-

-
brought to you by .i CORE

View metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

Review

Review

JOURNAL OF
HEPATOLOGY

EUROPEAN
° go ASSOCIATION
o% FOR THE STUDY
(-} OF THE LIVER

Obesity, inflammation, and liver cancer

Beicheng Sun'*, Michael Karin®*

Liver Transplantation Center of the First Affiliated Hospital and Cancer Center, Nanjing Medical University, Nanjing, Jiangsu Province, PR China;
2Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, Cancer Center, UCSD School of Medicine,
La Jolla, CA 92093-0723, USA

Summary

Obesity has become a universal and major public health problem
with increasing prevalence in both adults and children in the 21st
century, even in developing countries. Extensive epidemiological
studies reveal a strong link between obesity and development
and progression of various types of cancers. The connection
between obesity and liver cancer is particularly strong and obes-
ity often results in liver diseases such as non-alcoholic fatty liver
disease (NAFLD) and the more severe non-alcoholic steatohepati-
tis (NASH). NASH is characterized by fatty liver inflammation and
is believed to cause fibrosis and cirrhosis. The latter is a known
liver cancer risk factor. In fact due to its much higher prevalence,
obesity may be a more substantial contributor to overall hepato-
cellular carcinoma burden than infection with hepatitis viruses.
Here, we review and discuss recent advances in elucidation of
cellular and molecular alterations and signaling pathways associ-
ated with obesity and liver inflammation and their contribution
to hepatocarcinogenesis.

© 2011 European Association for the Study of the Liver. Published
by Elsevier B.V. All rights reserved.

Introduction

Obesity, an abnormal medical condition, is becoming one of
the most serious public health problems worldwide and its
prevalence has dramatically increased in the last few decades.
Obesity is defined as having a body mass index (BMI) equal to
or higher than 30 kg/m?. The marked increase in the world-
wide incidence of obesity, particularly in children, has been
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noted by the World Health Organization (WHO) [1]. Obesity
often causes a number of medical disorders, including meta-
bolic syndrome, type 2 diabetes, non-alcoholic fatty liver dis-
ease (NAFLD), and the more severe non-alcoholic
steatohepatitis (NASH). Recently, however, obesity was recog-
nized as a major risk factor for several common types of
cancer, of which pancreatic and liver cancer show the highest
increase in risk [2]. Notably, these are two of the most lethal
cancers with 5 years survival rates of 4-8%. Several epidemio-
logical and clinical studies have confirmed the importance of
obesity as an independent risk factor for hepatocellular carci-
noma (HCC), the most common form of liver cancer [3,4].
Due to its much wider spread and prevalence in some parts
of the world, obesity makes a larger contribution to overall
HCC burden than hepatitis B or C virus (HBV, HCV) infections.
The connection between obesity and cancer is likely to be
mediated, in part, by a state of chronic low-grade inflammation
in the involved tissues [5-10]. Liver inflammation has been
shown to be associated with obesity-induced NAFLD, NASH,
fibrosis, and cirrhosis, resulting in elevated production of vari-
ous cytokines and adipokines, which have been implicated in
hepatocarcinogenesis. There are additional explanations for
the effect of obesity on HCC risk and the process of cirrhosis
(Fig. 1). This review is focused on the pathogenic role of
inflammation and it aims to summarize recent advances in
understanding of the obesity-HCC link based on basic mecha-
nistic studies carried out in mouse models that were confirmed
in human clinical material.

Obesity and hepatocellular carcinoma

The steady increase in BMI has become a worldwide pandemic
and is currently estimated to cause more than 90,000 cancer-
related deaths per year in the US alone [6]. The incidence of obes-
ity in both adults and children during the past three decades has
increased drastically also in other parts of the world, including
developing countries such as China and India [11-14]. Obesity
has been shown to be an independent risk factor for some malig-
nancies including breast cancer, endometrial cancer, colon
cancer, renal cell carcinoma, esophageal adenocarcinoma, pan-
creatic ductal adenocarcinoma, and HCC [3,15-19]. Furthermore,
obesity is associated with poor prognosis of breast cancer and
colon cancer [19,20].
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Key Points 1

® The steady increase in BMI has become a worldwide
pandemic and is currently estimated to cause more than
90,000 cancer-related deaths per year in the US alone

®  Although HBV and HCV infections are considered as
major HCC risk factors worldwide, at least in the US,
obesity is likely to be a major risk factor along with
other non-viral factors, such as type 2 diabetes mellitus,
alcohol, tobacco and oral contraceptives

®  Obesity has been implicated in the genesis of insulin
resistance and type 2 diabetes, NAFLD and NASH,
hepatic fibrosis, and cirrhosis, resulting in serious
complications, including liver failure and HCC

®  Obesity is associated with chronic low-grade systemic
inflammation, which involves adipocytes and various
immune cells

®  Hypertrophic adipocytes secrete free fatty acids (FFAs),
and together with various immune cells, they release
various pro-inflammatory cytokines including tumor
necrosis factor (TNF), interleukin-6 (IL-6), IL-18, IL-8,
IL-10, IL-18 and IL-17, as well as more specialized
adipokines, such as leptin and adiponectin

HCC is the dominant form of primary liver carcinoma (PLC),
ranking sixth in incidence and third in mortality amongst all can-
cers. HCC accounts for 85-90% of PLC worldwide and constitutes
70-75% of PLC cases in the US [21-23]. Although HBV and HCV
infections are considered as major HCC risk factors worldwide,
at least in the US, obesity is likely to be the primary risk factor
along with other non-viral factors, such as type 2 diabetes melli-
tus, alcohol, tobacco, and oral contraceptives [23,24]. Obesity also
represents an independent HCC risk factor in patients with alco-
holic cirrhosis and cryptogenic cirrhosis [3]. A follow-up study in
Taiwan has implicated synergistic effects between metabolic dis-
orders (obesity and diabetes) and viral hepatitis, with HCC risk
increasing by more than 100-fold in HBV or HCV carriers with
obesity and diabetes [25].

Obesity has been implicated in the genesis of metabolic syn-
dromes including insulin resistance and type 2 diabetes, and a
spectrum of non-cancerous liver diseases, such as NAFLD and
NASH, hepatic fibrosis and cirrhosis [26]. On the other hand,
some “metabolic benign obesity” with only abdominal adiposity
and without insulin resistance does not appear to play a deter-
mining role in steatohepatitis [27], suggesting that the obesity-
induced metabolic disorder may be a major cause of fatty liver.
Indeed, NAFLD is strongly associated with type 2 diabetes melli-
tus and dyslipidemia [28-30]. Accumulation of fat, because of
excess caloric intake, genetic factors or other diseases, can result
in liver dysfunction as the liver synthesizes more triglycerides
but fails to export them. Consequently, triglycerides accumulate
in parenchymal liver cells (hepatocytes), leading to hepatosteato-
sis. As such, obesity is the main risk factor for NAFLD, but NAFLD
is a reversible disorder, whose underlying causes can be treated
and inhibited in its early stages [29]. For example, obesity-
induced fatty liver can be treated by weight loss through exercise
and dietary control. However, without proper management,
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Fig. 1. Three putative mechanisms for obesity-induced and obesity-promoted
hepatocarcinogenesis. ROS, reactive oxygen species; RNS, reactive nitrogen
species.

NAFLD may progress to chronic liver inflammation, termed as
steatohepatitis (NASH), which is a severe condition of inflamed
fatty liver that can further progress to liver fibrosis and cirrhosis
causing serious complications, including liver failure and HCC
[8,31]. PLC, including both HCC and intrahepatic cholangiocarci-
noma, often occur in patients with NASH, especially in those with
advanced fibrosis and cirrhosis, and the occurrence of HCC is the
strongest predictor of mortality in patients with old age and
advanced fibrosis [26,32]. It should also be noted that obesity
and NAFLD can induce proliferation and decrease apoptosis of
hepatocytes in a mouse model, resulting in hepatic hyperplasia,
in the absence of inflammation, fibrosis, and cirrhosis [33].

Cytokines and adipokines in obesity-induced liver
inflammation

There is substantial evidence that obesity is associated with
chronic low-grade systemic inflammation, which is believed to
contribute to metabolic disorders, and the progression from
hepatic steatosis to NASH, fibrosis, cirrhosis, and finally to HCC.
Although the entire process of progression has not been fully elu-
cidated, within this process, the switch from hepatosteatosis to
steatohepatitis is key, as without inflammation, none of the other
pathologies will ensue. We will therefore discuss the cytokines
involved in liver inflammation and its associated metabolic disor-
ders. Obesity and inflammation-associated metabolic disorders
are often manifested by insulin resistance, resulting in elevated
plasma concentrations of insulin and insulin-like growth factor
1 (IGF-1), and can lead to increased secretion of cytokines (known
as adipokines) by adipose tissue [34], as well as inflammatory
cells, which include resident liver macrophages or Kupffer cells
(KCs) [10,34]. Adipocytes in obese individuals undergo hypertro-
phy due to deposition and accumulation of excess lipids. Hyper-
trophic adipocytes secrete free fatty acids (FFAs), and together
with various immune cells they release various pro-inflammatory
cytokines including tumor necrosis factor (TNF), interleukin-6
(IL-6), IL-1p, IL-8, IL-10, IL-18, and IL-17, as well as more
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Fig. 2. Adipokines, cytokines, and hepatocarcinogenesis. Excessive free fatty
acids (FFAs) can activate various immune cells and cause hepatocytes cell death.
Moreover, cell debris, pro-inflammatory cytokines and adipokines can further
enhance TNF and IL-6 secretion from Kupffer cells, leading to activation of
downstream signaling molecules, such as STAT3 in hepatocytes which contribute
to hepatocarcinogenesis.

specialized adipokines, such as leptin and adiponectin [8,34-40]
(Fig. 2). Furthermore, saturated FFAs lead to the activation of
Jun kinases (JNK) and the production of inflammatory cytokines
by different cell types [41,42]. We have recently found that one
of the first steps in cell signaling elicited by saturated FFA is
the clustering and eventual activation of c-Src within specific
membrane sub-domains (Holzer, R.G., Park, E.-]., Li, N., Tran, H.,
Chen, M., Choi, C,, Solinas, G., Karin, M. (2011) Saturated fatty
acids induce c-Src clustering within membrane subdomains lead-
ing to JNK activation. Cell 147:173-184). Notably, it has been
demonstrated that a 19% weight loss in obese women led to
reduced plasma TNF, IL-6, and leptin, and increased plasma
adiponectin [43]. Among all of these cytokines, IL-6 is both pro-
inflammatory and a useful marker for obesity-associated inflam-
mation. In the liver, IL-6 is mainly secreted by KC and hepatic
stellate cells (HSC), and to a lesser extent by stimulated hepato-
cytes [44,45]. Circulating IL-6 is elevated in obese individuals
and type 2 diabetics [46-48]. On the other hand, reduced caloric
intake and increased physical activity result in reduced plasma
IL-6 in obese children and adolescents [49]. Earlier studies have
also revealed that both IL-6 and TNF increase hepatic production

of C-reactive protein (CRP), a major acute phase protein, which is
a nonspecific but sensitive marker of infection and tissue inflam-
mation that is increased in obesity [50-53]. Other cytokines,
including IL-1B, oncostatin M (OSM) or leukaemia inhibitory fac-
tor (LIF), can drive hepatic inflammation by inducing production
of CRP, independently of IL-6 [50-52]. Concerning the cellular
source of these cytokines, besides KC and adipocytes, infiltration
of CD8" T cells into obese epididymal adipose tissue was found to
precede accumulation of macrophages and a CD8-specific anti-
body treatment lowered the mRNA expression of both TNF and
IL-6 in adipose tissue, suggesting that CD8* T cells may be key
regulators of adipose inflammation [54,55]. As cytokines pro-
duced by adipocytes and macrophages reach the portal venous
system, KC and hepatocytes are stimulated to produce more cyto-
kines, resulting in an inflammatory cascade in the liver [56].

Several cytokines have strong influence on the regulation of
insulin resistance in the context of hepatic inflammation. TNF is
primarily produced by macrophages, but also by adipose tissue
of obese mice and men [57]. Furthermore, TNF was demonstrated
to play a significant role in insulin resistance at least in mice [58].
Elevated expression of TNF mRNA and protein was detected in
obese rodents and humans. Loss of TNF or its receptors (TNFR1
and TNFR2) improves insulin sensitivity in obese mice [59]. How-
ever, neutralization of TNF was found ineffective in restoring
insulin sensitivity in diabetic patients [60,61]. Insulin sensitivity
in leptin-deficient ob/ob mice is improved by IL-6 depletion using
a neutralizing antibody [62], moreover, a recent study has shown
that IL-6 can inhibit insulin signaling in hepatocytes [63]. How-
ever, so far no clinical studies on the ability of anti-IL-6 drugs
to improve insulin sensitivity and liver metabolism have been
reported. Furthermore, administration of an inhibitory anti-IL-6
receptor antibody was found to cause a transient increase in
serum lipoproteins [64].

Leptin, whose effects were discovered in the 1950s [65], but
was not identified until 1994 [66], is the product of the obese
(ob) gene and is mainly produced by adipocytes of white adipose
tissue (WAT), and to a lesser extent by brown adipose tissues,
placenta, ovaries, skeletal muscle, stomach, bone marrow, and
liver [67-70]. Leptin can regulate energy intake and expenditure
by binding to receptors expressed by CNS neurons [71,72]. Leptin
signaling prevents weight gain under physiological conditions
and the serum concentration and mRNA amounts of leptin are
positively associated with the amount of energy stored in adipose
tissue, and total adipose tissue mass, in both humans and mice
[73-75]. Thus, leptin production is a key negative feedback mech-
anism in BMI regulation. Leptin expression is stimulated by
many acute phase factors, such as TNF, IL-1, and IL-6, and during
bacterial infection, or lipopolysaccharide (LPS) challenge [76].
Leptin-deficient (ob/ob) or leptin receptor-deficient (db/db) mice
spontaneously develop obesity even on normal chow [77-79].

Adiponectin is a protein which is encoded by the Ad/Poq gene
[27,80]. Like leptin, it is also secreted by adipocytes, but unlike
leptin, adiponectin is inversely associated with high BMI in adults
and the circulating concentrations of adiponectin are reduced in
diabetics compared to non-diabetics [81]. Adiponectin is an
anti-inflammatory hormone and its circulating concentration is
inversely correlated with those of inflammatory markers, and
positively associated with the anti-inflammatory cytokine IL-10
[82,83]. Moreover, there is a significant increase in circulating
adiponectin in obese individuals undergoing weight loss
[84,85]. Circulating adiponectin is also increased in children after
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short-term weight loss, which also ameliorates insulin sensitivity
[85,86]. In ob/ob mice, acute treatment with adiponectin stimu-
lated phosphorylation of AMP-activated protein kinase (AMPK)
in liver tissue and improved insulin sensitivity [87]. Additionally,
adiponectin-deficient mice on high fat diet developed early-stage
NASH with increased TNF expression and fibrosis [88,89]. Knock-
out of one of the two adiponectin receptors (adipoR1 and R2) in
mice increased insulin resistance, whereas knockout of both adi-
poR1 and R2 caused increased tissue triglyceride content, inflam-
mation and oxidative stress, leading to insulin resistance and
marked glucose tolerance [90,91]. Moreover, adiponectin pro-
tects against liver tumorigenesis directly by increasing phosphor-
ylation of AMPK and tumor suppressor tuberous sclerosis
complex 2 (TSC2) protein and inhibiting the phosphorylation of
mammalian target of rapamycin (mTOR); reduced adiponectin
expression is associated with poor prognosis in obese patients
with HCC [92]. Taken together, adiponectin is a negative regula-
tor of obesity-induced inflammation and other pathologies.

Other cytokines and adipokines

IL-1B is another inflammatory cytokine that can induce insulin
resistance in Fao and HepG2 cell lines, and in primary rat hepato-
cytes, whereas cells treated with IL-1 receptor antagonist (IL-
1RA) were protected against insulin resistance induced by
conditioned medium from 3T3-L1 adipocytes treated with TNF
[38]. IL-17 secreted by T helper 17 (Th17) cells was also reported
to have a pivotal role in obesity-induced inflammation [35].
Another adipokine suggested to provide a potential link between
obesity and diabetes is resistin, as its circulating amounts were
decreased by treatment with anti-diabetic drugs and its adminis-
tration impaired insulin function in normal mice [93]. Recently, a
new adipokine, chemerin, whose concentrations are elevated in
morbidly obese patients, was described. Chemerin is involved
in adipogenesis and is positively associated with insulin resis-
tance, increased CRP, and IL-6, and negatively associated with
high-density lipoprotein [94]. By contrast, IL-33 was suggested
to protect obese individuals from development adipose tissue
inflammation [95]. Secreted frizzled-related protein (Sfrp) 5
was identified as a new anti-inflammatory adipokine, whose
expression is reduced in ob/ob mice and Zucker diabetic fatty rats
[91]. It was proposed that Sfrp5 neutralizes noncanonical JNK
activation by Wnt5a in macrophages and adipocytes to improve
metabolic function and reduce adipose tissue inflammation
[96]. JNK activation by inflammatory cytokines and FFA was
shown to be a major contributor to obesity-induced insulin resis-
tance and metabolic inflammation [42,97].

Cytokine signaling pathways associated with obesity-induced
inflammation

Although many cytokines were shown to modulate and mediate
obesity-induced inflammation and progression of NAFLD, the
central mechanism that mediates the effects of these cytokines
on obesity-induced metabolic disorders associated with chronic
steatohepatitis such as insulin resistance, NAFLD, and NASH, is
not fully clear. Nonetheless, several specific intracellular signal-
ing pathways, including nuclear factor (NF)-kB, JNK, activating
protein-1 (AP-1), and STAT3 have emerged as potential targets
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for many of these cytokines and chemokines. Another important
signaling pathway - the AMPK-TORC1 pathway will be discussed
separately below.

Key Points 2

®  Several specific intracellular inflammatory signaling
pathways, including nuclear factor (NF)-kB, JNK|,
activating protein-1 (AP-1), and STAT3 have emerged
as potential targets for many of these cytokines and
chemokines

®  Another major signaling pathway involved in
hepatosteatosis and hepatocarcinogenesis is the
AMPK-TORC1 pathway

> Inhibition of AMPK1 and the activation of TORC1 result
in inhibition of autophagy, which was recently found to
be a major pathway for the removal of lipid droplets from
hepatocytes, and is likely to have tumor suppressive and
auto-inflammatory activities

®  Metformin, an anti-diabetic drug, may prevent HCC in
patients with type 2 diabetes as it causes activation of
AMPK and leads to inhibition of TORC1 and stimulation
of autophagy

®* DNAdamage and oncogenic mutations remain relatively
underexplored in obesity-related tumorigenesis

®  Several murine models were developed for a full
mechanistic understanding of obesity-induced liver
carcinogenesis

NF-kB is a collection of protein dimers that control the tran-
scription of a host of target genes [98]. Abnormal regulation of
NF-kB has been linked to cancer and inflammatory disease [99].
In non-stimulated cells, NF-xB dimers are mainly kept inactive
in the cytoplasm, through binding to inhibitory proteins called
IxB [98]. The IkB kinase (IKK) complex, which is responsive to
many inflammatory stimuli, phosphorylates the IkBs, thereby
triggering their degradation, and causing NF-xB activation
[100]. Activated NF-xB dimers translocate to the nucleus where
they bind to specific DNA sequences and regulate transcription
of distinct target genes. Mice lacking IKKp in hepatocytes (Ikkg*™
hepy or in myeloid cells (Ikkg2™¢) were generated and fed either
normal chow or high fat diet (92). Ikkg*"P mice retained liver
insulin sensitivity, but developed insulin resistance in muscle
and fat in response to high fat diet. Ikkg*™° mice, however,
retained global insulin responsiveness and were protected from
obesity-induced insulin resistance. It was suggested based on
these results that inhibition of IKK, especially in myeloid cells,
is useful for the treatment of insulin resistance [101]. However,
conditional disruption of IKKB in skeletal muscle failed to prevent
obesity-induced insulin resistance [102]. It was also found that
high fat diet increased NF-«B activation, which results in a sus-
tained elevation of the IKK-related kinase IKKe in liver, adipo-
cytes, and adipose tissue macrophages [103]. IKKe ablation
reduced expression of inflammatory cytokines and protected
mice from high-fat diet-induced obesity, chronic inflammation
in the liver and adipose tissue, and hepatic steatosis [103]. As
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liver specific ablation of IKKB increases sensitivity to inflamma-
tory and toxic challenges [104,105] and systemic IKKB inhibition
can lead to neutrophilia [106,107], IKKe inhibition may be prefer-
able to IKKB inhibition. In addition to IKKs and NF-xB, Jun kinases
(JNK) are activated by almost all signaling pathways proposed to
cause insulin resistance or p-cell failure, and their inhibition pro-
vides protection from obesity and glucose intolerance in rodents
[10]. The two main isoforms of JNK, JNK1, and JNK2, appear to
have distinct specific effects on murine steatohepatitis and insu-
lin resistance. Singh et al. demonstrated that both JNK1 and JNK2
are involved in insulin resistance in mice fed with high-fat diet
through genetic ablation of JNK1 or JNK2; but whereas JNK1 pro-
motes steatosis and hepatitis, JNK2 inhibits hepatocyte cell death
[108]. Interestingly, obesity also leads to JNK activation in
humans, whereas reduced JNK activity was seen upon weight loss
[109]. JNK activation can lead to increased production of inflam-
matory cytokines capable of causing insulin resistance [42]. IL-6
and TNF expression in liver is strongly induced in response to
high fat diet, but inhibition of TNF signaling through TNFR1 or
ablation of IL-6 prevented hepatosteatosis without a considerable
effect on weight gain [8]. Fas (CD95), a receptor related to TNFR1,
can also activate inflammatory pathways in several cell lines and
tissues, and its deficiency either in all cells or specifically in adi-
pocytes protected mice from insulin resistance induced by high-
fat diet [110].

Although several pathways have been implicated in metabolic
inflammation, the IKK and JNK signaling pathways in adipocytes,
macrophages, and hepatocytes have emerged as the pivotal
mediators of obesity-induced inflammation and even systemic
metabolic disorders [8,42,97,101,111,112]. As discussed below,
these pathways are also involved in liver tumorigenesis.

TORC1 signaling, autophagy, and hepatosteatosis

In addition to the inflammatory signaling pathways listed
above, a major signaling pathway involved in hepatosteatosis
and hepatocarcinogenesis is the AMPK-TORC1 pathway. AMPK
is a protein kinase complex composed of alpha (catalytic sub-
unit), beta, and gamma (regulatory subunits) subunits, whose
activity is stimulated upon binding of AMP [113]. Since AMP
concentrations in the cell are much higher when the conver-
sion of AMP to ADP and eventually ATP is inhibited, AMPK is
activated upon starvation, caloric restriction, exercise or drugs
that act as mitochondrial uncouplers. AMPK has many impor-
tant substrates involved in metabolic regulation, including
ACC (acetyl-CoA carboxylase) and HMGCR (HMG-CoA reduc-
tase), rate limiting enzymes that control biosynthesis of fatty
acids and cholesterol, respectively [113]. One of the main
AMPK substrates is the TSC1:TSC2 tumor suppressor complex,
whose activity is inhibited upon AMPK-mediated phosphoryla-
tion [114]. Inhibition of TSC1:TSC2 activity decreases the GTP
loading of the Ras-related GTPase Rab, which serves as the
activator of the TORC1 protein kinase complex [115-117].
TORC1 contains the catalytic subunit mTOR (mammalian target
of rapamycin) in complex with the adaptor protein raptor and
several other subunits [115]. TORC1 also has a number of
substrates, including the translational inhibitor 4EBP1 and
p70S6 kinase, through which TORC1 activation stimulates the
translation of certain mRNAs and ribosome biosynthesis
[118]. Activation of TORC1 also leads to phosphorylation and

inhibition of the ULK1 protein kinase complex composed of
ATG1, ATG13, and FIP200, whose activity is required for the
initiation of autophagy [119]. Curiously, AMPK-mediated phos-
phorylation was recently found to have the opposite effect on
ULK1 activity [120]. Thus, inhibition of AMPK1 in response to
hypernutrition and the activation of TORC1 result in inhibition
of autophagy, which is a major catabolic pathway and quality
control process. In addition to degradation and eventual recy-
cling of abnormal proteins and damaged organelles [121],
autophagy was recently found to be a major pathway for the
removal of lipid droplets from hepatocytes [122], and is likely
to have tumor suppressive and auto-inflammatory activities
[123,124]. Thus, by inhibition of AMPK and activation of
TORC1, hypernutrition and excessive caloric intake lead to inhi-
bition of autophagy, thereby stimulating the development of
hepatosteatosis and all of its sequella, including NASH and
increased HCC risk. Histological studies have revealed the accu-
mulation of p62, a hallmark of autophagy, during steatohepati-
tis [125,126].

One way to reactivate autophagy in the hepatosteatotic liver
is through the use of the anti-diabetic drug metformin. Metfor-
min is known to cause activation of AMPK through a poorly
defined mechanism and thereby it leads to inhibition of TORC1
and stimulation of autophagy [127,128]. Another way to inhibit
TORC1 and stimulate autophagy is through the use of rapamycin
and other TORC1 inhibitors [129]. Interestingly, metformin use
was found to be associated with reduced cancer risk [130]. In par-
ticular, metformin treatment was found to be associated with a
strong and statistically significant reduction in HCC risk amongst
diabetics and it also seems to slow down HCC development
[131,132]. Thus, metformin use by type 2 diabetes may reverse
the increase in HCC risk associated with insulin resistance and
obesity. Rapamycin use may also reduce HCC risk and clinical tri-
als using rapamycin and other TORC1 inhibitors in the treatment
of HCC were recently conducted [133,134].

Genetic instability associated with obesity

Although the progression from inflammation to fibrosis, and then
cirrhosis is widely accepted as the main etiology of obesity-
associated cancers including HCC, other mechanisms such as
DNA damage and oncogenic mutations remain relatively under-
explored in obesity-related tumorigenesis. Recently, Scarpato et al.
compared DNA damage lesions and chromosome mutations in
the peripheral lymphocytes from normal, overweight, and obese
Italian children [9]. As expected, they found that obesity was
associated with chronic inflammation as marked by higher serum
levels of IL-6 and CRP in obese and overweight children than in
normal-weight children. They also found that both DNA strand
breaks, detected with a y-H2AX focus assay, and micronucleus
frequency, detected by staining for broken chromosomes, were
elevated in peripheral lymphocytes from obese and overweight
children in comparison to those from normal-weight children.
These results suggest that a constitutively high frequency of
DNA lesions and unrepaired DNA damage in micronuclei may
contribute to increased risk of cancer, including HCC, later in life
of obese children. Thus, while inflammation plays an important
role in tumor initiation, promotion, and metastasis [135], the
contribution of genetic instability to obesity-enhanced cancer
needs further investigation.
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Table 1. Murine models associated with obesity and HCC.
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Gene KO phenotype Advantages and shortcomings
IL-6 Mature onset of obesity and insulin resistance on Advantages:
HFD; reduced obesity-induced HCC promotion
TNFR1 Rapid weight-gain like WT on HFD:; ablation of +  Specific interested gene knockout , ,
obesity-enhanced HCC development; reduced . L|ver_tl_Jmor_form.at|9n spontaneously_ or vs{lth environmental t_reatment
obesity-induced steatohepatitis . Providing direct insight |r_1to the physiological roles of genes if interest
. ) o . Novel or unexpected actions of target genes may emerge
IKKB Improved insulin sensitivity; enhanced . . Studying specific gene function in hepatocarcinogenesis
DEN-induced HCC development, but protection . Useful in discovering therapeutic targets
from LT-induced HCC suggesting that IKK@ and
NF-kB activation promote, rather than inhibit, HCC
development
p38a Enhanced DEN-induced HCC development
NEMO/IKKy Protected from obesity-induced insulin resistance; Shortcomings:
development of spontaneous liver damage, '
hepatosteatosis, fibrosis and eventually HCC Unable to fully resemble the pathological characteristics observed in human
TAK-1 Protected from obesity-induced insulin resistance; Unexpected actions of target genes

development of spontaneous liver damage,
hepatosteatosis, fibrosis and eventually HCC

Unpredictable further gene mutations in human genome
Unknown response to anti-tumor agents

ATG7 Spontaneously multiple benign hepatocellular
adenoma development accompanied by
mitochondria dysfunction and genomic instability

ATGS Spontaneously multiple benign hepatocellular
adenoma development accompanied mitochondrial
swelling, p62 accumulation, and oxidative stress
and genomic damage responses

Murine models for obesity-promoted liver cancer

Although epidemiological and retrospective studies have pro-
vided considerable insights into the effects of obesity on liver
inflammation and the development of HCC, a full mechanistic
understanding of obesity-promoted liver tumorigenesis depends
on the use of appropriate animal models that replicate the
human pathology and are amenable to genetic analysis (Table 1).
Several such models were recently developed. One particularly
interesting model is based on the conditional deletion of the
gene encoding NEMO/IKKy, the IKK regulatory subunit in
hepatocytes. Ikky*"®P mice develop spontaneous liver damage,
hepatosteatosis, fibrosis and eventually HCC [136]. However,
just like IkkpAP®P mice [101], Ikky“"®P mice are protected
from obesity-induced insulin resistance, although their hepatos-
teatosis becomes worse when kept on HFD [137]. In addition to
augmenting hepatosteatosis, feeding HFD to Ikky*"®P mice
accelerates and enhances HCC development. In addition to
insulin resistance, Ikky“"P mice are also protected from periph-
eral obesity in response to HFD [137]. Similar findings were
observed in Tak1“"P mice, enhancement of hepatocarcinogenesis
was due to a downstream consequence of sustained apoptosis
and the emergence of regenerative clones that acquire a dedif-
ferentiated phenotype [138]. Furthermore, TAK1-deficient mice
were also resistant to the development of HFD-induced meta-
bolic syndrome and protected from development of glucose
intolerance and insulin resistance through decreased infiltration
of inflammatory cells and expression of inflammatory genes in
white adipose tissue [139]. However, TAK1 has been reported
to repress transcription of the telomerase reverse-transcriptase
gene, suggesting a direct effect of TAK1 in cancer promotion,
which was different from Ikky“"P mice [140]. These results
strongly suggest that increased BMI and elevated blood glucose
or blood insulin are not directly responsible for obesity-promoted
liver tumorigenesis.

A more commonly used model of HCC induction in rodents is
based on administration of the chemical pro-carcinogen diethyl
nitrosamine (DEN). It was found that even a short time of HFD
(6 weeks) led to a marked increase in induction of pre-neoplastic
liver lesions in DEN-administered rats [141]. This was accompa-
nied by enhanced infiltration of inflammatory cells and higher
ERK activity in livers of HFD-fed rats, but lower amounts of p38
phosphorylation and activity [141]. A more thorough mechanistic
analysis of obesity-promoted chemically-induced hepatocarcino-
genesis was conducted by Park et al. who injected 2 weeks old
mice with DEN and at 4 weeks of age placed the mice either on
normal chow or HFD [8]. Tumors were analyzed 8 months later.
Consumption of HFD led to a marked increase in HCC incidence,
multiplicity and size and as observed in humans, the effect was
more pronounced in males than in females [8]. An even more
striking enhancement of HCC development was seen in mice that
were first fed HFD for 3 months and then given DEN. These mice
all developed HCC, whereas mice kept on normal chow did not
develop any tumors unless DEN administration was followed
by treatment with the hepatic tumor promoter phenobarbitol.
Analysis of the mechanism through which HFD may enhance
DEN-induced hepatocarcinogenesis revealed elevated ERK and
JNK activities in HCCs that evolved in mice on HFD but reduced
P38 MAPK activity [8]. Although the basis for the reduction of
P38 MAPK activity and its effect on HCC development in mice
or rats kept on HFD have not been explored, it should be noted
that ablation of p38a strongly enhances DEN-induced HCC devel-
opment [142,143]. Thus, reduced p38 activation may be an
important pathogenic mechanism.

Another signaling protein whose activity is elevated in both
non-tumor liver tissues and HCCs of HFD-fed mice is STAT3 [8].
STAT3 activation in hepatocytes is essential for DEN-induced
HCC development [144] and for obesity-stimulated tumor
growth [8]. The main cause of STAT3 activation is elevated pro-
duction of the pro-inflammatory cytokines IL-6, which leads to
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direct STAT3 activation, and TNF which stimulates the expression
of IL-6 [8]. Ablation of IL-6 or TNFR1 blocked obesity-promoted
hepatocarcinogenesis. The mechanism responsible for this pro-
tective effect was determined to be reduced hepatosteatosis
and steatohepatitis [8]. As seen with the ablation of NEMO, the
IL-6 or TNFR1 deficiencies had little effect, if any, on fat accumu-
lation in peripheral depots, underscoring the notion that
increased BMI is not directly responsible for obesity-promoted
hepatocarcinogenesis. In other words, fat accumulation in hepa-
tocytes which can culminate in fatty liver inflammation is far
more important than accumulation of subcutaneous fat [145].

HCCs as well as normal liver tissue of mice fed with HFD
revealed elevated TORC1 activity manifested by increased phos-
phorylation of the TORC1 substrate p70S6 kinase and its sub-
strate ribosomal protein S6 [8]. By contrast, phosphorylation of
AKT was reduced, most likely reflecting the insulin resistant state
of mice kept on HFD. Future studies should be directed at assess-
ing the contribution of elevated TORC1 activity to obesity-
promoted hepatocarcinogenesis. Nonetheless, it is well estab-
lished that TORC1 activation can disrupt autophagy and may be
the primary mediator of defective autophagy in the hepatostea-
totic livers. Curiously, disruption of autophagy, as occurs in
ATG7 or ATG5 knockout mice, leads to spontaneous liver tumor
development [146,147]. Interestingly, the ablation of p62, a chap-
eron for ubiquitinated proteins, that accumulates in steatohepa-
titis [148], protected liver specific ATG7 KO mice from liver
tumor development [147]. Although much more work remains
to be done with these mouse models, the conclusions from all
of these studies are similar and clear. Hepatosteatosis promotes
HCC development through enhancement of liver inflammation
and disruption of autophagy, mechanisms that appear to be
highly relevant to the pathogenesis of human HCC [149-151].
On the other hand, insulin resistance and diabetes may not be
as important and could be unrelated pathogenic processes insti-
gated by hepatosteatosis.

Conclusions

Obesity has become a serious public health problem in the United
States and elsewhere due to its effects on human health, resulting
in metabolic and cardiovascular disorders and increasing cancer
risk. Amongst all cancers, the one that is most strongly enhanced
by obesity is HCC. Obesity enhances HCC development through
lipid accumulation within hepatocytes, thereby leading to a
chronic low-grade liver inflammation, involving various cyto-
kines and adipokines. Extensive research in this field has shed
some light on some of the cytokines and adipokines that contrib-
ute to the onset of steatohepatitis and the initiation and promo-
tion of HCC. However, there are many questions, including the
effect of hepatosteatosis on genetic instability within hepato-
cytes, the mechanisms that control the progression from hepatos-
teatosis to steatohepatitis and how chronic steatohepatitis leads
to tumor initiation, that remain to be answered. While weight
loss by bariatric surgery, diet or exercise have been shown to
ameliorate obesity-induced metabolic syndromes, more effective
therapeutic interventions are needed to prevent the development
of HCC or halt its progression. The basic research reviewed above
has revealed several new targets for therapeutic and preventive
intervention, but advanced translational research has only begun.
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