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Abstract

A joint large deviation principle for G-Brownian motion and its quadratic variation process is presented.
The rate function is not a quadratic form due to quadratic variation uncertainty. A large deviation principle
for stochastic differential equations driven by G-Brownian motion is also established.
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1. Introduction

Peng [11] introduced G-Brownian motion. The expectation [E[-] associated with the
G-Brownian motion is a sublinear expectation which is called G-expectation. The stochastic
calculus with respect to the G-Brownian motion has been established (cf. [11,14,12]). The
existence and uniqueness of the solution for stochastic differential equations driven by
G-Brownian motion in the space Mcz; (0, T') have also been obtained by the contracting mapping
theorem (cf. [14]). The Holder continuity and the homeomorphic property of the solution for
stochastic differential equations driven by G-Brownian motion are established in [9].
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The aim of this paper is to study large deviations for G-Brownian motion and stochastic
differential equations driven by G-Brownian motion.

The paper is organized as follows. In Section 2, we present a joint large deviation principle
for G-Brownian motion and its quadratic variation process and obtain a representation of the rate
function. The large deviations for stochastic differential equations driven by G-Brownian motion
are given in Section 3. The moment estimates for G-stochastic integrals play an important role in
this paper. A brief introduction and some general results on large deviations for G-capacity are
in Appendix.

We conclude this section with some notations on G-expectation.

For convenience, we briefly recall some basic conceptions and results about G-Brownian
motion and G-stochastic integrals (see [6,11,14,12] for details). Let {2 denote the space of all
R¢-valued continuous paths  : [0, +00) 3 t —> w; € R?, with wy = 0, equipped with the
distance p(a)l,wz) = Z;’lil 27" (max;e[o,n] |a),1 — a),2| A 1).Foreach T > 0, set

Lip(F7) = {p(wy, w1y, ..., 00) 0> 1,11,...,4, €[0,T], 0 € lip(RdX")},

where lip(RY*") is the set of bounded Lipschitz continuous functions on R¢*". Define
Lip(F) = U;'Lo:] Lip(Fn) C Cp(82) - S? denotes the space of d x d symmetric matrices. I is
a given nonempty, bounded and closed subset of R?*¢ which is the space of all d x d matrices.
Set X == {yy®,y € I'} ¢ S? and assume that ¥ is a bounded, convex and closed subset. For
A= (Aij)?,j:1 e s given, set

1
G(A) = > sugtr[nyA]. (1.1)
ve

For each ¢ € lip(Rd), define
E(p) = u(1,0)
where u(t, x) is the viscosity solution of the following G-heat equation:

2—”; — G(D*u) =0, on(r,x)€[0,00) x R?, u(0, x) = ¢(x), 1.2)

and D?u is the Hessian matrix of u, i.e., D*u = (agixiu)?’j:l. Then E : lip(RY) — Ris a
sublinear expectation. This sublinear expectation is also called G-normal distribution on R? and
denoted by N (0, X) (cf. [13]).

Let H be a vector lattice of real functions defined on (2 such that L;,(F) C 'H and if
X1,...,X, € Hthen o(Xy,...,X,) € H for each ¢ € lip(R"). Let E[-] : H — Rbea
sublinear expectation on . A d-dimensional random vector X with each component in H is
said to be G-normal distributed under the sublinear expectation E[-] if for each ¢ € lip(R?),

u(t,x) =E(p(x ++1X)), t>0, x e R4

is the viscosity solution of the G-heat equation (1.2). E[-] is called to be a G-expectation if
the d-dimensional canonical process {B;(w) = w;,t > 0} is a G-Brownian motion under the
sublinear expectation, that is, By = 0 and

(i) Forany s,t > 0, B ~ Bi4s — By ~ N(0,1X).
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(ii)) Foranym > 1,0 =1 < t; < -+ < t, < 00, the increment B;, — B;, , is independent
from By, ..., B;, ,,ie., foreach¢ € lip(R"X’”),

]E((p(Btl, ceey Btm_l» Bt,,, - Btm_|)) = E(W(Btl, cees Btm_l)) (1.3)

where ¥ (x1, ..., xp—1) = E(p(x1, ..., Xm-1, By, — Bs,_,)). Forany a = (ai,...,a2)" €

Rd, B? = Z?: 1 G B{ is a one-dimensional G ,-Brownian motion, where B! denotes the ith
coordinate of the G-Brownian motion B. Define

1 1 _
Ga(B) = = sup tr(ByyTaa’) = = (0aar BT —0_aarf7), BER, (1.4)
2 yel 2
and
Oaar = Sup tr(yy‘aa’), O—aar = — sup tr(—yy‘aa’).
vel’ yel’

Let IE be a G-expectation on H. The topological completion of L;,(Fr) (resp. L;,(F)) under
the Banach norm E[| - |] is denoted by L g; (Fr) (resp. L IG (F)). E[-] can be extended uniquely to
a sublinear expectation on Lé; (F). We denote by E the extension.

Let P be the Wiener measure on {2. Let Ag o~ De the collection of all I'-valued {F;, ¢ > 0}-

adapted processes on the interval [0, +00), i.e., {6;,t > 0} € A(];OO if and only if 6; is
F; = o(ws,s < t) measurable and 6, € I for each t > 0, and let Py be the law of the

process { fot Osdws, t > O} under the Wiener measure P.

We denote P = {Py : 6 € A(J;OO} and define

C(A) = sup Py(A), AeB). (1.5)

0cAl

Then P is tight and C()isa Choquet capacity (see Theorem 1 in [6]). For each X € LO(92) =
{X : X € B({2)} (the space of all Borel measurable real functions on {2) such that E p, (X) exists
foreach 0 € .A(I; oo SEt

E(X):= sup Ep,(X). (1.6)
GeA({w

Then (Theorem 59 in [6]) for all X € LL(F),

EX = EX. (1.7)

The quadratic variation process (B?), of the process B? is defined by
t
(8, = (827 -2 [ pa?. (18)
0
{(B®);,t > 0} is an increasing process with (B®)y = 0. For each fixed s > 0,

(B") 145 — (B%)s = ((B)")1,

where B = Biis — Byt > 0, (B*)? = (a, Bf), and (x,y) = Z?:l xiyi for x,y € R?. Set
({B)1)ij = (B', B');. Then by Corollary 5.3.19 in [12],

(By; etX ={txyy",y e} (1.9)
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Therefore, forany 0 < s <1t
(B*); — (B™)s < Oaar (t — 5). (1.10)
Throughout this paper, we assume that there exist constants 0 < 0 <& < oo such that

I'cily eR™ glyg < yy® <Tlixa). (1.11)

2. Large deviation for G-Brownian motion and its quadratic variation

In this section we prove the LDP for G-Brownian motion and its quadratic variation process by
using sub-additive method (cf. [1]) and give a representation of the rate function by the Varadhan
integral lemma.

2.1. Finite-dimensional large deviations
The following lemma is a simple fact about sub-additive functions.
Lemma 2.1. Let f : Z4 — R1U{+oo} be a sub-additive function (i.e. f(m-+k) < f(m)+ f(k),

forallm, k e Z+) If there exists some mo € Ry such that for any m > my, f(m) < 400, then
f(m)
m

limy, 0

Lemma 2.2. Foranyt € (0, T], N € N and open convex subset A € B(R? x R4*?), define
- (1
far(N)=—logC (N(BNM (B)n:) € A) :

Then f4 ;(-) is a sub-additive function and limy _, oo %fAJ(N) exists.
Proof. For 1 <k < N, set
Xk = Bkt — B—1yt, (BYkr — (B)k—1)1)

and

_ 1 &
XNy = — Xk, X%+NZNZXM+]('

1
N(BND Nf)_ Zxkr

and )_(M+N = M+NXM + M+NX%+N which implies {(Xy € A} N {XAA,’,IJrN € A}l C {XM+N €
A} since A is a convex subset.

Because A C B(RY x R?*4) is an open subset, we can choose a sequence of functions
fu € Lip(R? x Ry such that 0 < f, 1 I4. Then, by the definition of C and Theorem 59
in [6], we have

CXu € A Xjf,y € A) = lim E(fu(Xan) fu (X}, n))

lim E(fu (Xan) fu (X34 0))
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= nlingo Efn(XM)Efn(X%-i-N)

= tim Efi(XaEfu(X )] n)

= C()_(M (S} A)é(i%_}rN € A)

= C(Xy € A)C(Xy € A).

Consequently,
C(Xy € A)C(Xy € A) < C(Xy1n € A), 2.1

which proves that f4 ; is sub-additive.

In view of Lemma 2.1, it remains to prove_th_at either f4; = +ooor fa,;(N) < +oo for
sufficiently large N. To this end, suppose that C(Xy € A) > 0 for some M. Then A # ¢. Since
¢(A) = C(Xum € A) is also a capacity on B@RY x R4*4), there exists a compact subset K C A
such _tha_t C(Xym € K) > 0. Let F be the closed convex hull of K. Then F C A is also compact
and C(Xy € F) > 0. Set L = sup, . |x| and choose § > 0 such that dist(F, A°) > 2. Next,
select No > M such that o = minj<x<pm C (‘NLOX;(‘ < 8) > 0 and NLOL <d§forall0 <k <M.
Then, for N > M, by the same method as in the proof of (2.1), we have

< 8) ,
where qN =[N/M]andry = N — [N/M]M. Note that for N > Ny, )_(MQN € F implies that
dlst( XMqN, F) <L <é. Then we have

qgN = (|"N
CXyeA)=C (TXMqN c F5> ¢ (’WX,N

Mgy R R
C <TqXMqN €F ) > C(Xmgy € F) = (C(Xy € F))™

Hence, for N > Ny, C(Xy € A) > a(C_'()_(M € F))qN >0 O

We now define:
. . 1 - (1
A(x) = — ahi% ngnoo N log C (ﬁ (Bnts (B)nt) € B(x, 5)) , (2.2)

where B(x, §) = {y, |x — y| < 8}. Then it is easy to get that A;(x), x € RY x R*4 ig a lower
semicontinuous and convex function.

Lemma 2.3. For any open set O € B(R? x R4*?),
o1 = (1 .
l}vrglgofﬁlogC (ﬁ (Bn1, (B)N1) € 0) > —xlgg Ao (x)
and for any compact subset K € B(R? x R?*4),

1 /1
li —1 — (B, (B K | < — inf A, (x).
im sup - 0gC<N( N, (B)Ni) € )5 Jnf A (x)

N—o0o

Proof. Let O € B(R? x R?*?) be an open subset. Given x € O, we can choose an open convex
B such that x € B C O. Then, we have

1 (1
—A < lim —1 — (Byr, (B B
,(x)_NgnOON ogC(N( Ne> (B)nt) € )
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N—o00

< liminf% log C (% (Bwni, (B)ny) € 0) .
Hence
liminfllogc_‘ (l (Bnt, (B)ny) € 0) > — inf A, (x).
N—>oco N N - xe0

Next, let K € B (Rd X RdXd) be a compact subset. For any ¢ > 0, for each x € K, choose
8y > 0 such that

. 1 - (1
Nh—I>noo ﬁlOgC <N (Bnt, (B)ni) € B(x, 5x)> = —h(x) +e.
Select finite points x1, ..., x; € K such that K C Uﬁ:l B(x;, 8x;). Then

1 - (1
lim sup ¥ log C <N (Bnts (B)nt) € K)

N—o0

< lim sup % log (N (max C <% (Bni, (B)N1) € B(xi, 5xi)>>>

N—00 I<i<l

A

) 1 - (1
=< max limsup - log C (ﬁ (Bni» (B)ni1) € B(xi, 8x,«)>

I<i<l N>oo

— inf A, (x) + ¢
xekK

IA

which implies

1 _ (1
lim sup N logC (ﬁ (BN, (B)nt) € K) = —;glf( A(x). O

N—oo

Lemma 2.4 (Exponential Inequality). Let B = {B; = (Btl, e Btd), t > 0} be a d-dimensional
G-Brownian motion. Then for any Ty < T> and r > 0,

2
C‘( sup |B; — Bry| > r) <de TmTNd

=<t<T,

Proof. By the upper-expectation representation (1.7) of the G-expectation, it is easy to get

t
/QsdBS >r].
T

Now one can get the conclusion of this lemma by the maximum inequality of martingale. [

C’( sup IB,—BTI|2r>= sup Ep9< sup

T1<t<T QeA(I; T1<t<T
,00

Lemma2S5. Letm > 1land 0 = t9 < t1 < -+ < t, = T be fixed For N € N, A €
B(R? x RI*dymy  define

_ - (1
CN,m(A) =C (ﬁ ((BNtl’ <B)Nl‘1) sy (BNtm - Bme—l’ <B>Nlm - (B>mefl)) € A) :
Then for any open subset O € B((R? x RI*dym),

1 _
liminf —logCy »(0) = — inf A; ;. (x)
N xe0

N—ooco N = 77 7 xeo 7
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and for any closed subset F € B((R? x RZxdym)

1
hmsupﬁlog CNm(F) < - 1nf Atl ,,,,, 1 (X,

N—o0

where Ay, (X) =Dy Ayj—gy_ (Xi), X = (X1, ..., Xm), X € RY x RIxd,

Proof. We first prove the lower bound of large deviations (LLD). For any x € O with
) < oo, take U = II" \U; C O such that x = (x1,...,x,) € U, where U;

is open subset of R. Choose a sequence of functions 0 < g;; € L;p (Rd x R4 Xd) such that
0<gis?t IU,., | — o00. By Theorems 57 and 59 in [6], and Proposition 16 in [14], we have

hmmf—logCN m(U)

N—o0

1
= liminf lim — logE (I 81,1 ((Bni, — By, (B)Ni; — (BYni,_)/N))

N—oo =00

1
= liminf lim ﬁ logE (1" gi.1 ((Bny, — Bni_y» (B)ni, — (B)ni,_)/N))

N—o0 [—00

= liminf lim — ZlogE gii ((Bni, — BNi_y» (B)Ni; — (B)Ni_)/N))

N—oo l,oo N

m
= lllvnl)l;lof; N logc ((BNI[ - BNti,p (B>Nt,' - (B)Nt,',l)/N € Ut) .
Hence, by Lemma 2.3,

,,,,,

i=1

Now we show the weak upper bound of large deviations (w-ULD). For any x =
(X1, ..., xm) € (]Rd deXd)”’, 8 > 0,and 1 <i < n,byLemma 2.3, there exists a neighborhood
U; (x;) of x; such that

o] =
1lmlnf—10gc((BNt,- - BNI,'_ls <B>Nll' - (B>NI,'_1)/N € Ui(xi))
N—ooo N

< _)Vti—t,'_l ()Ci) + 81 lf )Vti—t,'_l (Xi) < +OO

- |-1/4, otherwise.

Set Uy = Ui(xy1) x Ua(x2) X -+ X Up(xy). Then U, is a neighborhood of x. By the same
method as in the proof of the LLD above, we have

1 _
lim sup 5 log Cn m (Uy)

N—o00

= lim sup — Zlog C((Byi, — Bni_y» {B)ny — (B)wi_)/N € Ui(x))

N—o0 z—l

<

Aoty X)) +mb, i Ay (x;) < +ooforalll <i <m
—1/4, otherwise

which implies that for any compact subset K,

1
lim sup I log CN m(K) < — mf )‘11 i ().

N—o00
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Finally, let us prove the exponential tightness. It is enough to prove that for any 7 < T3,

lim hmsup — IOgC (|(BNT2 BNTl» (B>NT2 — <B>NT|)| > lN) = —OQ. (2.3)

[0 N oo

Since |(B', B/), — (B', B)s| < &|t —s| forall 1 < i,j < d, (2.3) is a consequence of
Lemma24. [J

Theorem 2.1. Let m > 1and 0 =ty <t < -+ < t, = T be fixed. For ¢ > 0,A €
B ((]Rd X RdXd)m), define

Com(A) =C (((881, s(B)L]> e (gBt,l, S(B)m>) c A) :
Then for any closed subset F € B ((Rd X RdXd)m),
lim sup ¢ log Cg m(F) < — 1nf Z)”tl—tl V(i —xi-1)
e—0
and for any open subset O € B ((Rd X Rd"d)m),

m
liminf e log C n(0) > = inf Z} Mgty (i = Xi 1),

where x = (x1, ..., Xy) and xo = O.

Proof. By Lemma 2.5, we only need to prove that for any § > 0,
. 1 =
lim sup ] logC| sup

1 1
eBije — —— Bijer» €B)ije — ——(B)jen || 2 8
o [1/e te[o,n( C TV N TV ”“’)

= —00. 2.4)

where [x] denotes the largest integer less than or equal to x. Since |(B?, B/); — (B', B/)| <
olt —s|foralll <i,j <d,and

= 1
C| su eBije — ——Bl1/e1t, €(B)1/e — ——(B)p1 ) >§
<te[0,pT] < t/e [1/ g] el e T e e
- 1 S o
= C sup ’(B’, B’)e — (B', B')1 > §/4d?
1s§sd ([1/3] re[0,7] . e
+ e) sup |(B', BY) .| > 6/4d*
l<;<d <<[1/8] )OSIST‘ e

~ 1
dC | — — B! | > 5/4d
" (([m] 8>oi?<pr te| =%/ )
~ 1 1 1
e <[1/s] o2iDy |Pure = Brigen] = Md) ’

we can get (2.4) from Lemma 2.4. O
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Corollary 2.1. Let m > 1and 0 =ty < t; < --- < tpy = T be fixed. For ¢ > 0,A €
B ((Rd)m), define

Com(A) =C ((ng . 83@) c A) .

Then for any closed subset F € B ((Rd)m),

lim sup ¢ log Cv’g,m(F) < — inf Ivtl ‘‘‘‘‘ 1 (X)
e—0 xeF

and for any open subset O € B ((Rd)’”),

.....

where

m
Ity )= dnf N (O = Xio1, yi — Yic1) 2.5)

dxd
ye@axdyn L

and xo =0,y =0.

2.2. Exponential tightness

Lemma 2.6. For any 0 < 8 < 1/2, there exists a positive constant ¢ such that

_ e|Byje — By e|?
sup E[expic sup lt/e—zfg/sl < 00.
0<e<l seel0,r] 18 —1]

Proof. This can be obtained from Theorem 3.1 in [9]. Now we give a direct proof. Without loss of
generality we assume By is one-dimensional and ¢ = 1. Foreach 8 € Ag 00> St Al@ = fot 16, |%ds.
Then for some constant C > 0,

J; 6udB, |B o — Bl
sup ————— = sup ———-"
sefo.r] s —t?P seefo.r] s —1]*f
- Bag = Bagl a7 — A3PF _ swp 1B Bil
srefo.r) |AY — AOP2B s —t12P T 7 cor Is — 1P

Therefore, by (1.7), we have

- €|By/e — By /e|?
E{expic sup —l e 2;/ el
saefo,r] s —1l

IA

€|Bye — Bs/s|2
Ep|lexpic sup ————
( { seelo.r) s — 1P

EP expic sup M
seefo] Is —1|*

Since

Ep(I1B; — Bs|*™) = |t — s|™(2m — D!,
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we have that for any § > 0 with 45e < 1, for all s, ¢t € [0, T],

o (oo [81B = BP1Y - 2
PASP T Iy = 1" 45¢

which implies from (3.1) in [9] that the conclusion of the lemma holds. [J

For 0 < o < 1 given and m > 1, for each ¥ € Co([0, T], R™), set
[ (1) — P (s)l

seef0.7] s —1t*

1Vlle =

and

Co ([0, T],R™) = llﬁ € Co([0, T],R™); lim sup o = vl _ 0. [¥lle <o00¢-

§=0p5—tj<s IS —1|*

Then (C§ ([0, T], R™), || - ||o) is a separable Banach space.

Theorem 2.2. Let 0 < o < 1/2and 0 < B < 1. Let B be G-Brownian motion and let
(B) = (B, B) = ((B', B'))1<i, j<a be its quadratic variation process. Then

{6 ((SBI/E’ 8<B)f/5)0§t§T € )}
is exponentially tight in (C([0, T1,RY), || - o) x (CE ([0, T1, RI*4), || - |I5).
Proof. Take 0 <o <o’ < 1/2and0 < B < B’ < 1. Set

K = {(f, ) € (CE([0, TL,RY), || - la) x (CL (10, T1, RI*4), | - ||):;

t) — t) —

[f(®) f@'gz, - lg(t) g(,s)|5z.
s,eef0,7] 1t — ¢ see0,r] It —slP

Then by Lemma 4.1 in [9], K; is compact in (CZ ([0, T1, RY), |- [l¢) X (cg([o, T1, R [-1p)

for all / < oo. Since

_ X - &|By/e — Byel l
C ((eBije. €(Bise) liero.1) € Kf) < C( sup T —)

srefo.r) It —sl¥ T2
- e|(B — (B [
+C sup |< >t/s (/ >s/s| b
5.1€[0,T] |t — s|P 2

From |(B!, B/), — (B!, B/);| < &|t — s|, we have

- B — (B /
lim limsupelogC | sup el(B)ie (/ Js/el >_]=—-c0
[0 ¢0 5.1€[0,T] |t —s|# 2

By Lemma 2.6 and Chebyshev’s inequality, we have

- e|Bije — B l
lim limsupelogC | sup |t/€—,s/8| > -] =—oc0.
=00 ¢ saefo,7] |t =5 2
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Therefore,
lim limsupelogC ((¢By/e. €(B)i/e) lrero,1) € Kf) = —00. O

[=+00 0

2.3. Large deviations for G-Brownian motion and its quadratic variation process

By Theorems 2.1 and 2.2, we obtain the following large deviation principle (LDP). We will
give a representation of the rate function in next subsection.

Theorem 2.3. Ler O <a < 1/2 and 0 < B < 1. Let B be G-Brownian motion and let
(B) = (B, B) = ((B', B’))1<i,j<a be its quadratic variation process. Then for any closed
subset F in (C(10, TR, || - o) x (C ([0, T1, R, || - [|5)

limsup e log C ((¢By/e. £(B)/¢) liejo,r) € F) < — (fi;feFJ(f, g), (2.6)

e—0

for any open subset O in (C§([0, T, RY), || - [lo) x (c{f([o, T1, R - 1),

lim infe log C ((eBt/s, €(B)1/¢) liefo, 1 € O) = — (f’igrgfeo J(f. 8), 2.7
where
m
J(f. 8) = . sup Z)»z,—t,,l (f@) — f@-1), g(@) — g(t-1)) - (2.8)
=iy <t] <--<tm=T I=1

Corollary 2.2. Let 0 < o < 1/2. Then for any closed subset F in (Cg‘([O, T1,RY), | - ||a),

limsup e log C ((¢ By/e)lrefo, 1] € F) < —]}ISE I(f),

e—0

and for any open subset O in (CS‘([O, T1,RY, | - IIO[),

liminf e log C (¢ By/e)lieio,r) € 0) = — inf I5(f),

where
Ig(f) = inf J(f, 2) (2.9)
g€Co([0,T],RIxd)
and
Ig(f)=  sup Ly on(FQ). ... ftm)). (2.10)
O=tg<ty <--<tm=T
m=>1

2.4. Rate functions

Lemma 2.7. Forany i = (i1, ..., ua)* € R% v = (Vij)1<i,j<d € R gnd 0 < s <1,
exp (1, B: — By) + (v, (B); — (B)y))} € Lg;(92),

where (v, (B);) = Z?,j:l vi;j (BT, B),.
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Proof. Since for any § > 0,
Eexp(8|Bi]} < 400,  Eexp {5|(B", Bj)t|} < exp (861} < 400
by Proposition 25 in [6] and quasi-continuity of

exp {(u, By — Bs) + (v, (B); — (B)s)},
we obtain the conclusion of the lemma. [

Define

He = { f € Co([0, T1, RY); f is absolutely continuous and || f1|%

T
:=[ |f/(s)|%ds < —i—oo}, (2.11)
0

and
g() —g(s)

t—s

A= {g = (8ij)axa € Co([0, T1, RY*9)y € Yforallt > s}

t
= {g = / g'(s)ds; g : [0, T] — RY*? Borel measurable and
0

g (t) € X forall t € [0, T]}. 2.12)

Then A is a closed subset in (Cg([O, T], RdXd), I - llg) for any B € [0, 1) and by the condition
(1.11), C(e(B).;e ¢ A) = 0. Therefore, by the lower bound of large deviations, for any
g €A, J(f, g) = oc.Since Ip(f) = infyccyqo,1,Rixdy J (f, §) and Ig(f) = oo forall f & H,
we also have J(f, g) = oo for all f ¢ H?. Thus

J(f,g) = +oo, forall(f,g)¢ HY x A. (2.13)
Lemma 2.8. Forany it = (41, ..., a)®, v = (Vij)1<i,j<d € Rdxd,
Eexp{(ie. B) + (v, (B)))} = exp {G (up” +2v°) 1} (2.14)

. . . . VitV
where V5 = (ij)dxd is a d x d symmetric matrix with vfj = -

Proof. By the independence of increments of G-Brownian motion, we obtain that

Eexp {(1, B) + (v, (B),)} = ﬁEexp {(1 s )+ (v (BY e,
- (o) + ()]

(IE (1 n (M, B%) + (v, (B>£) n % (u, B%)2 " R,,(t)))n

- (E (14 (i) 5 (oBs) an))n ,
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where R, (1) = e<“’3%>+(v’<3>%) — (l + (,u, B%) + (v, (B)%) + % (,u, BZ)2>' Applying

Taylor formula to the function e* at the point 0, we can obtain that

IRu0)] = (\(u B | (. B:) (v 180, + (v <B>;)2)
o 29) ¢ )

By Holder inequality it is easy to get E|R, (t)| = o(1/n). Then by

E ((v (B)%) ¥ % (u, B%>2 + R,,(t)) <E <<v (B>%> n % (M, B£)2> +E[R, (1)
E ((v (B)ﬁ) + % (u B%)2 + Rn(t)) >E ((v (B>%) + % (u, B;)2> —E|R, ()]

we obtain

E <(v (B)£> n % (M, B%)2 + Rn(t)> _E <<v (B)%> n % (M, B,zl)2>
Since for all # > 0 (cf. Example 5.3.23 in [12]),

E((u B)? = (" (B))) =0, E (" (B)) = (u. B)?) =0,

and

= o(1/n).

and
l 2\ _ T K

E( 0 (B)) + 5 (. B)? ) = G (" +20")1,

we have
. 1 2 "
Eexp{(i, B) + (v, (B))} = lim (1 +E ((v (B): )+ (n.B:) ) + 0(1/n)>
n—00 n 2 n
G T+ 205t "
— lim (1 G e +o(1/n))
n—oo n
=exp{G (uu® +2v°)t}. O
Define
Ig(x) = sup {(x, w) —G (,u/ﬁ)}, x e RY,
neRd

and

rx,z) = sup {(x,u)~|—(z, U)—G(/L/LT +2vs)}, (x,7) € R x RI*4,

(u,v)eRd xRdxd

Then by minmax theorem (cf. [16]),

~ . 1 . I 1

Ip(x) = inf sup {(x,u) — <tr(uu'0); = = inf (x, 607 " x), (2.15)

0eX | cRd 2 26ex
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and

- 1
A(x,z) = inf sup {(x, W)+ {z,v) — =tr(uu'0) — tr(vsé)}
0€X (11 v)eRd xRAxd 2

L
=!§(X’Z x), ifzel, (2.16)

00, otherwise.

By the condition (1.11),
1 2 ~ 1 2
J— <] < —
75 X" =1s(x) = 22IXI
and by Lemma 2.8 and the Varadhan integral lemma (Lemma A.3), we have

Li(x) = sup {(x, ) — G (up") 1} = tip(x/1), x eRY, (2.17)
nelRd

and for any (x, z) € R? x R¥*4,

A(x,2) = sup [, ) + (@ v) = G (ru” +20°) 1} = tA(x/t,z/t).  (2.18)
(1,v)eRI xRdxd

The following theorem gives precise representations of the rate functions /5 and J.

Theorem 2.4. (C (8 By/eliefo, 1] € ) ,E > O) satisfies large deviation principle with speed ¢ and
rate function

1 T . / —1 zr . d
IB(f) — 5 [) Glélf‘:‘(f (S), 0 f (S))dS, lf f e H ) (219)
+o00, otherwise,
and (C_' ((8B,/8, 6(B),/5) lre[o,7] € ) ,€ > O) satisfies large deviation principle with speed & and

rate function

1 T 4 / —1 pr .
J(f, g) — E‘/(; (f (S), (g (S)) lf (s))ds, lf (f3 g) € Hd X A, (220)

+o00, otherwise.

Proof. We only prove (2.19) and (2.20). The proof is standard. We only give the proof of
(2.20). For any (f,g) € HY x A, by the convexity of A and Jansen’s inequality, for any
O=rn<ti<---<tp,=T,

D hiny (F@) = a1, g(@) — g(t-1))
=1

n—t-1 | =1

Tofs)ds [M g’(s)ds)

L N 1]
=Y (—n-Di |7 L
1=1

m no_ r
= ;/; A (f/(S),g/(S)) ds Z/o A(F(5), g (5))ds

-1

which yields that J (f, g) < [yl A(f'(s), g (s))ds.
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On the other hand, if (f, g) € H? x A and J(f(s), g(s))ds < oo, set = 12—5,0 <l<2"
and G, = o ([t]', 1}, ;1,0 <1 < 2") and

2"—1 " _ Jad th _ th
1/f,l(s)=§:<f(,ﬂ> ) gfy) g@))q$%0@)

1=0 Mo — 1 M — 1
Then by the convergence theorem of martingales and Fatou’s lemma,
T T
/ Af(s), g (s))ds < lim sup/ A (s)ds < J(f, g) < +oo.
0 n—o00 0
Therefore, J(f, g) = fOT A (s), g'(s)ds. O

Remark 2.1. The rate function 7 is different from the classical one (cf. [15,2]). Ind > 2 case,
it is not a quadratic form. But in one-dimensional case, it is a quadratic form.

Example 2.1. If d = 1 and B; ~ N(0, [, 1]) where 0 < g < 1, then

1t _
Is(f) = Eﬁ'f“ww’ﬁfew’ (221)

+o00, otherwise,

and

IR O . |
J(f,g) = E/o —g’(s) ds, if(f,g)eH x A, (2.22)

+o00, otherwise.

Remark 2.2. In one-dimensional case, the rate function /g of G-Brownian motion is the same
as the classical Brownian motion. The joint rate function J of B and (B) is a new form due to
quadratic variation uncertainty.

3. Large deviations for a stochastic differential equation driven by G-Brownian motion

In this section we use discrete time approximation to study large deviations for stochastic
differential equations (SDEs) driven by G-Brownian motion. The method of the discrete time
approximation is a basic method in large deviations of SDEs (cf. [3,4,10]). Our proof avoids the
stopping time technique and the Girsanov transformation. Our main tool is exponential moment
estimates.

3.1. Statement of result

For any ¢ > 0, we consider the following random perturbation SDEs driven by d-dimensional
G-Brownian motion B

t t t
X5e :x+/ bE(Xjf’s)ds+8/ Gs(Xf’g)st/g—i—e/ he(X¥4)d(B, B)yje,  (3.1)
0 0 0

where (B, B) is treated as a d x d-dimensional vector,

b = (b5, ..., b°)" :R" - R”, of=(0f):R" > R" @R’

*¥n
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and h® : R" — R" ® R?*? has the following form

e.1) e e el) e.1) e.1)
h”(2) hld(2) h21(2) hz(z) hdl(z) hdtﬁz)
&, &, &, &, &, £,
o T il B T BTN 1 B 1 R )
e em gem . em  gem  em
R N R 5 B ) R O )

We also introduce the following conditions:
(H1),. b°, 0¢ and h® are uniformly bounded, i.e., there exists a constant L > 0 such that for all
>0,

sup max {[b° ()|, llo® () s, 1h°()llusl} < L,
xeRn

where ||A|lgs =,/ ij aizj is the Hilbert—-Schmidt norm of a matrix A = (a;;).
(H2),. b®, of and h® are uniformly Lipschitz continuous, i.e., there exists a constant L > 0 such
that for any x, y € R”,

max {[6°(x) — b ()], lo®(x) — o® W llus, 1A°(x) — A (W) llus} < Llx — yl.
(H3),. b*, o and h® converge uniformly b := b°, o := ¢® and h = h", respectively, i.e.,

lim sup max {[b*(x) — b(x)|, lo°(x) — o (0)lns, [1h*(x) — (X [us} = 0.

e—>0, cRrn

Let the definition of H and A be the same as in Section 2. For any (f, g) € H? x A, let
U(f,g)) e C ([0, T], R") be aunique solution of the following ordinary differential equation:

t t
(f8)) =x +/0 b(¥(f, 8)(s))ds ~I-/0 o (U (f,8)()) f'(s)ds

t
+ /0 h(P(f, g)(s))g'(s)ds. (3.2)

Theorem 3.1. Let 0 < a < 1/2 and let (H2), and (H3), hold. Let X = {Xf’s,t > 0} be a
unique solution of the G-SDE (3.1). Then for any closed subset F in (Cg‘([O, T, R, | - ||a),

limsupelog C (X7 — x)|ief0,r) € F) < — win%l(tﬂ) (3.3)
€

e—0

and for any open subset O in (CS‘([O, T1,R",| - ||a),

. . s X, > _

hgnl)l(r)lfslogC ((X, X)ltefo,1] € 0) > wuelfo 1Y), (3.4)
where

1Y) =inf{J(f. 8): ¥ = ¥(f, 8) —x}. (3.5

Remark 3.1. (1). If 2 = 0, then
1Y) =inf{Ip(f); ¥ = ¥(f) — x} (3.6)
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where U(f)(t) € Co ([0, T],R") is a unique solution of the following ordinary differential
equation:

t t
0 =x+ [ b+ [ oo 3.7
(2).If h =0and o7 o > 0, then the solution of (3.7) satisfies
() = b(T()(0) = (T(HO)f @),

which implies

fl = (UT(W(J‘)(I))U(!P(f)(t)))_1 o (W) (X)) —b(T(f)(D)).
Therefore
I5(0" (W + )0 + 1) 6T (W + 1)@ — by +x))),

I(y) = if v absolutely continuous,
400, otherwise.

In particular, ifd =n =1, By ~ N(0, [o, 1]), h = 0 and o > 0, then

T
_ 1 / lo " (Y (1) + x)(W (1) — b(¥ (1) + x))|?, if ¥ absolutely continuous,
W =12/,

+o00, otherwise.

That is, in one-dimensional case, if 4 = 0, the rate function is the same as the classical case
(cf. [5,7,8]).

Example 3.1. Letd =n =1 and B; ~ N(0, [g, 1]). Consider a linear SDE:
13 t 13
X/ =1 —i—b/ Xidt +8h/ X:{d(B)y/e —i—aa/ X:dBye.
0 0 0

Then for any (f, g) € H! x A,
U(f, 8)(1) =exp bt +hg(t) +of(0)}.

Therefore, if ¥ absolutely continuous, then

Lo — {1/T |f' (@) B }
(Y) =inf{ = dt, ¥ (t) = exp{bt + hg(t) +of(t)} —1¢.
2Jo &@®

3.2. Proof of Theorem 3.1: SDE with bounded coefficients
If we define B = B, — fe /¢,
(s, x) = 0 (x) f{ + b (x) + h* (V) g;
and
c(s, %) = 0 () £ +b(x) + h(x)g;.
Then

t
U(f.9)(1) = /0 c(s. U(f, )(s))ds
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and
t

t
X;° :x+/ cs(s,Xf’s)ds—i—s/
0 0

For N > 1,setfxy =kT/N,k=0,1,..., N andlet X;* = (X" (1) = XxN’i,t > 0} defined
by

t
o (X5 °°)dBy +/O h® (X *)d(e(B)g/e — g(s)).

in,i =X 5, teln-1.u).k=1,...,N.

As usual, we denote by ||/ || = sup,¢[o,7; |¥ ()| for any function ¢ on [0, T].

Lemma 3.1. Assume that (H1),, holds. Then for any p > 0,

limsuplimsup e log C (| X** — X3°ll > p) = —oc0 (3.8)

N—oo &—0

Proof. For any p > 0,

N t
C(Ix™ =Xy >p) <. C ( sup f [b°(X34)|ds > p/3>
!

k=1 telti—1,t] Jtr—1

N
C ( sup

k=1 tE€[fk—1,t]
N

+ Z C ( sup
k=1 tety—1,1]

Since there exists a constant M depending only on n, d, L such that

_|_

t
/ sos(Xf'g)st/S
tk—1

> ,0/3)
> p/3).

MTo
<
- N

t
/ eh® (X5)d(B)s s

fr—1

d MT
sup / |6°(X7%)|ds < — and sup
Ik N

teltg—1,tk] J tr—1 tE€(ty—1,1]

when N > w,forauk= I,...,N,

t
/ eh® (XE9)d(B)s e
Tk—1

t
limsupelogc_'( sup / 6% (X7 %)|ds > p/3> = —00
T

e—>0 t€[tk—1,1] J tg—1

and

t
/ eh® (X5)d(B)s s

fr—1

lim sup & log C ( sup > p/3) = —o0.

e—0 t€lt—1,t]
On the other hand, for any 0 < p < 1/2,
N

T
<— sup
S, EE[t—1,1%] |S - t|#

S 0t (X )dBye|

sup
rE[tk—1,1]

t
/ £0® (X2 *)dBy/e

Tk—1

and by Lemma 3.3 in [9], there exists a constant § = §(n, d, L) > 0 such that

2
[l ea®(Xy*)dByye

sup max sup E|exp{s
e>01=k=N te[ti_y 1] ls — 2]
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2
_ e|[i o (Xy*)dBye
< sup max sup Elexpi$ < 00.
e>0 ISK=N 5 1€0,T/(Ne)] ls — 1]

Therefore by (3.1) in [9], there exists a constant § > 0 such that
2
_ & f; US(X;’g)dBu/e

sup max E|exp{d sup < 00
£>0 1<k=N sieln ) 18 — tllog(l +1/Q2ls — 1)

which implies that for any 0 < p < 1/2, there exists a constant § > 0 such that
t ¢ X,€ 2
_ € fs o (X )dBy /e

sup max E[exp1d sup < 0.
>0 1<k=N s,t€lte_1,1] ls — £]2#

Now by Chebyshev’s inequality, we have

C sup > p/3
rElte—1,1%]

(e [} e (Xi)dBy e
—  sup > p/3
NH S, t€[t—1,t] |S - t|M

t
/ eos(X;"g)st/g
-1

=

2

Ji ot (X *)dBy e

-0 =

Lemma 3.2. Assume that (H1),, (H2), and (H3), hold. Then for any a € (0, +00) and p > 0,

IOZ(SNZ;L _ &
: max E|exp{d sup 5
9T2kg | 1<k<N s.telt1.4] |s — ¢

< exp {—
and so

lim sup lim sup ¢ log (N max C ( sup

N—o>oo e—=0 1<k=N relty—r.tc]

t
/ eo® (X ?)dBye
Tk—1

Therefore, (3.8) holds. [

limsuplimsupelog sup C < > p,lleBje — fll < M)

e/ ot (X3 )dBE,
0

=0 e=0 I £11% <a
= —00. (3.9)
Proof. Set
A ={I1X%° = Xy > 7},

A

{
{

e /O (0" () = 0" (X35 ) dBLje | > p/21X5 = X3l < r} ,

A3

> p/2,

e fo o (XN)dB), eBje — [ < . 1X°F = X°Il < r} :
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Then

|

Ay C Aryi UAx» U Ay

s/ ot (X2 )dBE,
0

>;0,||83~/s—f||<,u}CAlUAzUAa

and

where

An =1 [ / (05 (X2%) — 0 (X)) dBE,
0

> p/6},

Ay = 8/0 (a(xg“?) - o(xj\;fs)) dB;,

> p/6, 1X7F = X'l < t},

Ap = 8f0 (oxy) = 0" (3% ) 4By

> ,0/6}.

Set k(&) = sup,cpn lo¥(x) — o (x)||Hs, t = sup,cgn llo(x)|las and take a function ¢, (x) €
Lip(R) such that 0 < ¢ < 1, ¢;(x) = 1 forall [x| < 7 and ¢;(x) = O for all |x| > 2. Choose
go > 0and 79 > Osuchthatforall0 <& <ggandall0 < 7 < 10,

k(@E)VTa < p/12, 2itvTa < p/12.
Then for || f||3, < a, by

172

t T
flf/(s)lds§¢T</ |f’<s>|2ds) <Ta, 1€]0,T],
0 0

we have that forall 0 < ¢ < gpandall 0 < v < 19,

C(Azl) < é( 8/. (GS(X;‘»&) _G(Xjf~€)) dBy/e
0

>p/12>,

C(Ap) <C ( . / (0" (X35 — o (X35 dByje
X : :

>p/12>,

and by Lemma 2.1 in

[91,
C(An) < C ( 6 /0 B (X = X35 (X — o (X}%)) dByye

>p/12).

By Lemma 3.3 in [9], there exist constants M; > 0 and M» > O such that for any A > 0 with
re(e)2M, < 1,

2

) A (ﬁfst (gs(x;‘\;fu) - a(va*fu)) dBye M,

sup [E | exp ST
5,1€[0,T] [t — s] 1 — xk(e)2M,

Therefore, by Chebyshev’s inequality, we have

lim sup & log C <

e—0

e [ (ot — o) a
0

P
> — | = —o0.
12)
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Similarly, one can obtain

lim sup sup limsupslogC_'< 8/ D (X)F — xs)(a(Xx )
0

t—>0 N>1 &—0

0
— U(X;i,’i))de/s > E) = —00
and
limsuplimsupelogC_‘< 8/ (US(XZ’:C;) - a(XZ’i)) dBy e | > %) = —00
N—oo e¢—0 0
Thus
limsup limsup limsupelog sup C(Az) = —oo0. (3.10)

>0 N—oo &—0 Hf”%ifa

Next let us consider A3. On {|leB.;s — f|| < u}

Zo (X5) ((eByje — fu) — (€By_, —f,k_.))‘

A o (Xgi)st/s

< ZNM sup [0 (x)]

xeR?
which yields
limsuplimsupelog sup C(A3) = —oo. (3.11)
p=0 o0 /117 <a

Finally, combining (3.10), (3.11) and Lemma 3.1, we obtain (3.9). [

Lemma 3.3. Assume that (H1),, (H2), and (H3), hold. Then for any a > 0 and p > 0,

limsuplimsupelog  sup  C(IX** — ¥(f. 9l > p.

40 0 I £1% <a.geA
leB.je — fII < . lle(B).se — gll < v) = —00. (3.12)

Proof. For any (f, g) € HY x A with || f||3, < a,
t
X;P—0(f o) = / (c®(s, X7°) — (s, X7%)) ds
0
1
+ [ e xi = e (7 00) s

t t
+8/(; o (Xx s)dBv/S /; hs(X;C’E)d(S(Bh/s — &s)-
Set

A(e) = sup (lo®(x) — o (V) llus + 16°(x) = b(0)| + [|A°(x) — h(x)|us) -

xeR?
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Then by conditions (H1),,, (H2), and fOT(l + 1)+ 1g')Dds < (1 +6)T + ~/Ta), there
exists a constant M € (0, co) such that forall# € [0, T] and all (f, g) € HY x A with ||f||%1 <a,

t
/ (cg(s, X7%) — (s, X;""E)) ds| < MA(e),
0

t
/0 (c(s, X3°) — (s, U(f, 8)y))ds

t
<M /0 (4176 + 1€ ©ODIXD — B(f g)sds

and

t
/0 hE(X59)d(e (B)se — 8(5))

< M|l&(B).;e — gl
Therefore,

IX7¢ — W(f, g)| < Mlle(B).)e — gll + + MA(e)

e/ of (XT*)dBE),
0

t
+MfO L+ 1O+ 18 GODIXTE = T(f, &)slds
which implies from Gronwall’s inequality

X5 = v (f, 9l < (Mlle(B)-/s — gl +

% e((l+&)T+«/ﬁ)M.

’ / ot (X39)dBY,
0

+ MA(e))

Choose g9 > 0 and vg > O such that for all 0 < ¢ < ggand 0 < v < vy,
M A(e)e HDTHTOM /3 and Mue+OT+VTOM _ /3 Then

{IX°F = #(f, @) > p, leB.je — [l < . lls(B).je — gl < v}
- { e / of (X3E)dBE | > e (HOTHVTOM 3 e\ f)| < u} ,
0

and so (3.12) holds by Lemma 3.2. [

Theorem 3.2. Let (H1),, (H2), and (H3), hold. Then for any closed subset F and any open
subset O in (Co([0, T1,RY), || - 1) x (Co([0, T1, R™*), || - |) x (Co([0, T1,R™), | - )

limsup & log C ((¢ B/, £(B) /e, X;*° — x) lrejo,r) € F) < — i?pf)eFi(f’ g, ¥, (3.13)

e—0 (f.g
and

liminfelog C ((¢By/e, £(B)s/e, X)°F — €0)>— inf I(f.g.¥) (3.14

iminf¢ log ((eBije. €(B)1je, X x) liefo,71 ) > (f,gl,Il}/)EO (fs 8, ¥), (3.14)
where

itfgy =78 if(f9) €HIXA x+v=V(fg)

e 400, otherwise.

Proof. Let us first prove the lower bound. For any open set G C (Co([0, T], RY), -1 x

(Co([0, TT, R*4) || - ) x (Co([0, T1,R™), || - |I), without loss of generality we assume



2234 F. Gao, H. Jiang / Stochastic Processes and their Applications 120 (2010) 2212-2240

inf( s v)ec i(f, g, V) < oo. For any § > 0, choose (fo, g0, ¥0) € G such that i(fo, g0, Yo) <
inf(f.g yrec 1(f, g, ¥) + 8 and x + Yo = ¥(fo, go). Choose p > 0 such that

Up(fo, 8o, ¥0) ={(f, & )i If — fol = p.llg — goll = p. I¥ — Vol = p} CG.

Then for any i > 0 and v > 0 small enough,

é((SBt/S7 &(B)y/e, X;* —x)€G)
> C((eBije. £(B)1e. X;* — x) € Up(fo. 80, ¥0))
> C(lleB.je — foll < u. l&(B). — goll < v)
—C(IX° = (x +Yo)ll > p. lleB.se — foll < i, le(B). — goll < v).

Therefore, by Lemma 3.3 and Theorem 2.3, we have

limi(r)lfslogc_‘ ((€Bije, €(B)ije, X;* — x) € G)
E—>
> —J(fo.g0) = — inf I(fig.9%)—8
fo-8 (f.8.9)€G e

which yields the lower bound.
Next let us show that the rate function / is a good rate function. For each a <

infrqpper 1(f. g W) set Ko = (£ 9): J(f.) < a) and Ry = { (8.1 I(f.g.9) < af.

Then K, is compact and K, = {(f.g, Y(f 8); (f,g) € Ka}. Itis easy to check that ¥k, is
continuous. Therefore K, is also compact.

Finally, we show the upper bound. Let F be a closed subset in (Co([0, T'], RY), |- 1) x
(Co([0, T1, RE*4) || - ) x (Co([0, T1,R™), || - |I). For each a < inf(s.g.y)er I(f, g, ), set

K, = {(f.8):J(f.g) <a} and K, = {(f,g, V) I(f.g. ) < a}- Then K, is compact,

K, N F = ¢ and for any (f,g,v) € K,, there exists p = pf.g > 0 such that U,(f, g, ¥)
and F are disjoint. For each (f, g) € H? x A and x + ¥ = ¥(f, g), by Lemma 3.3, for each
R > 0, thereexist u = pyg > 0,v=vy, >0ander, > Osuchthatforall 0 < ¢ < gy,

CIX** =+l > pre leBre = fIl < tpg, le(B).je — gl < )

-]
<expy——rg¢-
I3

Since K, is compact, there exists a finite subset {(f1, g1),..., (f;, &)} of K, such that
K, CcU:= U§:1{||f — fill < s g» lg — &ill < vy g} Then for ¢ small enough,
C((eB.je, &(B).je, X*° —x) € F)
<C ((sB./g, e(B).je, X** —x) € F, (¢B.js,€(B).j¢) € U)
+C ((eB.je, e(B).je) € U°)

“-

-

C(IX** = W(fi, gDl > pfgis l€B e = fill < g

1

lle(B).je — gill < vf.g) 4+ C((eB.je, €(B).s) € US)

< lexp{—g} +exp{—g}.
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Therefore

limsup & log C((eB./e, &(B)./e, X** — x) € F) < max {—R, —a}.

e—0
First letting R — +00, then letting a — [(F), the upper bound is proved. [

We know that the LDP for a diffusion process also holds (cf. [4,10]). Next we extend the
above LDP to the Holder norm.

Lemma3.4. Let0 <o < 1/2and 0 < B < 1. Assume that (H1),, (H2),, and (H3), hold. Then
{C ((¢Bije, €(B)1je, Xi°° — x) lieo.r1 € 7). € > 0}

is exponentially tight in (CZ ([0, T1, RY), || o) x (CL ([0, T1, RT*?), || -||g) x (CE([0, T], R"),
I lla)-

Proof. By Lemma 3.3 in [9], there exists a constant § = §(n, d, L) > 0 such that

2
. [ et (XE)dBy /e
sup sup E|expq$
£>05,1€[0,T] ls —1]
; 2
_ fs O—S(XZ)dBu/s
<sup sup E|expi$ < 00
e>0s,re[0,T/¢] ls — 1]

which implies that for any 0 < o < y < 1/2 there exists a constant § = §(n,d, L) > 0 such
that

t eqye 2
_ fs Jeo (X5)dB, .
supE | exp{d sup 5 < 00.
£>0 5,1€[0,T] ls —z|?Y

Since b* and h® are bounded, we have that for R large enough,

_ _ i Ve (X5)dBy e
C(IXly, = R) <C |+e sup i ‘
5,1€[0,T] ls — ¥

> R/2

Therefore

lim limsupelogC (| X[, > R) = —o0,
0

R—o0 o,
and the conclusion of the lemma is proved by Lemma 4.2 in [9]. O

By Theorem 3.2 and Lemma 3.4, we obtain the following result.

Theorem 3.3. Let 0 < o < 1/2 and 0 < B < 1. Assume that (H1),, (H2), and (H3),
hold. Then for any closed subset F and any open subset O in (Cg ([0, TR, | - lla) %

(P10, T1, R?), || - [|g) x (CE([0, T1, R™), | - lla)

limsup € log C ((eBijs. €(B)1je, X;*° — x) lieo,r1 € F) < — inf I(f, g, v), 3.15)
e—0 (f.8.¥)eF
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and

liminfelogC ((¢By/e, €(B)i/e, X)°F — €0)>— inf I(fig V). 3.16
iminf ¢ log ((eBr/e. €(B)1/e. X; x) lrefo,7] ) > (f,gl,II/II)EO (fs 8, ¥). (3.16)

3.3. Proof of Theorem 3.1: general case

Lemma 3.5. Assume that (H2), and (H3), hold. Then

lim sup lirrbelog C( sup |XF%(s)| >r) = —o0. (3.17)

r—>oo &> 0<s<T

Proof. By the proof of Lemma 5.1 in [9], there exist constants ¢{(T), c2(T) > 0 such that for
any0<e <1/2,x e R",t €[0, T],

- 2\1/e
E(Osup 1+ |Xx’8(t)|2)1/8> Lamd j D expea (T e} (3.18)
<t<T

Now by Chebyshev’s inequality, we have

- 2\—1/¢e 2\1/e
C(sup |X™(9)] = 1) < @+l )8 AT o (ea(T)/e)

which implies (3.17). O

By Lemma 3.5 and the proofs of Lemmas 3.2 and 3.3, we can get also the following estimate.

Lemma 3.6. Assume that (H2), and (H3), hold. Then for any a > 0 and p > 0,
limsuplimsupelog  sup C_’(||Xx’8 —U(f, 9l > o,

b 50 I £1% <a.geA
leB.je — fIl < w, lle(B).je — gll <v) = —o0. (3.19)

By Lemma 3.5 and the proofs of Lemma 3.4, the following tightness holds also.

Lemma 3.7. Let 0 <o < 1/2and 0 < B < 1. Assume that (H2), and (H3), hold. Then
{é ((83;/5, &(B)/e, X;f —x) lre[o0,7] € ) , & > 0}
is exponentially tight in (CZ ([0, T1, RY), |- o) x (CL ([0, T, RT*?), || -1|g) x (CE([0, T], R"),
I lle)-
Now by Lemma 3.7 and the proofs of Theorem 3.2, we obtain the following LDP which

implies Theorem 3.1 by the contraction principle.

Theorem 3.4. Let 0 < @ < 1/2and 0 < B < 1. Assume that (H2), and (H3), hold. Then for
any closed subset F' and any open subset O in (Cy ([0, T, R, - lle) X (Cg([O, T1, R4xdy || -
lp) x (Cy ([0, TT,R™), || - lla)

limsupelog C ((eBy/e. €(B)i/e, X;° — x) lseqo,r1 € F) < — inf I(f, g, ¥), (3.20)
£—0 (f.8.¥)eF
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and

liminfelog C ((eBy /e, £(B); /e, X5 — €c0)>— inf I(f g v¥). 321
iminfe log ((eBtjs, €(B)1je. X7 — x) liejo,11 € O) = i o (f. 8. ¥). (3.21)
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Appendix. Some general results on large deviations for the capacity

In this Appendix, we present some general results on large deviations for the C-capacity. The
proofs of these results are the same as probability case (cf. [5,7]). Here, we only give a proof of
Varadhan’s integral theorem.

Definition A.1. Let (S, p) be a Polish space. Let (V¢, & > 0) be a family of measurable maps
from (2 into (S, p) and let A(¢), & > 0 be a positive function satisfying A(¢) — 0ase — 0.
A nonnegative function I on (S, p) is called to be (good) rate function if {/ < [} is (compact)
closed forall 0 < < oo.

(1) (C(VE € ), & > 0) is said to satisfy large deviation principle (LDP) with speed A(¢) and
rate function 7 (x) if for any closed subset F C S,

lim sup A(e) log C_’(Va eF)<-— inlfrl(x); (A.1)
xXe

e—0

and for any open subset O C S,
liminf A(¢) log C(VE¢ € 0) > — inf I(x). (A2)
e—0 xe0

(A.1) is referred to as upper bound of large deviations with speed A(g) and rate function 7 (x)
(ULD) and (A.2) is lower bound of large deviations with speed A(g) and rate function 7 (x)
(LLD).

(2) (C(V¢ € -), e > 0) is said to satisfy w-upper bound of large deviations with speed A(g)
and rate function 7 (x) if for any compact subset K C S,

lim sup A(¢) log C(V¢ € K) < — inf I(x). (A.3)
e—>0 xek
If (C(VE € -),e > 0) satisfies w-upper bound of large deviations with speed A(¢) and rate
function 7 (x) and lower bound of large deviations with speed A(e) and rate function 7 (x), then
(C(V® € .), e > 0) is called to satisfy w-large deviation principle.
(3) (C(VE € -),e > 0) is said to be exponentially tight if for any L > 0, there exists a
compact set K7 C S such that

limsup A(e) log C (V¢ € K§) < —L. (A.4)

e—0

Lemma A.l. Let (C(VE € -),e > 0) satisfy w-large deviation principle with speed ()
and rate function 1. Then it satisfies large deviation principle with the rate function I if
(C(V® € ), e > 0) is exponentially tight.
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Lemma A.2. Suppose S = RY. If for any y € R?, there exists a § > 0 such that

A(8y) := lim sup A(¢) log E exp { V2, &) } e R, (A.5)
e—0 Ae)

then (C(V¢ € -), & > 0) satisfies upper bound of large deviations with speed ).(¢) and good rate
Sfunction A* defined by

A*(x) = sup {(x,y) — A()}, x e R
yeRd

Remark A.1. Since E is not linear, Cramér’s method is not useful for lower bound of large
deviations.

Lemma A.3 (Varadhan Integral Theorem). Let S be a Polish space.
(1) Let (C(V® € -),e > 0) satisfy the LLD with speed A(¢) and rate function I. If
@ .S — [—o0, +00] is lower semicontinuous (l.s.c.), then

&

Ae)

(2) Let (C(VE € -), e > 0) satisfy the ULD with speed A(¢) and good rate function I. If
®: S — [—o0, 400] is upper semicontinuous (u.s.c.) and there exists some § > 0 such that

limi(r)lfk(s) logI_E (exp ( oV )>> >sup{P(x) — I(x); P(x) Al(x) < 400}. (A.6)

lim sup A(g) log]E (exp ((1 +6) o 8))) < 00, (A7)
e—=0 Ale)
then
lim sup A(¢) log]E <exp ( QZ(Z?)) <sup{P(x)—1I(x):x € S}. (A.8)
e—0

Proof. (1) Let x € S with @(x) A I(x) < 400. Then for any neighborhood N, of x,

liminf A(g) logI_E (exp ( @(V8)>> hmlnf)\(s) logIE <exp < v 8)) INX(Vg))
e—0 A(e) Ae)

inf &(y) + 11m 1nfk(8) log C(VE € Ny)

YEN,

ylenl\f/; B(y) — I(x).

v

v

%

Therefore, (A.6) holds by the lower semicontinuity of &.

(2) First, assume sup, . @(x) < M < oo forsome M > 0.Given L > 0,set K, = {I <
Choose x1, ..., x, € K, and their neighborhood B,,, ..., By, such that K; C Ul 1 By, =
SUp, d(x) < &(x;) + 8 and infxegx. I(x) > 1(x;) — 8 Then

- d(VE) R
E(exp( o) >> xp{m(M+)»(8)logC(V eG ))}

L}.
G,

+ ZeXP {%8) (D(xi) + 8+ A(e)log C(V* € Ex,.))} .
i=1
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Thus

lim sup A(¢) log E <exp ( @(V€)>> < (M —L)V max {P(x;) — I (x;) + 25}
£—0 A(e) I<i<n

<M —L)Vvsup{®(x) — I(x)}+26.
xes
First letting 6 | 0, and then letting L 1 oo, we obtain (A.8).
For general case, set @y = & A M. Then

limsup A(¢) log E (exp { 2(V) }) < Ay Vsup{@p(x) — I(x)}
e—0 Ae) xeS

< Ay Vsup{P(x) — I (x0)},

xes

where

_ d(VE
Ay :=limsup A(e) logE (exp { V) } I{¢>M}(V8)> — —00
. >

e—0

as M — oo. Therefore, (2) holds. [l

If S = C(0, TL,RY), let A = {{t;,t2,...,1,} C [0,T;;n > 1} and & : X —
RHOTT x — (x(1),t € [0, T]). For any o € A, let p, be the canonical projection of (RH)[0.T]
to (R))®. For any x € C([0, T1, RY), set |lx|| = sup,¢[o. 77 1x(1)].

Lemma A4. Let (C(VE € -),& > 0) be exponentially tight. If (C(pa(®(VF)) € ), & > 0)
satisfies the LDP with speed A(g) and rate function 1 for any a € A, then (C(V® € -), e > 0)
satisfies the LDP with speed \(&) and rate function I defined by

1(x) = sup I (pa(@(x))), x € C([0, T],RY).

acA
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