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Abstract

We compute the pressure of hot quantum electrodynamics from the two-loop truncation of the 2PI effective action. Since the 2PI resummation
guarantees gauge-fixing independence only up to the order of the truncation, our result for the pressure presents a gauge-dependent contribution
of O(e4). We numerically characterize the credibility of this gauge-dependent calculation and find that the uncertainty due to gauge parameter
dependence is under control for ξ � 1. Our calculation also suggests that the choice of Landau gauge may minimize gauge-dependent effects.
© 2008 Elsevier B.V. All rights reserved.
The diagrammatic approach to relativistic quantum field the-
ories heavily relies on the convergence properties of the used
expansion scheme. Among the various resummation schemes
which have been invented to cure the poor performance of
the perturbative expansion [1] in various situations of inter-
est, the loop expansion of the two-particle-irreducible (2PI)
effective action implements a ladder resummation, which re-
spects thermodynamical consistency and energy conservation
[2,3]. These features make the 2PI scheme attractive for non-
equilibrium field theory applications [4]. A prerequisite for a
nonequilibrium method to be credible is, however, its reliability
in equilibrium. There, it is important to check the convergence
of expansion series of the 2PI effective action. To this aim the
notoriously ill-behaved pressure has been calculated in a scalar
context in Ref. [5] showing a monotonous dependence on the
coupling constant as well as a relatively small next-to-leading
order correction even at couplings of O(1).

In the framework of gauge theories, however, the imple-
mentation of this approximation scheme suffers from various
difficulties. One of these is that thermodynamic observables are
gauge-fixing independent only up to the order of the trunca-
tion. One can illustrate this issue by studying gauge parame-
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ter dependence in the Lorentz covariant gauge. For vanishing
background fields, the 2PI effective action is a functional of
the fermion, gauge and ghost propagators (respectively denoted
by D, G and Ggh) which also depends on the gauge-fixing
parameter ξ : Γ2PI[D,G,Ggh; ξ ]. The thermal pressure of the
system is obtained by evaluating Γ2PI at its stationary point1

D = D̄, G = Ḡ, Ggh = Ḡgh, for a given temperature T , and by
subtracting the same calculation at zero temperature:

(1)P = −T

V
Γ2PI[D̄, Ḡ, Ḡgh; ξ ]∣∣T

T =0.

It is then possible to show that the ξ -dependence of P uniquely
comes from the explicit ξ -dependence of Γ2PI and that it disap-
pears if, in Fourier space,

(2)
∑

μν

qμqνḠμν(q) = ξ.

This last equation is the BRST identity for the propagator of
the exact theory [6], which may break in a truncated resum-
mation. Indeed, within a given truncation of the 2PI effective
action, the BRST symmetry usually does not impose the con-

1 The barred propagators denote the solution of the stationarity equations:
δΓ2PI/δD = 0, δΓ2PI/δG = 0 and δΓ2PI/δGgh = 0.
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straint (2) above the order of the truncation,2 leading therefore
to ξ -dependent contributions to the pressure.3

A certain number of strategies can be put forward in or-
der to try to cope with these inconvenient features. The first
possibility is to introduce further approximations, on top of
the loop expansion. This is the case of the approximately self-
consistent resummations introduced in Ref. [10]. Using this
method, a gauge-independent determination of the entropy of
QCD has been possible and shows a good agreement with lat-
tice results down to temperatures about 2.5 times the transition
temperature. There is however no general understanding on
how to systematize this approach and evaluate higher orders in
a gauge-independent manner.

Another possibility is to stick to the loop expansion of the
2PI effective action but play with the freedom in the choice of
field representations. Indeed, the exact theory is invariant under
reparametrization of the fields and one could exploit this feature
in order to define a loop expansion obeying certain properties.
This idea has been discussed in Ref. [11] where it has been ap-
plied to the linear sigma model in order to define a systematic
loop expansion of the 2PI effective action fulfilling Goldstone’s
theorem at any order of approximation. Unfortunately no field
representation is yet known in gauge theories which would en-
sure that the BRST identity (2) is fulfilled.

It is finally possible to isolate gauge-independent terms in
the expression of the pressure by separating contributions from
different perturbative orders. This means a re-expansion of the
propagators D̄ and Ḡ in powers of the coupling. The resulting
modified resummation scheme did not show a substantial im-
provement of convergence [12].

A different point of view is based on the experience that the
2PI loop expansion is known to have good convergence prop-
erties [5,13]. One can thus expect that contributions above the
order of accuracy, and in particular gauge dependences are un-
der control, at least in a large range of coupling values. In this
Letter we explore this possibility in QED and compute the pres-
sure (1) from the two-loop truncation of the 2PI effective action
using the standard parametrization of the fields. We work in the
covariant gauge with arbitrary gauge-fixing parameter ξ , which
allows us to study how large gauge-dependent contributions can
be.

Before embarking on a numerical evaluation, one has how-
ever to pay special attention to a second aspect, namely that of
renormalization. The difficulty is related to the fact that trunca-
tions of the 2PI effective action only resum particular subclasses
of perturbative diagrams for which (perturbative) theorems do
not apply. Recently a large effort has been put into extending
renormalization theorems to the particular classes of diagrams
resummed by the loop expansion of the 2PI effective action.

2 An analysis of similar issues has recently been done in QED [7,8] where it
has been shown in particular that, although the 2PI effective action obeys (2PI)
Ward identities, these do not impose any constraint on the photon propaga-
tor Ḡ. In particular the corresponding polarization tensor is not constrained to
be transverse.

3 More precisely, if one truncates the 2PI effective action at L-loop order, one

expects gauge dependences to appear at order e2L [9].
This has been first achieved in the framework of scalar the-
ories [14] as well as scalar theories coupled to a fermionic
field [15], and more recently in the framework of QED [7] in the
covariant gauge. In this latter case, it is important to emphasize
that the renormalization procedure differs substantially from the
one in perturbation theory. The reason for this is that, for a
given loop truncation of the 2PI effective action and in contrast
to what happens in perturbation theory, the photon two- and
four-point functions develop longitudinal quantum and thermal
corrections. Although these contributions are formally of higher
order than the order of the truncation, they bring UV diver-
gences which need to be removed before defining a continuum
limit. In Ref. [7] a renormalization procedure involving a new
class of counterterms allowed by the gauge symmetry of the
theory has been put forward which allows one to deal with this
new kind of UV divergences and thus opens the way to practi-
cal calculations. In this Letter, we apply these ideas in order to
evaluate the pressure of QED from the two-loop 2PI effective
action.

Because our purpose is to discuss gauge parameter depen-
dence, it is essential that the considered discretization respects
gauge symmetry. In this way, the only source for gauge de-
pendences is the particular truncation we use. For numerical
purposes it is also convenient to use lattice rather than dimen-
sional regularization. We thus consider QED on a hypercubic
lattice of spacing a. We denote by Nβ the number of points
on the time direction and N the number of points on each of
the spatial directions. The inverse temperature is β = Nβa and
the spatial volume V = N3a3. We decompose the lattice action
in three pieces: S = Sg + Sgf + Sf . As gauge-field action, we
consider the non-compact action

(3)Sg = 1

4
a4

∑

x

∑

μν

Fμν(x)Fμν(x),

where the field-strength tensor Fμν(x) = �
f
μAν(x) − �

f
ν Aμ(x)

is expressed in terms of the forward derivative4 �
f
μAν(x) =

a−1[Aν(x + μ̂)−Aν(x)]. We use a discretized covariant gauge-
fixing term

(4)Sgf = 1

2ξ
a4

∑

x

∑

μν

�b
μAμ(x)�b

νAν(x),

given in terms of the backward derivative �b
μAν(x) = a−1 ×

[Aν(x) − Aν(x − μ̂)] for latter convenience. Finally, the fermi-
onic action is taken to be the naive chiral action

Sf = − 1

2a
a4

∑

x

[
ψ̄(x + μ̂)γμUμ(x)ψ(x)

(5)− ψ̄(x)γμU+
μ (x)ψ(x + μ̂)

]
,

where Uμ(x) = exp(iaeAμ(x)) represents a link variable.
Normally, the interacting two-point function D̄(x, y) or

Ḡ(x, y) corresponds to the correlator of two operators at x

and y. On the lattice however, where the fundamental objects

4 The notation μ̂ stands for the vector of length a along the positive μ direc-
tion.
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are link variables, it is more convenient to introduce these two-
point functions as

(6)D̄(x, y) = 〈
ψ(x)ψ̄(y)

〉
c

and

(7)Ḡμν(x, y) = 〈
Aμ(x)Aν

(
y − (1 − δμν)ν̂

)〉
c
.

These definitions maintain the usual translation and reflection
symmetries of Ḡ and D̄, as well as the identity Ḡμν(x, y) =
Ḡνμ(x, y). Notice also that the discretization we consider
here, respects the chiral symmetry of the massless fermion:
D̄(x, y) = ∑

μ γμD̄μ(x, y). We shall thus consider the 2PI ef-
fective action as a functional of Dμ rather than a functional
of D.

Since the pressure (1) cannot be determined exactly, we con-
sider the loop expansion of the 2PI effective action as obtained
from the Cornwall–Jackiw–Tomboulis formula [3] (a trivial
term stemming from the ghosts is included in our numerics but
not written explicitly here):

Γ2PI[D,G] = −Nf Tr
[
logD−1 + D−1

0 D
]

(8)+ 1

2
Tr

[
logG−1 + G−1

0 G
] + Γint[D,G],

where we have defined TrO ≡ a4 ∑
x

∑
i Oii(x, x) = βV

∑
i

Oii(x = 0) and we have included the possibility of an arbitrary
number of fermionic flavors Nf .5 The functional Γint[D,G] is
given—up to an overall sign—by all 0-leg 2PI diagrams that
one can draw using the two-point functions D and G and the
tree level vertices generated by the lattice action. These arise
from the expansion of the link variable Uμ(x), and in turn
of Sf , in powers of Aμ(x). To make sure that the pressure
we calculate is correct up to O(e3), we have to expand Uμ(x)

to O(e2). The vertex obtained from expanding Uμ(x) to O(e3)

brings no contribution to the pressure in the case of vanishing
background fields, which we assume throughout this work.

Combining the O(e) and O(e2) vertices into two-loop 2PI
diagrams, performing the relevant traces and making use of the
properties of D, we obtain the following contributions to the
interacting part Γint of the 2PI effective action:

Γ a
int

βV
= e2Nf a4

∑

x,μ �=ν

Gμν(x)

× [
Dμ(x)Dν(x + μ̂ + ν̂) + Dν(x)Dμ(x + μ̂ + ν̂)

+ Dμ(x + ν̂)Dν(x + μ̂) + Dν(x + ν̂)Dμ(x + μ̂)
]

+ e2Nf a4
∑

x,μ

Gμμ(x)

× [
2Dμ(x − μ̂)Dμ(x + μ̂) + 2Dμ(x)Dμ(x)

(9)−
∑

ν

[
Dν(x − μ̂)Dν(x + μ̂) + Dν(x)Dν(x)

]]
,

5 The parameter Nf will be used in what follows in order to eliminate the
doublers which appear as a result of discretizing the fermionic action. Since our
discretization generates 16 fermion tastes (one pair in each direction) we shall
set Nf to 1/16. This is similar, for instance, to the fourth root taken on the
staggered fermion determinant in the context of lattice gauge field theory [16].
(10)
Γ b

int

βV
= ae2Nf

∑

μ

Gμμ(0)
[
Dμ(μ̂) − Dμ(−μ̂)

]
.

The contribution Γ a
int is the usual fermion loop with a some-

what peculiar photon line (7). The lattice spacing a in Γ b
int

manifests that this diagram is a lattice artefact. Both fermion
loops are individually quadratically divergent, they together
make sure that at the lowest perturbative level the photon re-
ceives no mass renormalization.

Together with a counterterm contribution δΓint (see below),
the expressions (9) and (10) provide the full O(e3) interaction
part of the 2PI effective action: Γint = Γ a

int + Γ b
int + δΓint. If we

now introduce the self-energies

(11)Σ̄μ(x) = D̄−1
μ (x) − D−1

0,μ(x)

and

(12)Π̄μν(x) = G−1
μν (x) − G−1

0,μν(x),

and use the explicit formula (8) for the 2PI effective action,
we can write the stationarity equations defining the interacting
two-point functions D̄ and Ḡ as

(13)4Nf Σ̄μ(x) = 1

a4βV

∂Γint

∂Dμ(x)

and

(14)Π̄μν(x) = 2

a4βV

∂Γint

∂Gμν(x)
.

The interacting two-point functions D̄ and Ḡ are thus obtained
after simultaneously solving Eqs. (11)–(14). As it can easily be
checked, in the two-loop approximation that we consider here,
Eqs. (13)–(14) do not involve any discretized integral in direct
space. On the other hand, Eqs. (11)–(12) can be conveniently
solved in momentum space. To this order of the truncation we
can thus completely avoid calculating loops by simply Fourier
transforming the propagators back and forth in every step of
the iterative procedure. We define the Fourier transforms of a
generic fermionic (D) or gauge (G) two-point function, respec-
tively, as

(15)i−1Dμ(k) = a4
∑

x

e−ik·xDμ(x)

and

(16)α−1
μν (k)Gμν(k) = a4

∑

x

e−ik·xGμν(k),

where αμν(k) = 1 if μ = ν and αμν(k) = exp(−ia(kμ + kν)/2)

otherwise. This particular definition of the Fourier transform
of G is connected to the fact that the gauge field has to be
thought as attached to the midpoints of the lattice links.6 Solv-
ing Eqs. (11)–(12) in Fourier space, needs that we determine
the Fourier transforms of the free inverse propagators. After in-
spection of the free (quadratic) contribution to S, one obtains

(17)D−1
0,μ(k) = −k̄μ

6 Even this unusual variant of the fast Fourier transform is available as legacy
code [17].



Sz. Borsányi, U. Reinosa / Physics Letters B 661 (2008) 88–94 91
and

(18)G−1
0,μν(k) = k̂2δμν − (

1 − ξ−1)k̂μk̂ν,

with the usual short-hand notations k̄μa = sin(kμa) and
k̂μa/2 = sin(kμa/2). Eqs. (11)–(14) can be solved for any non-
vanishing lattice spacing a, leading to perfectly finite two-point
functions D̄ and Ḡ. In order to define a proper continuum limit
of the latter, as a → 0, one needs however to absorb UV diver-
gences. Renormalization of Eqs. (11)–(14) was considered in
Ref. [7] in the context of dimensional regularization and at zero
temperature. There, renormalization was achieved by adding a
contribution δΓint to the functional Γint. This contribution car-
ries the counterterms needed for renormalization. In extending
this result to lattice regularization, one has to pay attention to
the presence of new vertices originating from the expansion
of the link variable Uμ(x) in powers of the field Aμ(x) (see
above). In our present calculation, in addition to the usual ver-
tex coupling A to ψ̄ and ψ (which leads to Γ a

int), there is a new
vertex coupling A2 to ψ̄ and ψ (which leads to Γ b

int). This new
vertex brings an extra factor of a, which is such that the super-
ficial degree of divergence of a given diagram is the same as in
dimensional regularization.7 It follows that we can here apply
the same type of analysis of UV divergences as the one used in
Ref. [7].

At two-loop order, the shift δΓint is given in lattice regular-
ization by

δΓint = δg1

8

1

βV

∑

k,μ

Gμμ(k)
∑

q,ν

Gνν(q)

+ δg2

4

1

βV

∑

μν

∑

k

Gμν(k)
∑

q

Gμν(q)

+ 1

2

∑

k

∑

μν

Gμν(k)

× [
δZ3k̂

2δμν − (δZ3 − δλ)k̂μk̂ν + δM2δμν

]

(19)− 4Nf δZ2

∑

k,μ

k̄μDμ(k).

It leads to additional contributions at the level of the self-
energies, in particular a longitudinal wave function renormal-
ization (δλ) as well as a photon mass counterterm (δM2).

The counterterms δg1 and δg2 allow to remove subdiver-
gences hidden in Eqs. (13)–(14) and involving four photon legs
(see below). After these have been removed, there only remain
temperature independent overall divergences that need to be ab-
sorbed in the counterterms δZ2, δZ3, δλ and δM2. Although
the exact O(4) symmetry is broken on the lattice, the tensor
structure of the self energies at a fixed scale k is restored in the
continuum limit of an isotropic lattice theory. This allows us to
use the renormalization conditions introduced in the context of
the continuum theory [18]. In particular, one can show that the

7 More precisely, one has δ = 4 − EA − (3/2)Eψ , where EA and Eψ , re-
spectively denote the number of external photon and fermion legs of the dia-
gram at hand.
overall divergences have the structure

(20)Σ̄div
μ (k) = −σ k̄μ

and

(21)Π̄div
μν (k) = πMδμν + πT

(
δμνk̂

2 − k̂μk̂ν

) + πLkμkν

where σ , πT , πL and πM represent quantities which diverge as
a → 0 (quadratically for πM and logarithmically for the rest of
them). Comparing these expressions to those for the countert-
erms, we find that all divergences can be absorbed by setting

(22)

δZ2 = −σ, δZ3 = −πT , δλ = −πL and δM2 = −πM.

The set of Eqs. (22) does not fix the finite parts of the coun-
terterms. In order to do so, we fix δZ2, δZ3, δλ and δM2

through the lattice version of the renormalization conditions
given in [7]:

(23)

∂Σ̄�
3

∂k̄3

∣∣∣∣
k�

= 0,
∂Π̄�

22

∂k̂2
3

∣∣∣∣
k�

= 0,
∂Π̄�

33

∂k̂2
3

∣∣∣∣
k�

= 0 and Π̄�
33

∣∣
k� = 0,

where k� = (0,0,μ,0) and μ denotes our renormalization
scale. The star on the self-energies means that these are con-
sidered at a reference temperature T �. The first two renor-
malization conditions are similar to those which are used in
perturbation theory and completely determine the counterterms
δZ2 and δZ3. In perturbation theory, where the (lattice) Ward
identity for Π̄(k)

(24)0 =
∑

μ

k̂μΠ̄μν(k)

prevents the appearance of longitudinal corrections to the self
energy, the third and fourth conditions in Eq. (23) are trivially
satisfied. In our case, however, we need to fix two countert-
erms (δλ and δM2) that cancel longitudinal UV divergences
of O(e4). A natural way to fix these is to impose the Ward
identity on Π̄ at the renormalization point k� = (0,0,μ,0) and
for a given temperature T �. We do so at k� and in a small
neighborhood of k�. In this way, we obtain the third and fourth
renormalization conditions of Eq. (23). The arbitrariness of this
condition introduces an ambiguity of order O(e4).

As already discussed in Ref. [7], when renormalizing the
two-point function Ḡ, one has not only to pay attention to lon-
gitudinal overall divergences but also to longitudinal subdiver-
gences which involve four-photon legs. Again, if no truncation
is considered, these subdivergences automatically cancel since
they reproduce the exact four-photon function which is trans-
verse. However, for a given truncation of the 2PI effective ac-
tion, this cancellation of divergences is only true up to the order
of the truncation. Above, new divergences appear which need
to be absorbed by means of the counterterms δg1 and δg2. The
particular structure of these divergences has been worked out in
Ref. [7] for the case of dimensional regularization. The result is
that, in order to absorb the four-photon divergences, one needs
to impose, at the renormalization point, the transversality of a
four-point function defined by means of a set of Bethe–Salpeter
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equations. Here, we extend this result to the case of lattice reg-
ularization.

The Bethe–Salpeter equations can be written as a closed
set of equations for a four-point function V̄μν,σρ(p, k) involv-
ing four photon legs and a four-point function W̄ij,σρ(p, k)

involving two photon and two fermion legs [7]. Similarly to
what we did with the propagator D̄, we turn the Dirac indices
i, j into one Lorentz index μ:

∑
μ W̄μ,σργμij = W̄ij,σρ . Given

that k� = (0,0,μ,0), the renormalization conditions fixing δg1
and δg2, as given in Ref. [7], read

(25)V̄ �
2233(k

�, k�) = 0 and V̄ �
3333(k

�, k�) = 0.

In order to impose these renormalization conditions, we do
not need to solve the set of Bethe–Salpeter equations for ar-
bitrary values of the momenta and arbitrary configurations of
Lorentz indices. Indeed, the set of equations remains closed if
we fix one of the momenta to k = k� and two of the Lorentz in-
dices to σ = ρ = 3. We thus consider equations for V̄μν(p) =
V̄μν33(p, k�) and W̄α(p) = W̄α,33(p, k�). Introducing the nota-
tions

(26)Aσρ(p) = δ(p − k�)δσ3δρ3,

(27)Vμν(p) = Ḡμα(p)V̄αβ(p)Ḡβν(p),

Wμ(p) = −2 D̄μ(p)
∑

ρ

W̄ρ(p)D̄ρ(p)

(28)+ W̄μ(p)
∑

ρ

D̄ρ(p)D̄ρ(p),

we may write the corresponding set of Bethe–Salpeter equation
as

V̄μν(p) = −δμν

2

δg1

βV

∑

q,ρ

[
Vρρ(q) − 2Aρρ(q)

]

− δg2

βV

∑

q

[
Vμν(q) − 2Aμν(q)

]

(29)−
∑

q,ρ

∂Πμν(p)

∂Dρ(q)
Wρ(q),

W̄μ(p) = −
∑

q,ρσ

∂Σμ(p)

∂Gρσ (q)

[
Vρσ (q) − 2Aρσ (q)

]

(30)−
∑

q,ρ

∂Σμ(p)

∂Dρ(q)
Wρ(q).

We simulaneously solve these pair of equations together with
Eqs. (11)–(14) at the renormalization temperature T � by ad-
justing the counterterms after each step of iteration so that the
renormalization conditions (23) and (25) are fulfilled.8 Using
the obtained values for the counterterms, we can solve for the
physical two-point functions D̄ and Ḡ at any other tempera-
ture T , which admit a proper continuum limit.

Plugging these values into the CJT formula (8) truncated
at two-loop order gives us a non-perturbative approximation
to the QED pressure, compatible with perturbation theory up

8 As expected, the numerical values of δM2, δλ, δg1 and δg2 scale as ∼ e4.
Fig. 1. Two-loop QED pressure as a function of the coupling e and for differ-
ent values of the gauge-fixing parameter ξ . The plain line corresponds to ξ = 0
(Landau gauge), long-dashed lines to ξ = 1 (Feynman gauge) and short-dashed
lines to ξ = 2. The sensitivity with respect to the renormalization scale μ is il-
lustrated in the case of the Feynman gauge. We also plot the perturbative O(e2)

result for comparison.

to order O(e3). Notice that, even with all the above countert-
erms included, there is a quartic divergence remaining in the
pressure. This divergence is temperature independent and can
be removed by a cosmological constant renormalization. The
renormalization condition is usually given by the requirement
of zero vacuum pressure. Here we do not renormalize or eval-
uate the model at zero temperature. We determine the coun-
terterms in the equations of motion at T �. Then, using these
counterterms we evaluate the pressure at T � and T �/2. As-
suming a ∼ T 4 scaling with the temperature, we determine the
pressure as the difference of the divergent pressure values as
obtained from the formula of the effective action, divided by
(15/16)(T �)4. The assumed scaling of temperature is broken
due to the presence of the renormalization scale. This effect in-
troduces an error of O(e4) which is above the actual accuracy
of our calculation.

In order to improve numerical stability, we take into ac-
count the following points. Calculating the pressure difference
involves the subtraction of two quartically divergent contribu-
tions. Instead, we carry out the spatial part of the trace in Γ2PI
after performing the subtraction. An other important alteration
to the equations above is the exclusion of the spatially homo-
geneous lattice mode on the level of the 2PI effective action.
This is necessary to avoid instabilities as e → 0, since the finite
photon mass contribution behaves as ∼ e4.

In Fig. 1 we plot the QED pressure in the two-loop 2PI ap-
proximation, for a wide range of coupling values (0 � e � 2.4)
and for various values of the gauge-fixing parameter. As dis-
cussed in Ref. [9] the higher the gauge-fixing parameter is,
the less convergent the 2PI loop expansion becomes. It is thus
meaningless to consider our calculation for too high values of ξ

and, as suggested in Ref. [9], we restrict our calculations to val-
ues of the gauge-fixing parameter ranging from ξ = 0 (Landau
gauge) to ξ = 2. For small values of the coupling, our results are
almost insensitive to the gauge-fixing parameter and nicely re-
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Fig. 2. Renormalization scale dependence of the two-loop pressure.
produce the perturbative result to order O(e2). This comes as no
surprise since the two-loop 2PI approximation contains all dia-
grams contributing to the pressure to order O(e2). In principle,
the same diagrams also contain the O(e3) contribution. How-
ever, due to finite size effects, the latter is not accounted for by
our numerics. For this reason, our results are compared to per-
turbation theory to order O(e2). Numerically we find a good
agreement with perturbation theory up to e ∼ 1 which is pre-
cisely where the perturbative expansion usually breaks down.
A more complete comparison would involve a substantial im-
provement of our code in order to reach the scaling regime
where the O(e3) contribution can be accessed through infinite
volume extrapolation of our lattice results. Since our goal is not
to test lattice perturbation theory in the infinite volume limit,
but to explore the gauge dependence of the 2PI resummation
scheme for which the O(e3) is irrelevant in the approximation
at hand, we ignore finite size effects at this stage.

For large values of the coupling, our calculation becomes a
priori sensitive to two types of uncertainties. First of all, renor-
malization is done by imposing renormalization conditions at a
certain momentum k� = (0,0,μ,0) which introduces an artifi-
cial dependence on the scale μ. Moreover the truncation of the
2PI effective action introduces gauge parameter dependences
starting at order O(e4). These two types of uncertainties can be
taken as a way to estimate the error of the calculation.

The dependence with respect to the renormalization scale
μ is illustrated in Fig. 1 for the case ξ = 1 (Feynman gauge)
where μ is varied in the interval πT � μ � 4πT as it is usu-
ally done in calculations at finite temperature. A study of the
μ-dependence as the gauge-fixing parameter is varied and for a
given value of the coupling (e = 2) is depicted in Fig. 2. Notice
that, at fixed gauge-fixing parameter ξ , the μ-dependence is not
monotonous. However μ = 2πT roughly represents the value
at which the pressure reaches it maximum value, in this range.
We notice that the uncertainty due to scale dependence is not
particularly severe, which indicates the good convergence be-
havior of the 2PI approach. Moreover this uncertainty is ∼ 1%
for ξ = 2 and decreases considerably down to its minimum
value reached for ξ = 0, which makes the Landau gauge a par-
Fig. 3. Gauge-fixing parameter dependence of the two-loop pressure.

ticularly interesting choice among all possible gauges. We also
notice that, in general, choosing a higher renormalization scale
flattens the gauge dependence towards the Landau gauge value.

The second source of uncertainties is gauge dependence. As
already mentioned a calculation for high values of the gauge-
fixing parameter makes little sense. In the considered range of
gauge parameter values, the error due to gauge dependence is
of the order of or less than 1–1.5%. The Landau gauge plays
again a special role since it corresponds to the value of ξ for
which the pressure is the less sensitive to gauge parameter de-
pendence. Indeed, independently of the value of the coupling,
one has pξ − pξ=0 ∼ ξ2 as ξ → 0, as it is clear on the logarith-
mic plot of Fig. 3.

In conclusion, our calculation shows, in covariant gauge,
a relatively small error coming from gauge parameter depen-
dence. The parametric suppression of the gauge parameter de-
pendence has already been shown in Ref. [9]. We have now es-
tablished that the so far unknown coefficients of this parametric
dependence do not spoil this behavior. The gauge dependence
can also be regarded as a feature, which opens a way to error es-
timates without the need for considering higher order diagrams.
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We think, that the 2PI effective action can be regarded as an
efficient resummation technique for gauge theories, where the
actual choice of gauge-fixing has an impact on the quality of the
resummation. As for the particular calculation presented here,
the Landau gauge is the preferred choice. This finding can be
interpreted as a manifestation of the generic idea, that Landau
gauge minimizes the presense of non-physical gauge contribu-
tions, which is often exploited in QCD [19].
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