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Abstract We develop a systematic algorithm for discovering
network of regulatory modules, which identifies regulatory mod-
ules and their regulation program by integrating genome-wide
location and expression data. Unlike previous approaches [Eisen,
M.B., Spellman, P.T., Brown, P.O. and Botstein, D. (1998)
Proc. Natl. Acad. Sci. USA 95, 14863–14868; Tavazoie, S.,
Hughes, J.D., Campbell, M.J., Cho, R.J. and Church, G.M.
(1999) Nat. Genet. 22, 281–285; Ihmels, J., Friedlander, G.,
Bergmann, S., Sarig, O., Ziv, Y. and Barkai, N. (2002) Nat.
Genet. 31, 370–377; Segal, E., Shapira, M., Regev, A., Pe�er,
D., Botstein, D., Koller, D. and Friedman, N. (2003) Nat. Genet.
34, 166–176] that relied primarily on gene expression data, our
algorithm regards the regulator binding data as prior knowledge
that provide direct evidence of physical regulatory interactions.
We applied the method to a Saccharomyces cerevisiae genome-
wide location data [Lee, T.I., Rinaldi, N.J., Robert, F., Odom,
D.T., Bar-Joseph, Z., Gerber, G.K., Hannett, N.M., Harbison,
C.T., Thompson, C.M., Simon, I., Zeitlinger, J., Jennings,
E.G., Murray, H.L. Gordon, D.B., Ren, B., Wyrick, J.J.,
Tagne, J.B., Volkert, T.L., Fraenkel, E., Gifford, D.K. and
Young, R.A. (2002) Science 298, 799–804] for 106 DNA-binding
transcription factors and 250 gene expression experiments under
the conditions from the cell cycle to responses to various stress
conditions. The results show that our method is able to identify
functionally coherent modules and their proper regulators. Sup-
plementary materials are available at http://compbio.sibsnet.org/
projects/module-network/.
� 2004 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.

Keywords: Module network; Regulatory program; Location
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1. Introduction

The complex functions of a living cell are carried out

through networks of interacting biochemical components.

The key for biochemical networks is the proper context-depen-
Abbreviations: CPD, condition probability distribution; EM, expecta-
tion maximization; GO, gene ontology; TF, transcriptional factor
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dent expression of genes. This activity is often coordinated by

the organization of the genome into regulatory modules, i.e.,

sets of co-regulated genes that involve in a common function

[6]. To achieve this, the cell has evolved a highly interconnected

transcriptional networks composed of signaling molecules,

transcription factors, and their DNA targets [7]. Genome-wide

expression profiles provide important information about these

cellular processes. Current approaches to analyzing gene

expression data can successfully identify groups of co-ex-

pressed genes [1–3]. Friedman and his co-workers constructed

a probabilistic model that use expression data to link genes

with their regulators [4,8,9]. Their method assumes that the

expression levels of the regulated genes are controlled by the

expression level of their regulators. This assumption holds only

when the expression level changes of the regulators, not the

others (e.g., post-transcription modification of the regulators),

are the regulatory signals. Some other approaches have com-

bined expression data with additional information, such as

shared DNA-binding motifs [10–12]. But these additional data

sources provide essentially only indirect evidence of genetic

regulatory interactions.

Large-scale, genome-wide transcription factor binding anal-

ysis, which identifies physical interactions between regulators

and the regulatory DNA regions they bind to, provides direct

evidence of regulatory relationships [5,13]. Although helpful,

the validity of binding information is also limited, as the bind-

ing between the regulator and a certain regulatory region indi-

cates only binding but not always functioning. The regulator

acting positively, negatively or not at all depends on many con-

ditions. Because expression data and location data provide

complementary information, we commit to develop an efficient

computational method for integrating them together. Such an

algorithm could assign genes to modules and modules to reg-

ulators more accurately than the other methods based on

one single data source alone.

In this paper, we report a computational approach based on

a Bayesian probabilistic framework for inferring regulatory

networks of gene modules from genome-wide location data

and expression data. We begin with clustering genes into mod-

ules, using hierarchical clustering algorithm [1]. Then, for

every module we perform an efficient exhaustive search over

all possible transcriptional regulators by computing location

probability from location data and measuring mutual informa-

tion [14] from gene expression data, respectively. Once sets of

strong candidate regulators were found, given these as inputs,

we use iterative procedure (see Supplementary Methods

online) to search for regulation programs of modules
blished by Elsevier B.V. All rights reserved.
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(see Fig. 3) and re-assign genes into modules simultaneously.

Every regulation program is organized as a regression tree

[15] in which groups of co-regulated genes, their regulators,

and the behavior of the module are specified as a function of

the regulators� expression and the conditions under which reg-

ulation takes place. Finally, the procedure outputs a list of

modules and corresponding regulation programs. (See Section

2 for a complete description of the algorithm.)

We applied our method to the study of gene regulatory mod-

ules in yeast. We considered genome-wide location data for

106 transcription factors [5] together with gene expression data

on 250 conditions from different experiments. The results were

compared with previous work [2,4,16] and showed that our

algorithm could discover biologically meaningful, functionally

coherent modules and their proper regulators. Therefore, our

method is useful for studying transcriptional regulatory net-

works by integrating genome-wide location data and gene

expression data.

Fig. 1. Overview of our automated approach. The procedure takes as
input a data set of gene expression profiles, a large precompiled set of
candidate regulators genes and location analysis data. The core EM
algorithm (dotted line box) is an iterative procedure, including two
steps: an E-step procedure which partition genes to modules; and M-
step which learns regulatory program for each module. In a post-
processing phase, we evaluate the validity of each module by testing
the enrichment of the genes from the same category.
2. Materials and methods

2.1. Candidate regulators
We compiled a set of 472 candidate regulators (see Supplementary

Table 1 online), containing both transcription factors and signaling
proteins that may have transcriptional effect [17]. The transcriptional
factors (TFs) that were used in the genome-wide location analysis
are all included.

2.2. DNA microarray data set
We used an Saccharomyces cerevisiae gene expression data set (de-

tails are available in online Supplementary data) that measures 250
transcription levels for each gene under various conditions from the
cell cycle to responses to various stress conditions [18,19]. We chose
a subset of 3224 genes with significant changes of expression level un-
der the different conditions. Our gene set also included all genes chosen
as candidate regulators.

2.3. Location data set
We used genome-wide location data for 106 transcription factors [5],

which identified physical interactions between regulators and DNA re-
gions they bind to.

2.4. Learning regulation programs and modules network
Below we describe the algorithm, with some details omitted owing to

space constraints. See ‘‘Supplementary Methods’’ online for complete
information.
We iteratively search for regulation programs (regulation trees) for

each module and re-assign each gene to these regulatory modules by
maximizing the Bayesian score that our modules network is correct.
Then, we use expectation maximization (EM) algorithm [20] to search
for modules network with the highest score. Each of the iteration con-
sists of two steps: an E-step and an M-step (Fig. 1).
The M-step can be viewed as partitioning the genes into modules

and learning the optimal regression tree for each module. Finding
structure of Bayesian network that maximizes Bayesian score is often
cast as an optimization problem [21,22]. For computational efficiency,
at first we restrict the potential parents in each regulatory module to a
small subset of candidates. We search for strong candidate regulators
by measuring mutual information between the regulator and target
gene expression profiles and computing location probability from loca-
tion P-value. For a pair of gene i and regulator k, given location P-va-
lue, the location probability is

P ik ¼
e�wqik � e�w

1� e�w
ð1Þ

where qik is a P-value in genome-wide location analysis and w = 20 [11]
is weight of exponential distribution. A small location P-value suggests
high probability for the binding of a regulator in the regulatory regions
of a gene. We choose 25 sub-candidate regulators set with high mutual
information and 25 sub-candidate regulators set with high location
probability. Then, we combine these two sub-candidate regulators sets
as strong candidate regulators. Secondly, we organize strong candidate
regulators and genes in the regulatory module into regression tree, and
then create a smaller regression tree that is pruned to the estimated best
size. Given modules and their regulators in the regression trees, we
consider them as prior structure of modules network. Our algorithm
is based on the classical Bayesian network [23], which describes rela-
tionships of probabilistic dependency between variables (e.g., genes).
We require that the genes in the same module have the same parents
(regulators) and the same conditional probability distribution (CPD).
We calculate location probability for every pair of genes and regulators
and regard them as structure prior to the Bayesian score. Next, we
compute the Bayesian score for this modules network (see Supplemen-
tary Methods online).
In the E-step, given the inferred regulation tree, we re-assign each

gene to the module whose program optimally predicts the gene�s
behavior. We compute the CPD for every gene with their inferred reg-
ulation tree and pick up the gene in every regulatory module whose
behavior is worst predicted by the regression tree and put them into
a pool. Then, we compute the CPD for every gene in the pool with
every inferred regulation tree. Every gene is assigned into the regula-
tory module with the highest CPD. We avoid assigning a regulator
gene to a module in which it is also a regulatory input.
We initialized our iterative algorithm with 50 clusters by using stan-

dard clustering procedure [1] and creating one module from each of the
resulting clusters. The EM algorithm is applied to refining both the
gene partition and the regulatory tree. These two steps were iterated
until convergence is reached.

2.5. Evaluating statistical significance for functional category enrichment

of modules
The hypergeometric distribution was used to determine statistical

significance for the biological relevance of a module. We discarded
all annotations associated with less than five genes in our gene set
and got a list of 404 gene ontology (GO) [24] categories and 296 MIPS
[25] categories. For each module, we computed the fraction of genes in
the module associated with each category and used the hypergeometric
distribution to calculate a corresponding P-value. We carried out a
Bonferroni correction for multiple independent hypotheses and took
P-value below 0.05/n (n = 404 and 296 for GO, MIPS annotations,
respectively) as being significant.
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3. Results and discussion

We compiled a list of 472 candidate regulators and applied

the procedure described above to the 250 arrays of the yeast

stress and cell-cycle data set and to genome-wide location data

for 106 transcription factors. We identified 50 modules, con-

taining 3224 distinct genes and regulated by 86 of the regula-

tors. The inferred regulatory modules spanned a wide range

of biological processes, including metabolic and energy path-

way, various stress responses, cell cycle-related process, molec-

ular functions (e.g., protein folding) and signal transduction

(e.g., Snf1 kinase-regulated processes). Fig. 2 presents a global

view of these results as a graph with edges linked between reg-

ulatory modules and their regulators.
3.1. Modules and their regulation program

We found 15 cohesive modules that participated in the pro-

cess of respiration and energy metabolism (see Table 1). The

respiration and energy I module (see Fig. 3) is a clear example

of predicted module. It consists mainly of genes encoding en-

ergy synthesis proteins (10 of 19) and respiration protein (5

of 19). The inferred regulation program specifies the Pka2 pro-

tein, a catalytic subunit of the cAMP-dependent protein kinase

(PKA), as the module�s top regulator. This prediction is sup-

ported by a recent study [26] showing that the expression of

several genes in the module (for example, Atp2) is PKA-depen-

dent. The Hap4 transcription factor is induced when Pka2 is

activated, primarily under stationary phase (a growth phase

in which nutrients, mainly glucose, are depleted). The predic-



Table 1
Summary of module analysis and validation

# Modulea # Gb C (%)c Reg.d L Reg.d L Reg.d L Reg.d L Reg.d L Reg.d L

1 Respiration and energy I 19 79 PKA2 Y HAP4 Y SIP2 Y MDG1 N PCL7 Y
2 Respiration and energy II 51 69 DOT6 N GAC1 Y
3 Carbohydrate metabolism 276 62 YVH1 Y PDE1 Y PPT1 Y RIM11 Y
4 Carbon regulation and protein catabolism 231 50 SIP2 Y GPA2 Y
5 Carbon regulation and signaling 23 65 SIP2 Y PPT1 Y GIS1 Y PKA1 Y
6 Amino acid metabolism, gluconeogenesis and hexose transport 141 57 SNF3 Y MAL13 Y
7 Glucose repression 12 58 ADR1 Y
8 Gluconeogenesis and TFs 199 57 PPZ2 Y SIP4 Y KNS1 N GCN1 Y
9 TFs 17 35 MOT3 Y TYE7 Y LSG1 N
10 Cell cycle and general TFS 20 85 SDS22 Y TAP42 N PLP1 N
11 Cell cycle and budding 6 83 SGV1 Y
12 Iron transport 13 38 TIS11 Y AFT2 Y
13 Aldehyde metabolism 30 60 CAF17 Y SDS22 Y
14 SNF kinase regulated processes 19 84 YGK3 Y ARG81 Y SNF8 Y
15 Nitrogen transport and metabolism 38 63 GAT1 Y
16 Signaling and transport 59 56 SNF3 Y MGA1 Y KNS1 Y
17 Carbon regulation and gluconeogenesis 29 55 PPT1 Y PDE1 Y KNS1 Y GIS1 Y GAT1 Y
18 Glycogen metabolism, protein fate and cAMP signaling 117 56 PDE1 Y BAS1 Y PKA2 Y ETR1 Y PPH3 Y
19 Protein fate and carbohydrate metabolism 29 45 BMH1 Y YPK1 Y
20 Sulfate amino acid and purine metabolism and Ty ORFs 36 83 PDR3 N MET32 Y HAP1 Y
21 Cell cycle (G1/S) and DNA replication 40 72 CLN2 Y CLB5 Y ZDS2 Y SWE1 Y CLB6 Y
22 Amino acid and purine metabolism 29 79 XBP1 Y GAT1 Y
23 Ribosome and protein biosynthesis 349 66 LSG1 Y PPT1 Y
24 Cell cycle (G1/S) and signaling I 22 77 YJL103C N GIS1 Y
25 Osmosensory signaling pathway 9 78 SRV2 Y ARO80 N SKN7 Y
26 Glycolysis,gluconeogenesis and proteasome 68 51 SNF4 Y GCN20 Y ATG1 Y
27 Protein folding and signaling 12 75 GCN20 Y TEC1 Y GCN1 Y STE2 Y
28 Regulation of redox homeostasis 12 50 REG2 N KSS1 N RGM1 N TOS8 N
29 Nuclear pore transport and signaling 39 41 BEM2 Y RSC3 Y GCN1 N
30 Cell cycle (G1/S) and signaling II 12 42 MET18 Y MAD1 Y HIR2 Y YJL206C N SYG1 Y SUM1 Y
31 ER and carbon regulation 77 60 CDC14 N
32 Protein biosynthesis and ER 243 52 EGD1 Y SIP2 Y
33 Carbon regulation and cell wall 27 67 ACA1 Y MID2 Y
34 Cell wall protein modification and signaling 15 67 YJL103C N WSC2 Y CLN2 Y
35 Cell cycle 21 81
36 Carbon regulation 41 56 ETR1 Y
37 Nitrogen regulation 23 57
38 Sporulation I 11 55
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tion is consistent with the known role of Hap4 in the process of

the activation of respiration [27]. Our results suggest that these

changes are regulated by combinatorial interaction of the tran-

scription factor and the protein kinase. When Pka2 and Hap4

are not induced, this module could either activate more mildly

or repressed. It implies that other regulators, such as the Snf1

kinase subunits Sip2, regulate those changes of genes expres-

sion. This prediction is supported by a recent study [28,29]

showing that Glucose depletion regulates gene expression

via Snf1 (Sip2) and cAMP-dependent protein kinase (Pka2)

pathway.

We also found seven modules (see Table 1) involved in the

cell-cycle regulatory processes. They are significantly enriched

for functional categories, as most of the modules (5/7) had a

coherence level above 72%. For example, genes in the module

21 (see Supplementary regulation programs online) take part

in DNA replication and repair (19 of 40) and cell-cycle regula-

tion (12 of 40). Cln2 is suggested as the top regulator of the

module, supported by a study [30] showing that cyclin Cln2

associated with Cdc28 control G1/S. Moreover, cyclin Clb5

and Clb6 are involved in DNA replication [31] and regulators

Swi1 and Zds2 involved in G1/S [31,32].

Modules relating to rRNA and tRNA processing and pro-

tein biosynthesis (Table 1) contain lots of significantly enriched

genes. The numbers of genes in most of these modules are

more than 150. This illustrates our method�s capability to iden-

tify big expression signatures. For example, module 48 (see

Supplementary regulation programs online) consists of 268

genes, in which 106 are in rRNA transcription and processing

category, 35 are in tRNA transcription and processing cate-

gory, 22 are in nucleus transport category, and 62 have un-

known function. Lsg1 is suggested as the key regulator of

this module, which is required for ribosomal subunit biogene-

sis and location [33]. Protein phosphatases Yvh1 and Ppt1 and

phosphorylase Rim11 involve in regulation of the cAMP-

dependent protein kinase cascade [34,35].

We also found nitrogen regulation and amino acid metabo-

lism modules (see Table 1). For example, the nitrogen trans-

port and metabolism module (see Supplementary regulation

programs online) show the ability of our method to capture

an entire cellular response, whose genes participate in diverse

nitrogen metabolic pathway and cellular roles (6 of 38 in allan-

toin and urea metabolism, 18 of 38 in amino acid metabolism

and transport and 8 of 38 in sulfur or methionine metabolism).

Our results suggest that Gat1 is the regulator of the module,

and this prediction is supported by a recent study [36] showing

that transcription of nitrogen-catabolic genes is activated by

Gat1. However, it is known that nitrogen metabolism is regu-

lated by many other transcription factors including Gln3,

Dal80, and Dal81. We failed to find regulation relationship be-

tween these additional regulators and their target genes be-

cause of limited expression data. Although these additional

regulators had high transcription levels on the condition of

nitrogen depletion, only 10 time points were experimentally

measured, which is still insufficient for our method to identify

all the regulators.

3.2. Evaluation of modules and their regulation program

We analyzed all the 50 resultant modules to test whether the

proteins encoded by genes in the same module had related

functions. We computed the functional/biological coherence

of each module (see Table 1) based on the percentage of the



Fig. 3. The regulation program of the respiration and energy I module (19 genes). (A) Regulation tree. Each node in the tree represents a regulator
(for example, PKA2) and a qualitative value, which trigger a query ‘‘if the expression of regulatory gene is bigger than the qualitative value?’’ Right
branches represent the expression conditions, under which the answer to the query in the node is TRUE; left branches represent the expression
conditions under which the answer is FALSE. The expression levels of the regulators themselves are shown below their corresponding nodes. (B)
Gene expression profiles. Rows represent different genes and columns represent different arrays. Arrays are arranged according to the regulation tree.
For example, the rightmost leaf includes the arrays in which PKA2�s expression is greater than 1.43 and HAP4�s expression is greater than 3.25.
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genes covered by annotations significantly enriched in the

module. For example, in the respiration and energy I module

(see Table 1) the functional coherence is 79%. Here, we define

functional homogeneous modules as modules with functional

coherence percentage greater than 50%; we define functional

heterogeneous modules as modules with functional coherence

percentage less than 30%.

Previous work identified regulatory modules from genome-

wide expression data by clustering [2] and the model of module

networks [4]. Clustering algorithm grouped genes with highly

correlated expression profile. Modules network organized

genes into modules according to Bayesian posterior probabil-

ity. Because genome-wide expression data provide essentially

only indirect evidence of genetic regulatory interactions, these

methods cannot reliably distinguish among genes that have

similar expression patterns but are under the control of various

regulatory networks. Clustering method [2] clustered 3000

genes into 30 modules. However, only five of them (17%) were

functional homogeneous modules, other 23 of the 30 clusters

(77%) had no significantly common biological function (see

Table 2). The model of module networks [4] clustered 2355

genes into 50 modules and 31 of them (62%) were functional

homogeneous modules (see Table 2). Despite the fact that gene
Table 2
A comparison of the regulatory modules and their regulators identified by d

Method Total genes Total modules Functional homogene

Our method 3224 50 40
Clustering [2] 3000 30 5
Modules network [4] 2355 50 31
GRAM [16] 655 106 62

Functional homogeneous modules are modules whose functional coherence
whose functional coherence level is below 30%.
expression data are useful for deriving regulatory modules, our

algorithm can complement the limitation of using expression

data alone by integrating location data with gene expression

data. Our systematic algorithm organized 3225 genes into 50

modules. Overall, most regulatory modules (40 of 50) were

functional homogeneous modules and only 1 of 50 (2%) had

no significantly common biological function (see Tables 1

and 2). This indicates that our algorithm is capable of identi-

fying highly biologically relevant modules.

Although the location P-value data alone are potentially

useful for linking a set of regulators with a set of genes to

which the regulators bind, our algorithm can compensate the

limitation of these data alone by integrating expression data.

To determine regulatory relationship between genes from loca-

tion data, previous work used a statistical model and chose a

relatively stringent P-value threshold (<0.001) with the inten-

tion of reducing false positives at the expense of false negatives

[5]. Our algorithm presents a useful alternative to such single

P-value threshold to predict binding events, because our

method not only uses location probability to search for strong

candidate regulators, but also regards it as structure prior of

modules network to compute Bayesian score and to evaluate

regulatory relationship between regulators and modules. For
ifferent methods

ous modules Functional heterogeneous modules Total regulators

1 86
23
4 80
32 68

level is above 50%; Functional heterogeneous modules are modules
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example, Hap4 is a well-characterized regulator of genes in-

volved in carbohydrate metabolism and respiration [27]. The

Hap4 module contains 19 genes that are involved in respira-

tion and show a high function coherence level (79%) (Table

1). Eight of these genes (PET9, ATP1, ATP2, CYC1, MBA1,

NDE1, FUM1 and QCR2) would not have been identified as

Hap4 targets using the stringent 0.001 P-value threshold.

GRAM algorithm was designed to infer transcriptional reg-

ulatory networks through the combination of genome-wide

location and expression data too. The GRAM algorithm [16]

clustered 655 genes into 106 modules and linked transcrip-

tional regulators with sets of genes by combining location data

with expression data. In their study, 62 of the 106 modules

(58.5%) were functional modules, but 32 of the 106 modules

(30%) had no significantly common biological function (see

Table 2). The method considered only 106 candidate transcrip-

tional regulators, but Genetic networks in a living cell include

at least 450 candidate regulators, which are far more than 106

transcription factors that are used in the location experiment.

Alternatively, we compiled a set of 472 candidate regulators

(see Supplementary Table 1 online), including 106 transcrip-

tion factors used in the genome-wide location analysis. So,

our algorithm can exhaustively search for strong candidate

regulators over much more possible transcriptional regulators.

As a result, we identified 86 of the regulators for 42 modules

(see Tables 1 and 2), but previous work [16] identified only

68 of the transcriptional regulators for 106 modules.

We organized the regulation program as a regression tree,

which specified the expression behavior of the module as a

function of regulators� expression and the conditions under

which regulation took place. For example, in the respiration

and energy I module, five regulators (Pka2, Hap4, Sip2,

Mdg1 and Pcl7) constructed a regulation tree (see Fig. 3).

We found that the regulation programs generally assigned reg-

ulators accurately to regulatory modules, whose functions

were consistent with the regulator�s known role. We compared

the known function of the inferred regulators with the meth-

od�s predictions, where the known function is based on a com-

piled list of literature references (see Supplementary Table 2

online), in which direct experimental evidence exists for the

role of the predicted regulators. Most of the modules (42 of

50) included genes known to be regulated by at least one of

the module�s predicted regulators (see Table 1 and Supplemen-

tary Table 2 online).
4. Conclusion

In this study, we have shown that our algorithm could iden-

tify biologically relevant regulatory modules and accurately as-

sign regulators to modules whose functions were consistent

with the regulator�s known roles by integrating expression data

and location data. In identifying regulatory modules, our algo-

rithm is more powerful than clustering and other methods on

the basis of correlated expression. In discovering regulatory

relationship between regulators and genes in modules, our

method is more useful than previous method [5] that choose

a single P-value threshold to predict binding events. On the

one hand, we refined candidate regulators from a set of 472

candidate regulators by computing location probability and

mutual information between regulators and genes of modules.

On the other hand, our iterative algorithm used location prob-
ability as a structure prior of Bayesian score and computing

likelihood of Bayesian score from expression data. In each iter-

ation, not only in the step of assigning genes to modules but

also in the step of searching for regulators for each regulatory

module, our algorithm considered both genome-wide location

data and expression data.

Additionally, our algorithm could identify both regulatory

modules and their control programs, which suggest concrete

regulators for each module, their combinatorial interactions

and the experimental conditions under which they are acti-

vated. Maybe a prominent feature of our method is its ability

to generate detailed testable hypotheses concerning the role of

specific regulators and the conditions under which this regula-

tion takes place (see Fig. 3). We have validated the predicted

results by using experimental evidence that is showed on a

compiled list of literature references (see Supplementary Table

2). Regulatory roles of many genes related to signal transduc-

tion have been identified, which have post-transcriptional

changes (see Table 1). As demonstrated, the algorithm can

integrate sources of genome-wide location and expression data

to compensate for technical limitations in location experiment

and expression data.

Despite the successes described above, our method failed to

identify certain regulatory relations, especially in serial regula-

tion of transcription regulators in cell cycle. In some cases, we

notice that the change of the regulator�s expression level is not

so significant that experiment can detect; in other cases, it is

due to that we do not have the complete location analysis data

over all the regulators (only 106 have known experiment data)

yet. When more diverse gene expression data and location data

of regulators become available in the future, we believe that

important new insights in understanding the complex networks

of biological regulation will be gained.
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