Global asymptotic stability of a higher order rational difference equation✩

Taixiang Sun a,*, Hongjian Xi b

a Department of Mathematics, Guangxi University, Nanning, Guangxi 530004, PR China
b Department of Mathematics, Guangxi College of Finance and Economics, Nanning, Guangxi 530003, PR China

Received 11 May 2006
Available online 1 September 2006
Submitted by A.C. Peterson

Abstract

In this note, we consider the following rational difference equation:

\[x_{n+1} = \frac{f(x_{n-r_1}, \ldots, x_{n-r_k})g(x_{n-m_1}, \ldots, x_{n-m_l}) + 1}{f(x_{n-r_1}, \ldots, x_{n-r_k}) + g(x_{n-m_1}, \ldots, x_{n-m_l})}, \quad n = 0, 1, \ldots, \]

where \(f \in C((0, +\infty)^k, (0, +\infty)) \) and \(g \in C((0, +\infty)^l, (0, +\infty)) \) with \(k, l \in \{1, 2, \ldots\} \), \(0 \leq r_1 < \cdots < r_k \) and \(0 \leq m_1 < \cdots < m_l \), and the initial values are positive real numbers. We give sufficient conditions under which the unique equilibrium \(\bar{x} = 1 \) of this equation is globally asymptotically stable, which extends and includes corresponding results obtained in the recent literature.

© 2006 Elsevier Inc. All rights reserved.

Keywords: Difference equation; Global asymptotic stability; Equilibrium

1. Introduction

The study of properties of rational difference equations has been an area of intense interest in recent years (for example, see [1–5]). In [6], Li discussed the global asymptotic stability of

✩ Project supported by NSFC (10461001, 10361001) and NFSGX (0640205).
* Corresponding author.
E-mail addresses: stx1963@163.com, stxhql@gxu.edu.cn (T. Sun).

0022-247X/$ – see front matter © 2006 Elsevier Inc. All rights reserved.
doi:10.1016/j.jmaa.2006.07.096
rational difference equation
\[x_{n+1} = \frac{x_n x_{n-1} + 1}{x_n + x_{n-1}}, \quad n = 0, 1, \ldots, \] (E1)
where the initial values \(x_0, x_1 \in R_+ = (0, +\infty). \)

In [7,8], Li studied the global asymptotic stability of the following two nonlinear difference equations:
\[x_{n+1} = \frac{x_n x_{n-1} x_{n-2} + x_{n-2} + x_{n-3} + a}{x_n x_{n-1} x_{n-2} + x_{n-2} x_{n-3} + 1 + a}, \quad n = 0, 1, \ldots, \] (E2)
and
\[x_{n+1} = \frac{x_n x_{n-1} x_{n-2} + x_{n-2} + x_{n-3} + a}{x_n x_{n-1} x_{n-2} + x_{n-2} x_{n-3} + 1 + a}, \quad n = 0, 1, \ldots, \] (E3)
where \(a \in [0, +\infty) \) and the initial values \(x_0, x_1, x_2 \in R_+ \).

Recently, Berenhaut and Stevic [9] studied the global asymptotic stability of the following rational difference equation:
\[x_{n+1} = \frac{x_{n-k} x_{n-l} x_{n-m} + x_{n-k} + x_{n-l} + x_{n-m}}{x_{n-k} x_{n-l} + x_{n-k} x_{n-m} + x_{n-l} x_{n-m} + 1}, \quad n = 0, 1, \ldots, \] (E4)
where \(0 \leq k < l < m \) and the initial conditions \(x_{-m}, \ldots, x_0 \in R_+ \).

The main theorem in this note is motivated by the above studies. In this paper, we consider the following nonlinear difference equation:
\[x_{n+1} = \frac{f(x_{n-r_1}, \ldots, x_{n-r_k})g(x_{n-m_1}, \ldots, x_{n-m_l}) + 1}{f(x_{n-r_1}, \ldots, x_{n-r_k}) + g(x_{n-m_1}, \ldots, x_{n-m_l})}, \quad n = 0, 1, \ldots, \] (1)
where \(f \in C(R_+^k, R_+) \) and \(g \in C(R_+^l, R_+) \) with \(k, l \in \{1, 2, \ldots\} \), \(0 \leq r_1 < \cdots < r_k \) and \(0 \leq m_1 < \cdots < m_l \), and the initial values are positive real numbers.

2. Main result

In the sequel, write \(a^* = \max\{a, 1/a\} \) for any \(a \in R_+ \).

Lemma 1. Let \(a, b, c \in R_+ \) satisfy \(c = (ab + 1)/(a + b) \), then \(c^* = (a^* b^* + 1)/(a^* + b^*) \).

Proof. From (1) we have
\[c - 1 = \frac{(a - 1)(b - 1)}{a + b}. \] (2)
If \(a \geq 1 \) and \(b \geq 1 \), then \(a = a^* \) and \(b = b^* \). By (2) we have \(c \geq 1 \), which implies
\[c^* = c = \frac{a b + 1}{a + b} = \frac{a^* b^* + 1}{a^* + b^*}. \]
If \(a \geq 1 \) and \(b < 1 \), then \(a = a^* \) and \(b = 1/b^* \). By (2) we have \(c \leq 1 \), which also implies
\[c^* = 1/c = \frac{a + b}{a b + 1} = \frac{a^* + 1/b^*}{a^*/b^* + 1} = \frac{a^* b^* + 1}{a^* + b^*}. \]
In a similar fashion, we may show that \(c^* = \frac{a^* b^* + 1}{a^* + b^*} \) if \(a < 1 \) and \(b \geq 1 \) or \(a < 1 \) and \(b < 1 \). This completes the proof. \(\Box \)
Lemma 2. Let $a, b, c \in R_+$ satisfy $c = (ab + 1)/(a + b)$, then $c^* \leq \min\{a^*, b^*\}$.

Proof. By (1) it follows that
\[c = \frac{ab + 1}{a + b} \leq \frac{a^*b^* + bb^*}{a + b} = b^* \]
and
\[1/c = \frac{a + b}{ab + 1} \leq \frac{a^*b^* + b^*}{ab + 1} = b^*. \]
Thus we have $c^* \leq b^*$. In a similar fashion, we may show that $c^* \leq a^*$. This completes the proof.

Now we formulate and prove the main result of this note.

Theorem 1. Let f, g satisfy the following two conditions:

(H1) $[f(u_1, u_2, \ldots, u_k)]^* = f(u^*_1, u^*_2, \ldots, u^*_k)$ and $[g(u_1, u_2, \ldots, u_l)]^* = g(u^*_1, u^*_2, \ldots, u^*_l)$.

(H2) $f(u^*_1, u^*_2, \ldots, u^*_k) \leq u^*_1$.

Then $\bar{x} = 1$ is the unique positive equilibrium of Eq. (1) which is globally asymptotically stable.

Proof. Let $\{x_n\}_{n=0}^\infty$ be a solution of Eq. (1) with initial conditions $x_{-m}, x_{-m+1}, \ldots, x_0 \in R_+$, where $m = \max\{r_k, m_l\}$. From (1), (H1), (H2), Lemmas 1 and 2 it follows that for any $n \geq 0$,
\[1 \leq x_{n+1}^* \leq f \left(\frac{x_{n-r_1}^* + \ldots + x_{n-r_k}^*}{x_{n-r_1}^* + \ldots + x_{n-r_k}^*} + 1 \right) \leq f \left(x_{n-r_1}^* + \ldots + x_{n-r_k}^* \right) \leq x_{n-r_1}^*. \]
from which we get that for any $n \geq 0$ and $0 \leq i \leq r_1$,
\[1 \leq x_{i+(n+1)(r_1+1)}^* \leq x_{i+n(r_1+1)}^*. \]
Let $\lim_{n \to \infty} x_{i+n(r_1+1)}^* = A_i$ for any $0 \leq i \leq r_1$, then $A_i \geq 1$ ($0 \leq i \leq r_1$). Write $M = \max\{A_0, A_1, \ldots, A_{r_1}\}$ and $A_{i+n(r_1+1)}^* = A_i$ for any integer n ($0 \leq i \leq r_1$). Then there exists $0 \leq j \leq r_1$ such that
\[\lim_{n \to \infty} x_{j+n(r_1+1)}^* = M.\]
By (3) we have
\[x_{j+n(r_1+1)}^* \leq f \left(x_{j+n(r_1+1)}^* \cdot x_{j+(n+1)(r_1+1)-1-r_2}^* \cdots x_{j+(n+1)(r_1+1)-1-r_k}^* \right) \leq x_{j+n(r_1+1)}^*. \]
It follows
\[M = f(M, A_{j-1-r_2}, \ldots, A_{j-1-r_k}) = M. \]
By (1), (H1) and (H2), we have
\[M = \frac{f(M, A_{j-1-r_2}, \ldots, A_{j-1-r_k}) g(A_{j-1-m_1}, A_{j-1-m_2}, \ldots, A_{j-1-m_l}) + 1}{f(M, A_{j-1-r_2}, \ldots, A_{j-1-r_1}) + g(A_{j-1-m_1}, A_{j-1-m_2}, \ldots, A_{j-1-m_l})} = mg(A_{j-1-m_1}, A_{j-1-m_2}, \ldots, A_{j-1-m_l}) + 1 = M + g(A_{j-1-m_1}, A_{j-1-m_2}, \ldots, A_{j-1-m_l})\]
from which it follows \(M = 1 \). This implies \(A_1 = 1 \) for \(0 \leq i \leq r_1 \) and \(\lim_{n \to \infty} x_n^* = 1 \). Since \(1/x_n^* \leq x_n \leq x_n^* \), we obtain \(\lim_{n \to \infty} x_n = 1 \). By (4) it follows
\[1 = \frac{f(1, 1, \ldots, 1) g(1, 1, \ldots, 1) + 1}{f(1, 1, \ldots, 1) + g(1, 1, \ldots, 1)}. \]
Thus \(\bar{x} = 1 \) is the unique positive equilibrium of Eq. (1).

For any \(1 > \varepsilon > 0 \), choose \(\delta = \varepsilon/(1+\varepsilon) \) and let \(\{x_n\}_{n=-m}^\infty \) be a solution of Eq. (1) with initial conditions \(x_{-m}, x_{-m+1}, \ldots, x_0 \in (1-\delta, 1+\delta) \). Then for any \(1 \leq i \leq 0 \), we have that \(x_i < 1+\varepsilon \) and \(1/x_i \leq 1/(1-\delta) = 1+\varepsilon \). By (3) it follows that for any \(n \geq 0 \),
\[1 \leq x_{n+1}^* \leq x_{n-r_1} < 1 + \varepsilon. \]
Thus we get that for any \(n \geq 0 \),
\[1 - \varepsilon < \frac{1}{1 + \varepsilon} \leq x_{n+1}^* \leq x_{n+1} < 1 + \varepsilon. \]

Which implies that \(\bar{x} = 1 \) is globally asymptotically stable. This completes the proof. \(\square \)

3. Example

In this section, we shall give an application of Theorem 1.

Example 1. Let \(k \geq 2 \) and \(f_1(u) = u \) (\(u > 0 \)). For any \(2 \leq j \leq k \), let
\[f_j(u_1, \ldots, u_j) = \frac{f_{j-1}(u_1, u_2, \ldots, u_{j-1}) u_j + 1}{f_{j-1}(u_1, u_2, \ldots, u_{j-1}) + u_j}. \]
Consider equation
\[x_{n+1} = f_k(x_{n-r_1}, \ldots, x_{n-r_k}), \quad n = 0, 1, \ldots, \]
where \(0 \leq r_1 < \cdots < r_k \) and the initial conditions \(x_{-r_k}, \ldots, x_0 \in R_+ \). Then \(\bar{x} = 1 \) is the unique positive equilibrium of Eq. (5) which is globally asymptotically stable.

Proof. From Lemma 1, it follows that
\[[f_2(u_1, u_2)]^* = \frac{u_1^* u_2^* + 1}{u_1^* + u_2^*} = f_2(u_1^*, u_2^*). \]
Inductively, we obtain that for any \(2 \leq j \leq k \),
\[[f_j(u_1, \ldots, u_j)]^* = \frac{[f_{j-1}(u_1, u_2, \ldots, u_{j-1})]^* u_j + 1}{[f_{j-1}(u_1, u_2, \ldots, u_{j-1})]^* + u_j^*} = \frac{f_{j-1}(u_1^*, u_2^*, \ldots, u_{j-1}^*) u_j^* + 1}{f_{j-1}(u_1^*, u_2^*, \ldots, u_{j-1}^*) + u_j^*} = f_j(u_1^*, \ldots, u_j^*). \]
It is obvious that \(f_1(v)^* = v^* = f_1(v^*) \). Thus the conditions \((H_1)\) and \((H_2)\) hold. By Theorem 1 we know that \(\bar{x} = 1 \) is the unique positive equilibrium of Eq. (5) which is globally asymptotically stable. □

Remark 1. Let \(k = 2, r_1 = 0 \) and \(r_2 = 1 \), Eq. (5) reduces to Eq. \((E1)\).

Remark 2. Let \(k = 3 \), Eq. (5) reduces to Eq. \((E4)\).

Acknowledgments

We thank the reviewers for a careful reading of the manuscript and for their constructive suggestions.

References

