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The quadratic fields whose class numbers are divisible by 3 are parametrized as
k=Q(- 4uw3&27u2) with integers u and w satisfying some conditions. Further-
more every unramified cyclic cubic extension of k is determined as the splitting field
of g(Z)=Z3&uwZ&u2. � 2000 Academic Press

1. THE MAIN THEOREM

We consider a polynomial of the form

g(Z)=Z3&uwZ&u2, u, w # Z,

where u and w are relatively prime, d :=4uw3&27u2 is not a square in Z,
and one of the following conditions holds:

(i) 3 |3 w;

(ii) 3 | w, uw�3 (mod 9), u#w\1 (mod 9); (1.1)

(iii) 3 | w, uw#3 (mod 9), u#w\1 (mod 27).

The discriminant of g(Z) is

D=u2d,

and is not a square in Z by the assumption. If g(Z) is irreducible over Q,
then the minimal splitting field of g(Z) contains the quadratic field Q(- d),
and its Galois group over Q is the symmetric group S3 .
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Main Theorem. Let the notation and the assumptions be as above. If
g(Z) is irreducible over Q, then the roots of g(Z)=0 generate an unramified
cyclic cubic extension of the quadratic field Q(- d). Conversely, every quad-
ratic field whose class number is divisible by 3 and every unramified cyclic
cubic extension of it are given in this way by a suitable pair of integers u
and w.

2. PROOF

It is well-known that every unramified cyclic cubic extension of a quadratic
field is normal over Q and is an S3 -extension of Q. Every S3 -extension of
Q is given by a cubic equation of the form

X3&tX&t=0, t # Q. (2.1)

Indeed, we suppose that the polynomial

Irr(%; X)=X3&aX&b, a, b({0) # Q,

generate the cubic field Q(%). If a=0, then we see

Irr \%+
1
%

; X+=X 3&3X&b&
1
b

.

Hence we may assume that ab{0. And then we have

Irr \a
b

%; X+=X3&
a3

b2 X&
a3

b2 .

Express t=v�u (u, v # Z, (u, v)=1), and multiply both sides of (2.1)
by u3. If we put Y=uX, then we obtain

f (Y ) :=Y3&uvY&u2v=0. (2.2)

Let p be a prime number. It is easy to see that a prime divisor of p in
Q(- d) is ramified in the minimal splitting field of f (Y ) if and only if p is
totally ramified in a cubic field generated by a root of f (Y)=0. Hence we
determine the conditions under which no primes are totally ramified in the
cubic field.

For a prime number p and an integer m, we denote the greatest exponent
+ of p such that p+ | m by Vp(m). Here we extract some results from
P. Llorente and E. Nart [Ll-Nar].
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Proposition (Llorente and Nart). Suppose that the cubic polynomial

F(X )=X3&aX&b, a, b # Z,

is irreducible over Q, and that either Vp(a)<2 or Vp(b)<3 holds for a prime
p. Let % be a root of F(X )=0, and put K=Q(%).

(a) When p{3, p is totally ramified in K�Q if and only if

1�Vp(b)�Vp(a).

(b) When p=3, 3 is totally ramified in K�Q if and only if one of the
following conditions holds:

(i) 1�V3(b)�V3(a);

(ii) 3 | a, a�3 (mod 9), 3 |3 b, and b2�a+1 (mod 9);

(iii) a#3 (mod 9), 3 |3 b, and b2�a+1 (mod 27).

To utilize this proposition, let us closely investigate the Eq. (2.2). Take
a root % of f (Y )=0 and put K=Q(%).

Lemma 1. Let p be a prime factor of v. If p{3, then p is totally ramified
in K�Q if and only if Vp(v)�0 (mod 3). If p=3, 3 is totally ramified in K�Q
if V3(v)�0 (mod 3).

Proof. Suppose that Vp(v)=3n+:�1 (:=0, 1 or 2), and put
v= p3n+:v$. Then ( p, v$)=1. We have

Y3& p3n+:uv$Y& p3n+:u2v$=0.

Divide both sides by p3n, and put Z=Y�pn; then we get

Z3& pn+:uv$Z& p:u2v$=0.

When p{3, we see by the proposition that p is totally ramified in K�Q if
and only if :{0. For p=3, it follows from (i) of the proposition that 3 is
totally ramified in K�Q if :{0. K

Hence to obtain the condition under which no primes are totally
ramified in K�Q, we assume Vp(v)#0 (mod 3) for every prime p. Then v
is a cube in Z. Take w # Z so that we have v=w3. Put Y=wZ in (2.2) and
divide both sides by w3; then we obtain

g(Z) :=Z3&uwZ&u2=0, (u, w)=1.

It is clear that g(%�w)=0 and K=Q(%�w).
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If p |3 uw, then the proposition assures us that p is not totally ramified in
K�Q.

Lemma 2. No prime factors of u are totally ramified in K�Q.

Proof. Suppose that Vp(u)=2n+;�1 (;=0 or 1), and put u= p2n+;u$.
Then ( p, u$)=( p, w)=1. We have

g(Z)=Z3& p2n+;u$wZ& p4n+2;u$2=0.

Divide both sides by p3n, and put W=Z�pn; then we get

W3& p;u$wW& pn+2;u$2=0.

It is now clear by the proposition that p is not totally ramified in K�Q. K

If p | w and p{3, it is clear by the proposition that p is not totally
ramified in K�Q.

Now suppose 3 | w. Then 3 |3 u because (u, w)=1. Therefore u#\1
(mod 3). It follows from the proposition that 3 is not totally ramified in
K�Q if and only if either

uw�3 (mod 9), u4#uw+1 (mod 9),

or

uw#3 (mod 9), u4#uw+1 (mod 27).

Since u#\1 (mod 3), we have u3#\1 (mod 9). Take x # Z so that we
have ux#1 (mod 9). Then in Z�9Z, we see

u&(w\1)&(u3&(w+x))=u�1&u3+x

#u�2+x

#x(u2�2u+1)

=x(u�1)2

#0.

Therefore we have

u4#uw+1 (mod 9) � u3#w+x (mod 9) � u#w\1 (mod 9).

Assume now uw#3 (mod 9). Since u#\1 (mod 3), we have w#\3
(mod 9). Put

u=3u$\1, w=9w$\3.
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Since

u4=(3u$\1)4#\12u$+1 (mod 27),

we see

u4#uw+1 (mod 27) � \12u$+1#(3u$\1)(9w$\3)+1 (mod 27)

� \12u$+1#\9u$\9w$+3+1 (mod 27)

� \3u$+1#\9w$+3+1 (mod 27)

� \(3u$\1)#\(9w$\3)+1 (mod 27)

� \u#\w+1 (mod 27)

� u#w\1 (mod 27).

This completes the proof of the main theorem.

3. ON SOME KNOWN RESULTS

There are known families of quadratic fields whose class numbers are
divisible by 3. In this section, we exhibit four such families, and show how
they are related with our theorem. The class number of a quadratic field k
is denoted by h(k).

Theorem 1 (Honda [Ho]). Let m and n be rational integers, and
suppose that (a) (m, 3n)=1, (b) 4m3&27n2 is not square, and (c) m cannot be
expressed as (n+a3)�a with a # Z. Then the class number of Q(- 4m3&27n2)
is divisible by 3.

In this case, put u=n2 and w=m in our main theorem. Then we have

Z3&n2mZ&n4=0,

and d=4n2m3&27n4. Divide both sides of the equation by n3, and put
X=Z�n; then we get

f (X ) :=X3&mX&n=0.

The assumption (c) implies that f (X ) is irreducible over Q. It follows from
the assumption (a) that the condition (i) of (1.1) holds. Hence we have

3 | h(Q(- 4n2m3&27n4))=h(Q(- 4m3&27n2))

also by the main theorem.
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Theorem 2 (Hartung [Ha]). Let m be a square free integer. If m#7
(mod 12) and if m is of the form (n2&4)�27 where n is an integer, then the
class number of Q(- &m) is divisible by 3.

Put u=n2 and w=3 in our main theorem. Then we have

Z3&3n2Z&n4=0,

and d=4 } 27n2&27n4. Divide both sides by n3, and put X=Z�n; then we
get

f (X) :=X3&3X&n=0.

Since n2=27m+4 and m is a square free integer, n cannot be even. Assume
that f (X ) is reducible; then there exists a # Z such that a3&3a&n=0;
therefore

n=a3&3a=a(a2&3),

and n is even. This is a contradiction. Therefore f (X ) is irreducible. Since

uw=3n2#3 (mod 9),

and

u=n2#4=w+1 (mod 27),

the condition (iii) of (1.1) holds. Hence by the main theorem we have

3 | h(Q(- 4 } 27n2&27n4))=h \Q \�&
n2&4

27 ++=h(Q(- &m)).

For our argument here, the condition m#7 (mod 12) is not necessary. We
give a table of integers n for which m=(n2&4)�27 is not a square, and the
class number of k=Q(- &m).

n m k h(k) n m k h(k)

25 23 Q(- &23) 3 133 655 Q(- &655) 12
29 31 Q(- &31) 3 137 695 Q(- &695) 24
56 116 Q(- &29) 6 160 948 Q(- &237) 12
79 231 Q(- &231) 12 164 996 Q(- &249) 12
83 255 Q(- &255) 12 187 1295 Q(- &1295) 36

106 416 Q(- &26) 6 191 1351 Q(- &1351) 24
110 448 Q(- &7) 1 214 1696 Q(- &106) 6
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In the table, only n=29, 133 and 191 satisfy the condition m#7
(mod 12). In case of n=110, the class number of k is equal to 1 and is not
divisible by 3. This is because the polynomial f (X ) is reducible over Q:

f (X)=X3&3X&110=(X&5)(X2+5X+22).

Theorem 3 (Ohta [Oh]). Let a and b be rational integers and p1 , ... , pr

be prime numbers different from each other, and suppose that we have
(6ab, p1 } } } pr)=1 and (3a, 4b)=1. Let :1 , ... , :r be positive integers. If we
have either

{ap:1
1

} } } p:r
r #\1 (mod 3)

bp1 } } } pr #1 (mod 3)
(3.1)

or

{ap:1
1 } } } p:r

r #\2 (mod 5)
bp1 } } } pr #1 (mod 5),

(3.2)

then the class number of the quadratic field

Q(- p1 } } } pr(44b3&33a4p4:1&3
1

} } } p4:r&3
r ))

is divisible by 3.

In this case, put u=a4p4:1&3
1

} } } p4:r&3
r and w=4b in our main theorem.

Then we have

g(Z)=Z3&4a4bp4:1&3
1

} } } p4:r&3
r Z&a8p2(4:1&3)

1
} } } p2(4:1&3)

r , (3.3)

and

d=4a4p4:1&3
1

} } } p4:r&3
r } 43b3&27a8p2(4:1&3)

1
} } } p2(4:1&3)

r

=(a2p2:1
1

} } } p2:r
r )2 p1 } } } pr(44b3&33a4p4:1&3

1
} } } p4:r&3

r ).

Dividing both sides of the Eq. (3.3) by (ap:1&1
1 } } } p:r&1

r )6 and putting
X=Z�(ap:1&1

1 } } } p:r&1
r )2, we have

f (X ) :=X3&4bp1 } } } prX&(ap:1
1 } } } p:r

r )2.

If the condition (3.1) holds, then we have

f (X )#X3&X&1 (mod 3).
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Since X3&X&1 is irreducible with respect to modulo 3, f (X ) is also
irreducible over Q. Similarly, if the condition (3.2) holds, then we see that
f (X ) is irreducible over Q because

f (X )#X3+X+1 (mod 5).

By the assumptions, we have (u, w)=1 and 3 |3 w. Hence the condition (i)
of (1.1) holds. Therefore our Main Theorem implies

3 | h(Q(- p1 } } } pr(4
4b3&33a4p4:1&3

1 } } } p4:r&3
r )).

Theorem 4 (Brinkhuis [Br]). Let m be a rational integer which cannot
be written in the form n3&n2 for any integer n. Then the class number of
Q(- &4m&27m2) is divisible by 3.

This theorem follows from the main theorem if we put u=m and
w=&1. In fact, we have

Z3+mZ&m2=0,

and d=&4m&27m2. Multiply both sides of the equation by m�Z3, and
put X=m�Z; then we get

f (X ) :=X3&X2&m=0.

By the assumption, we see that f (X ) is irreducible over Q. Since w=&1
is not divisible by 3, the condition (i) of (1.1) holds. Hence we have

3 | h(Q(- &4m&27m2)).

Remark. Hendy [He], Mollin [Mo], Nakahara [Nak] and Uehara
[Ue] also gave families of infinitely many quadratic fields with class
numbers divisible by 3. All of their results are proved by means of con-
structing an ideal class of order 3. The authors have not yet found any
clear expressions of their families by means of our Main Theorem.
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