e7n). (20)

This proves that the method is of sixth order. �

It is easy to observe that the method ODF uses four functional evaluations per step, whereas the IODF needs five. There
are many techniques for obtaining high order iterative methods, but the complexity of the iterative expressions increase
considerably. So we have introduced in [13], in the context of nonlinear systems, a new index in order to compare the
different methods, taking into account not only the number of functional evaluations, but also the number of products and
quotients involved in each step of the iterative process. The computational efficiency index is defined as CI = p1/(d+op), where
p is the order of convergence, d is the number of functional evaluations per step and op is the number of products and
quotients per iteration.

In the next table we present the order of convergence, the efficiency index and the computational efficiency index of the
Steffensen’s like methods mentioned in Section 1 and our new methods (see Table 1).

We can observe the position of our methods in relation to the other ones, taking into account the efficiency index:

IFM = IJM > IIODF > IODF = ISM = IAM > IZM = IDM

and the computational efficiency index:

CIIODF > CIODF = CISM = CIAM > CIDM > CIJM > CIZM > CIFM .
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Table 1
Order and efficiency indices of some derivative free methods.

Method Order Efficiency index Comp. efficiency index

Steffensen (SM) 2 21/2 21/(2+2)

Jain (JM) 3 31/3 31/(3+6)

Feng–He (FM) 3 31/3 31/(3+8)

Zheng et al. (ZM) 3 31/4 31/(4+6)

Amat–Busquier (AM) 2 21/2 21/(2+2)

Dehghan–Hajarian (DM) 3 31/4 31/(4+4)

ODF 4 41/4 41/(4+4)

IODF 6 61/5 61/(5+5)

Table 2
Numerical results for nonlinear equations from (a)–(j).

f (x) x0 Iterations ρ

NM OM IOM ODF IODF NM OM IOM ODF IODF

(a) 1 9 5 5 5 5 2.00 4.00 6.00 4.00 6.00
(b) 0.7 7 5 4 5 6 2.00 4.00 6.00 4.00 5.99
(c) 1 8 5 4 5 5 2.00 4.00 6.00 3.80 6.00
(d) 1.5 11 6 5 6 6 2.00 4.00 6.00 4.00 6.00
(e) 2 8 5 4 5 6 2.00 4.00 6.00 4.00 5.99
(f) 1 9 5 4 6 NC 2.00 4.00 6.00 4.00 –
(g) 1 9 5 4 5 5 2.00 4.00 6.00 4.00 6.00
(h) 1.5 8 5 4 6 6 2.00 4.00 6.00 4.00 6.01
(i) 1 9 5 4 5 6 2.00 4.00 6.00 4.00 5.99
(j) 1 8 5 5 5 5 3.00 5.00 7.00 5.00 7.00
(j) 2.5 NC NC 5 8 6 – – 7.00 5.00 7.00

4. Numerical results

In this section we check the effectiveness of the new methods ODF and IODF applied to obtain the solutions of several
nonlinear equations. We use equations (a)–(j) to compare the methods described with their counterparts that make use
of derivatives, that is, Ostrowski’s method (OM) and the improved Ostrowski’s method (IOM) and the classical Newton’s
method (NM).

(a) f (x) = sin2 x − x2 + 1, α ≈ 1.404492,
(b) f (x) = x2 − ex − 3x + 2, α ≈ 0.257530,
(c) f (x) = cos x − x, α ≈ 0.739085,
(d) f (x) = (x − 1)3 − 1, α = 2,
(e) f (x) = x3 − 10, α ≈ 2.154435,
(f) f (x) = cos(x) − xex + x2, α ≈ 0.639154,
(g) f (x) = ex − 1.5 − arctan(x), α ≈ 0.767653,
(h) f (x) = x3 + 4x2 − 10, α ≈ 1.365230,
(i) f (x) = 8x − cos(x) − 2x2, α ≈ 0.128077,
(j) f (x) = arctan(x), α = 0.

Numerical computations have been carried out using variable precision arithmetic with 256 digits in MATLAB 7.1. The
stopping criterion used is |xk+1 − xk| + |f (xk)| < 10−100; therefore, we check that the iterates in succession converge
to an approximation to the solution of the nonlinear equation. For every method, we count the number of iterations needed
to reach the wished for tolerance and estimate the computational order of convergence (ACOC), according to (see [14])

ρ =
ln(|xk+1 − xk|/|xk − xk−1|)

ln(|xk − xk−1|/|xk−1 − xk−2|)
. (21)

The value of ρ that appears in Table 2 is the last coordinate of vector ρ when the variation between its values is small. A
comparison between methods using derivatives and derivative free methods can be established. The behavior of the new
methods is similar to that of the classical ones of the same order of convergence, as theoretical results show. It can be
observed that the newmethods needmore iterations than their counterparts, in some cases, but when the initial estimation
is not good and methods using derivatives diverge, derivative free methods ODF and IODF converge quickly.

5. Conclusions

We have used central-difference approximations for the first derivative in Ostrowski’s method, that has order of
convergence 4, and in an improved version of Ostrowski’s method with sixth order of convergence, obtaining two new
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iterative methods for nonlinear equations free from derivatives, and we have proven that they preserve their convergence
order. The theoretical results have been checked with some numerical examples, comparing our algorithms with Newton’s
method andwith the correspondingmethods thatmake use of derivatives.Wehave compared some Steffensen likemethods
with our methods from the point of view of the efficiency index and computational efficiency index.
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