A Note on Upper Bounds on the Maximum Modulus of Subdominant Eigenvalues of Nonnegative Matrices

Tuck Sang Leόng
12 Taman Bahagia
27600 Raub, Pahang, Malaysia

Submitted by Hans Schneider

ABSTRACT

The main aim of this note is to suggest a way of selecting the vector a^T in a theorem of Brauer for use in finding upper bounds of the maximum modulus of subdominant eigenvalues of a nonnegative irreducible matrix. Upper bounds thus obtained for some matrices in a paper of Rothblum and Tan are compared with those obtained by theorems in that paper.

INTRODUCTION

Let P be an $n \times n$ real matrix. The spectrum of P, denoted by $\sigma(P)$, is the set of eigenvalues of P. The spectral radius of P, denoted by $\rho(P)$, is defined by $\rho(P) = \max \{ |\lambda| : \lambda \in \sigma(P) \}$. If P is an $n \times n$ nonnegative irreducible matrix, where $n \geq 2$, then an eigenvalue of P which is different from $\rho(P)$ is called a subdominant eigenvalue of P, and the maximum modulus of subdominant eigenvalues of P, denoted by $\xi(P)$, is called the coefficient of ergodicity of P.

Let $\| \|$ be a norm on \mathbb{R}^n. For an $n \times n$ nonnegative irreducible matrix P with spectral radius ρ, and an $n \times n$ diagonal matrix D with positive diagonal elements, the coefficients $\tau_\| \| (P)$ and $\tau_{D\| \|} (P)$ are defined respectively by

$$
\tau_\| \| (P) = \max_{\| x \| = 1} \| x^T P \| \quad \text{and} \quad \tau_{D\| \|} (P) = \tau_\| \| (D^{-1}PD),
$$

\(^1\)We apply a norm $\| \|$, formally defined on $\mathbb{R}^n (\mathbb{C}^n)$, to elements in $R^{1 \times n} (C^{1 \times n})$ by having $\| y \| = \| y^T \|$ for a corresponding row vector y.

where \(w \in \mathbb{R}^n \) is a positive right eigenvector of \(P \) corresponding to the eigenvalue \(\rho \). For \(1 \leq p \leq \infty \), \(\tau_p \| \cdot \| (P) \) and \(\tau_p^D \| \cdot \| (P) \) will be denoted respectively by \(\tau_p(P) \) and \(\tau_p^D(P) \) if the norm \(\| \cdot \| \) is the \(l_p \) norm.

Let \(B = (b_{ij}) \) be an \(n \times n \) real matrix. To a norm \(\| \cdot \| \) on \(\mathbb{R}^n \) there corresponds a matrix norm, which, also denoted by \(\| \cdot \| \), is defined by \(\|B\| = \max\{\|x^T B\|: \|x\| \leq 1; x \in \mathbb{R}^n \} \). The Frobenius norm of \(B \) is defined by \(\|B\|_F = (\sum_{j=1}^n \sum_{i=1}^n b_{ij}^2)^{1/2} \). It is known that \(\rho(B) \leq \|B\| \) and \(\rho(B) \leq \|B\|_F \).

In this note we are concerned with two results in Rothblum and Tan [2].

Let \(P \) be an \(n \times n \) nonnegative irreducible matrix, and \(w \) be a positive right eigenvector of \(P \) corresponding to the eigenvalue \(\rho = \rho(P) \). Inequality (5.2) and equation (5.3) of Theorem 5.1 of Brauer state that if \(a \in \mathbb{R}^n \), then

\[
\xi(P) \leq \rho(P - wa^T),
\]

and if \(a^T w = \rho \), then

\[
\xi(P) = \rho(P - wa^T).
\]

Inequalities (5.8) of Theorem 5.5 of Rothblum and Tan state that if \(\| \cdot \| \) is a norm on \(\mathbb{R}^n \), then

\[
\xi(P) \leq T\| \cdot \| (P) \leq \|P - wa^T\|.
\]

The main aim of this note is to show that it is always possible to choose the vector \(a^T \) in such a way that to each \(a^T \) so chosen, there corresponds a submatrix \(S \) of \(P - wa^T \) with the property that \(\xi(P) = \rho(S) \). Thus for \(p \in \{1, F, \infty\} \), we have\(^2\)

\[
\xi(P) \leq \|S\|_p \leq \|P - wa^T\|_p.
\]

In Theorem 1 we propose a way of using (2) to obtain an upper bound for \(\xi(P) \). Comparisons show that the bounds obtained in this way for the two matrices in Rothblum and Tan [2] are either as good as or better than those given by \(T\| \cdot \| (P) \) for some \(\| \cdot \| \) on \(\mathbb{R}^n \).

\(^2\)It can be shown, see Stewart [3], that \(\|B\|_\infty = \max\{\sum_{j=1}^n |b_{ij}|: i = 1, \ldots, n\} \), \(\|B\|_1 = \max\{\sum_{i=1}^n |b_{ij}|: j = 1, \ldots, n\} \).
MAIN RESULT

Theorem 1. Let P be an $n \times n$ nonnegative irreducible matrix, where $n \geq 2$, and $w = (w_1, \ldots, w_n)^T$ be a positive right eigenvector of P corresponding to the eigenvalue $\rho = \rho(P)$. Let $I = \{ i : w_i \neq 0 \}$. For each $i \in I$, define $R_i = P - w_i w_i^T P_i$, where P_i is the ith row of P. Let S_i be the $(n-1) \times (n-1)$ matrix obtained from R_i by erasing its ith row and column. If $f : R^{(n-1) \times (n-1)} \rightarrow \mathbb{R}$ is a function from the set of $(n-1) \times (n-1)$ real matrices into \mathbb{R} satisfying $\rho(S) \leq f(S)$ for each $S \in R^{(n-1) \times (n-1)}$, then

$$\xi(P) \leq \min \{ f(S_i) : i \in I \}.$$

In particular, if $M_i = \min \{ \|S_i\|_1, \|S_i\|_F, \|S_i\|_\infty \}$, and $m = \min \{ M_i : i \in I \}$, then $\xi(P) \leq m$.

Proof. For each $i \in I$, $R_i = P - w_i w_i^T$, where $a^T = w_i^T P_i$. Since $a^T w - w_i^T P_i w = w_i^T (Pw) = w_i^T \rho(P) w_i = \rho(P)$, it follows from (2) that $\rho(R_i) = \rho(P)$. Since the ith row of R_i is the zero vector, $\rho(R_i) = \rho(S_i)$, and the theorem follows from the facts that $\rho(S_i) \leq M_i$ and $\rho(S_i) \leq f(S_i)$ for each $i \in I$.

COMPARISONS

The following examples were taken from Rothblum and Tan [2].

(i) Let

$$P = \begin{bmatrix} 0 & 1 & 0 \\ 2 & 5 & 4 \\ 0 & 3 & 0 \end{bmatrix},$$

$$\tau_1(P) = 2.4 \quad \tau_\infty(P) = 2.2857$$

$$\tau_F(P) = 2.0169 \quad \tau_F(P^T) = 2.1818$$

$$\tau_\infty(P^T) = 2.5714 \quad \tau_F(P^T) = 2.0144$$

Let $D_1 = \text{diag}(1, 7, 3)$ and $D_2 = \text{diag}(2, 7, 4)$. Then

$$\tau_1^{D_1}(P) = \tau_1^{D_2}(P^T) = 2, \quad \tau_\infty^{D_1}(P) = \tau_\infty^{D_2}(P) = 2.$$
The eigenvalues of P are 0, -2, and 7. From Theorem 1, $m = 2$ for $D_1^{-1}PD_1$.

(ii) Let

$$
P = \begin{bmatrix}
12 & 6 & 6 \\
3 & 3 & 18 \\
8 & 8 & 8
\end{bmatrix},
$$

$$\tau_1(P) = 12, \quad \tau_\infty(P) = 12,$$

$$\tau_2(P) = 11.36, \quad \tau_F(P) = 11.66,$$

$$\tau_1(P^T) = 11.15, \quad \tau_\infty(P^T) = 14.12,$$

$$\tau_2(P^T) = 11.38.$$

The eigenvalues of P are 5, -6, and 24. From Theorem 1, $m = 8.37$.

The author is indebted to the referee for a better proof of the author's result. This proof brings out more clearly the significance of the result and reveals an important way of selecting the vector a^T of a theorem of A. Brauer for use in finding an upper bound of $\xi(P)$, in view of inequalities (3), (4) and the upper bounds of $\xi(P)$ of the matrix P in example (ii).

REFERENCES

Received April 1986; final manuscript accepted 4 September 1987