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Although herpesviruses have a wide host range and their genomes vary substantially in size, the nucleocapsid appears
to be a conservative element of viral design. The capsid shell is icosahedrally symmetric (T Å 16), and 125 nm in diameter
and 15nm thick in the case of herpes simplex virus 1 (HSV-1). Channel catfish virus (CCV) has the gross morphology of a
herpesvirus, although no relationship to other herpesviruses is evident from the sequences of its proteins. To examine CCV
capsid architecture more closely, we have determined its structure by cryoelectron microscopy and three-dimensional
image reconstruction. The CCV capsid is smaller than that of HSV-1, but its 12% smaller genome is packed to essentially
the same average density; its icosahedral facets are flatter, and its shell is about 20% thinner, consistent with the smaller
size of its major capsid protein. Otherwise, their major features are remarkably similar: CCV has the same triangulation
number; its hexons and pentons also have chimney-like protrusions with an axial channel through each capsomer; and
there are ‘‘triplexes’’ on the outer surface at the sites of local threefold symmetry. The basic herpesvirus capsid architecture
is, therefore, remarkably well conserved in CCV and implies a utilitarian basis to this design. The protein composition of
CCV mirrors that of HSV-1, except for the absence of the 12-kDa protein, VP26, which is dispensable for assembly in the
HSV-1 system and, apparently, wholly dispensable for CCV. q 1996 Academic Press, Inc.

INTRODUCTION served—at least among mammalian herpesviruses, i.e.,
they are present and code for proteins of similar sizes,

Herpesviruses form an extensive family of DNA-con-
although not necessarily closely conserved in sequencetaining viruses that infect a wide range of vertebrate
(Davison, 1993).hosts. Over 100 members have been described and clas-

Recently, progress has been made in defining the mo-sified, on the basis of their biological properties, into
lecular anatomy of the capsid of the archetypal alphaher-three subfamilies: Alpha-, Beta-, and Gammaherpesviri-
pesvirus, herpes simplex virus 1 (HSV-1). Its shell con-nae. Their genomes are linear double-stranded mole-
tains four major proteins (Table 1), whose assembly iscules containing various arrangements of terminal or in-
controlled by interaction with two internal proteins codedternal repeats and vary considerably in size, from Ç125
by genes UL26 and UL26.5, respectively. The latter pro-kbp to Ç230 kbp (Roizman, 1990). Despite their diversity
teins are later proteolytically processed and (mostly) ex-of host range and genome size, herpesviruses are mor-
pelled, concomitant with DNA packaging (review: Stevenphologically conservative and invariably exhibit a large
and Spear, 1995). The capsid is icosahedrally symmetric,(ú100-nm-diameter) thick-walled nucleocapsid, sur-
of triangulation class T Å 16 (Wildy et al., 1960). Its sur-rounded by an envelope with an intervening protein-
face lattice is made up of 150 hexamers and 12 pentam-aceous layer (or ‘‘tegument’’). Their appearance is distinc-
ers of VP5, with the other three shell proteins attachedtively different from that of any other animal virus. Key to
at specific sites on the outer surface. VP19c and VP23this morphological conservatism is the capsid which,
form heterotrimeric complexes (‘‘triplexes’’) at the sites ofafter assembling and undergoing DNA packaging in the
local threefold symmetry (Newcomb et al., 1993), and sixnucleus, becomes wrapped with the tegument and enve-
copies of VP26 are distributed around the outer tip oflope (review: Rixon, 1993). Thus the size and shape of
each hexon (Booy et al., 1994).the virion is imposed—at least, in part—by the capsid.

Derivation of the foregoing account of the HSV-1 cap-The genes involved in capsid assembly are largely con-
sid depended heavily on the use of cryo-electron micros-
copy and three-dimensional image reconstruction (re-1 To whom correspondence and reprint requests should be ad-
views: Adrian et al., 1984; Booy, 1992; Chiu, 1993). Local-dressed at Bldg. 6, Room 425, 6 Center Drive MSC 2755, NIH, Bethesda,

MD 20892-2755. Fax: (301) 402-3417. ization of the four shell proteins was contingent on being
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135CCV CAPSID STRUCTURE

able to modulate the capsid structure in biochemically Two such micrographs were digitized on a Perkin–Elmer
1010MG microdensitometer at a sampling rate ofdefined ways—by extraction of specific components

(Newcomb and Brown, 1991; Newcomb et al., 1993), by Ç0.86nm per pixel. The dimensions of the CCV capsid
were calibrated relative to the axial spacing of the tailscomplementing depleted capsids with purified proteins

(Booy et al., 1994), or by decorating capsids with antibod- of bacteriophage T4 particles mixed with the CCV cap-
sids. This spacing, to which a value of 4.05 nm wasies (Trus et al., 1992). Hitherto, the only herpesvirus other

than HSV-1 whose capsid structure has been analyzed assigned (Moody and Makowski, 1981), was measured
to within 1% standard deviation from diffraction patterns.in comparable detail is equine herpes virus 1 (Baker et

al., 1990), a relatively closely related alphaherpesvirus. Reconstructions were calculated by ‘‘common lines’’ tech-
niques of Fourier analysis (Crowther, 1971; Fuller, 1987;In the present paper, we have extended these studies

to channel catfish virus (CCV) (Wolf and Darlington, Baker et al., 1988, 1989) as described previously (Trus
et al., 1992; Conway et al., 1993) and making use of an1971). This virus has the gross morphology of a herpesvi-

rus, although no specific relationship to mainstream her- Intel iPSC/860 massively parallel supercomputer (John-
son et al., 1994). Particle orientations were also refinedpesviruses was evident from an analysis of the proteins

predicted from its complete DNA sequence (Davison, using the iterative procedure described by Cheng et al.,
(1994).1992). The motivation for these experiments was twofold:

(i) to complement the studies cited above by exploiting The surface shells of HSV-1 A-capsids (empty), B-cap-
sids (which contain scaffolding proteins but no DNA),evolution as an alternative modulator of herpesvirus cap-

sid structure; and (ii) in view of the large evolutionary and C-capsids (which contain DNA) are structurally indis-
tinguishable at current resolutions. For convenience, wedistance between CCV and HSV-1, this comparison af-

forded an opportunity to identify those capsid features used the B-capsid reconstruction reported by Conway et
al. (1995), to compare with CCV. Although these datawhich have been most closely conserved, and which may

therefore be regarded as functionally essential. were sufficient for a density map at 2.4-nm resolution
(Conway et al., 1995), the map used in the present com-
parison was restricted to 3-nm resolution to rule out anyMATERIALS AND METHODS
complications that might arise from differences in resolu-

Cultivation and isolation of capsids tion. The HSV-1 capsid dimensions, calibrated as de-
scribed above (B.L.T. and F.P.B., unpublished results),CCV was grown in a fish cell line (BB) at 317 by in-
confirm previously reported data (Booy et al., 1991; New-fecting at a low multiplicity of infection (0.001 PFU/cell).
comb et al., 1993).Three days after infection, cells were homogenized and

capsids were isolated by sucrose gradient centrifugation,
as described by Davison and Davison (1995). The prepa- RESULTS AND DISCUSSION
ration studied here was the ‘‘U-band,’’ which contains

A field of vitrified CCV capsids is shown in Fig. 1. Mostmainly empty capsids (equivalent to A-capsids of HSV-
are empty. In appearance, they generally resemble cap-1) as well as a few that contain scaffolding proteins
sids of HSV-1 (Schrag et al., 1989) or equine herpes virus(equivalent to B-capsids of HSV-1). After dialysis to re-
1 (Baker et al., 1990), except that they are somewhatmove sucrose, the capsids were concentrated by centrif-
smaller and more angular. Three-dimensional reconstruc-ugation.
tions were calculated separately from two cryoelectron
micrographs, combining 81 capsids and 78 capsids, re-Cryoelectron microscopy
spectively. They yielded consistent results. Subsequently,

Purified capsids were prepared for cryoelectron mi- the 140 best particles were combined in a composite
croscopy and observed as described previously (Booy et density map (Figs. 2a, 2c, 2e, and 3a), whose resolution
al., 1991). In brief, micrographs were recorded at a nomi- extended toÇ3.0 nm according to the criterion of Conway
nal magnification of 36,0001, using low-dose techniques, et al. (1993). The exterior and interior surfaces of the CCV
on a Philips EM400T equipped with a Gatan Model 626 capsid shell as viewed along an axis of twofold symmetry
cryoholder and modified Gatan anticontamination blades are shown in Figs. 2a and 2c, respectively. The T Å 16
(Gatan, Warrendale, PA). triangulation geometry is apparent. The hexons and pen-

tons have prominent chimney-like protrusions that extendImage processing and three-dimensional
outward from the inner layer where intercapsomer con-reconstruction
tacts take place. There is an axial channel through each
capsomer with a constriction near the middle, and thereThe micrographs selected for reconstruction showed

good distributions of particles, promising contrast, and are triplexes on the outer surface at the sites of local
three-fold symmetry (cf. Figs. 3a and 3b).had been recorded at defocus values such that the first

zero of the phase-contrast transfer function was at In Fig. 2, CCV is compared with HSV-1 at the same
resolution. The facets of the CCV capsid are somewhatÇ(2.5nm)-1 and identified as such by optical diffraction.
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136 BOOY ET AL.

FIG. 1. Cryoelectron micrograph of purified capsids of channel catfish virus. This preparation contains predominantly empty capsids, which are
equivalent to A-capsids of HSV-1. Bar, 100 nm.

flatter than those of HSV-1 and its shell is about 20% zation of alphaherpesvirus capsids is emulated remark-
thinner (i.e., CCV hexons are 12.4 nm thick, compared to ably well in the case of CCV.
15 nm for HSV-1; cf. Fig. 3c). The CCV capsid is signifi- It is noteworthy that the observed size differential
cantly smaller, with an average outer diameter of 116.7 between CCV and HSV-1 capsids correlates with the
nm compared to 124.8 nm for HSV-1, as measured from sizes of their respective genomes: CCV, 134 kbp (Davi-
spherically averaged radial density profiles (Fig. 3c). The son 1992); HSV-1, 152.3 kbp (McGeoch et al., 1988).
experimental uncertainties are Ç1%. Other dimensions Their average internal diameters, as measured from
of the CCV capsid are 128.3 nm vertex to vertex, i.e., the respective radial density profiles (Fig. 3c), are 91.9
penton tip to penton tip, and 106.8 nm between the cen- and 94.8 nm and correspond to a volume ratio of 0.91.
ters of opposing facets, i.e., C-hexon2 tip to C-hexon tip. The ratio between the masses of their respective ge-
The corresponding figures for HSV-1 are 135.3 and 120.9 nomes is 0.88. It follows that average density of encap-
nm, respectively. The ratio between these diameters (i.e., sidated DNA must be very similar in both viruses, there
fivefold:threefold) is 1.20 for CCV compared with 1.12 for being no evidence for the retention of internal proteins
HSV-1, which provides a quantitative statement in rela- in the fully packaged capsids in amounts that are likely
tion to its flatter facets. Despite these differences in di- to affect this conclusion (Booy et al., 1991; Davison and
mensions, the major morphological features of the CCV Davison, 1995). To extrapolate from this observation,
capsid are strongly reminiscent of those of HSV-1 (cf., herpesviruses with larger genomes are likely to have
Conway et al., 1993; Zhou et al., 1994) or EHV-1 (Baker commensurately larger capsids. For instance, one
et al., 1990), and we conclude that the structural organi- would expect the capsid of human cytomegalovirus

(229 kbp; Bankier et al., 1991) to be significantly larger
than that of HSV-1, unless a higher density of packaged2 C-hexons, E-hexons, and P-hexons are distinguished according to

their sites on the icosahedral surface lattice—Steven et al. (1986). DNA is achieved in this system. It would contribute to
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FIG. 2. Comparison of the three-dimensional capsid structures of CCV (a, c, e) and HSV-1 (b, d, f). The capsids are viewed along a twofold
symmetry axis. Outer surface, (a) and (b); inner surfaces, (c) and (d); central thin sections, (e) and (f). The distribution of capsomers (a and b) is
distinctive for the triangulation number, T Å 16, with lines of three hexons connecting pentons along each edge of the icosahedral surface lattice.
Bar, 25 nm.
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FIG. 3. Three-dimensional reconstructions at 3.0-nm resolution of the capsids of channel catfish virus (a) and herpes simplex virus 1 (b) as viewed
along a fivefold axis of symmetry. Shown in each panel are blow-ups of the capsid structure centered on a penton, surrounded by five P-hexons
(i.e., peripentonal hexons). The triplexes occupy each site of local threefold symmetry, i.e., sites surrounded by three capsomers (pentons or hexons);
two triplexes, indicative of the sets surrounded by two P-hexons and a penton and by two P-hexons and one C-hexon, respectively, are indicated
by arrows in (a) and (b). Bar, 10 nm. (c) Radial density profiles (plotted in arbitrary units) of empty capsids of CCV (solid curve) and HSV-1 (dotted
curve) were obtained by spherically averaging the respective density maps.

a more general understanding of herpesvirus capsid mild conditions that leave the shell otherwise intact
(Newcomb and Brown, 1991; Newcomb et al., 1993), indi-morphogenesis to know whether such size differences
cating that VP26 does not play a significant role in capsidoccur, and if so, whether they reflect (as we would
stabilization. Moreover, experiments with recombinantsuspect) different-size capsomers, i.e., with larger di-
baculoviruses have indicated that VP26 is not requiredameters relative to their central axes, rather than a
for capsid assembly (Thomsen et al., 1994; Tatman etchange in T number.
al., 1994). Compositional analysis of purified CCV virions

Protein composition of CCV revealed no evidence for a protein in the same molecular
weight range (Davison and Davison, 1995). Six copies ofRecently, the capsid proteins of CCV have been identi-
VP26 are distributed around the tip of each hexon on

fied as the products of specific genes by application of
HSV-1 capsids (Booy et al., 1994), where they form six

high-resolution mass spectrometric techniques, and their
little horn-like excrescences when visualized at resolu-

copy numbers determined by quantitative SDS–PAGE tions of 3.0 nm or better (Zhou et al., 1994; Conway et
(Davison and Davison, 1995). To facilitate comparison, al., 1993; Fig. 3b). No comparable features are seen on
these data are reproduced in Table 1. the CCV reconstruction (Fig. 3a), consistent with the ab-

sence of VP26-like subunits. We conclude that if CCVVP26 of HSV-1 has no counterpart in CCV
does have a counterpart to VP26, it must associated less

VP26, at 12 kDa, is the smallest capsid protein of HSV- securely with the capsid and have been lost from our
1. It may be extracted from the capsid under relatively capsid preparations.

TABLE 1

Capsid Shell Proteins of HSV-1 and CCV

HSV-1a CCVb

Protein Gene Copy no. Site Protein of gene Copy no.

VP5 UL19 960 Hexons and pentons 39 960
VP19c UL38 350 Triplexes 53 310
VP23 UL18 570 Triplexes 27 630
VP26 UL35 900c Hexon tips — —

Note. Copy numbers of the triplex proteins were determined in proportion to the major capsid proteins (VP5 or gene 39 protein, respectively) by
quantitative SDS–PAGE.

a Data from Newcomb et al. (1993).
b Data from Davison and Davison (1995).
c Data from Trus et al. (1995); Zhou et al. (1995).
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TABLE 2Major capsid proteins

Molecular Weights of Major Capsid Proteins and Putative Triplex
We assume that the gene 39 protein forms both the Proteins of Various Herpesviruses

hexons and pentons of the CCV capsid, as VP5 does for
HSV-1 (Newcomb et al., 1993). At 123 kDa, this protein Protein counterpart of

is Ç21% smaller than VP5 (149 kDa), although it is still
Virus VP5 VP19c VP23unusually large for a viral capsid protein. As noted above,

the CCV capsid shell is Ç20% thinner than that of the Alphaherpesvirinae
HSV-1 capsid, but the diameter of the CCV capsomers Herpes simplex virus 1 149,082 50,263 34,270
in its surface lattice is only about 3% smaller than those Varicella zoster virus 154,978 53,971 34,309

Equine herpes virus 1 152,182 51,306 33,841of HSV-1. Thus the main differences between them—
apart from the absence of VP26 from the tips of the CCV Betaherpesvirinae
hexons—are that its protrusions are 2.0–2.5 nm shorter, Human cytomegalovirus 153,871 33,027 34,954

Human herpesvirus 6a 151,949 34,205 33,464even when compared with HSV-1 capsomers that are
missing VP26 (data not shown; cf. Booy et al., 1994; Trus Gammaherpesvirinae
et al., 1995). Otherwise, the predominant structural fea- Epstein–Barr virus 153,916 39,190 33,624

Herpesvirus saimiri 154,354 37,385 34,256tures, including the closely knit inner ‘‘floor’’ layer, and
Equine herpes virus 2b 153,202 37,509 33,418the constriction midway through the axial channel that

runs through each capsomer, are common to both cap- Unclassified
Channel catfish virus 123,008 34,677 31,781sids (Figs. 2 and 3). Such differences as exist occur at

the level of relatively minor details (cf. Figs. 3a and 3b).
Note. These proteins were identified as counterparts of VP19c and

There is insufficient homology between the gene 39 VP23 of HSV-1 on the basis of homologies observed among their amino
protein and VP5 to allow a convincing alignment of their acid sequences (as translated from the corresponding gene sequences
respective sequences (Davison, 1992). Nevertheless, the using the Peptidesort routine of the GCG program), and on the relative

positioning of these genes in the respective genomes (cf. Davison,structural resemblance between the respective capsom-
1993).ers suggests that the domainal organizations of the two

a From Gompels et al. (1995).
proteins may be quite similar. In this context, the lower b EHV-2 was originally thought to be a betaherpesvirus but is now
molecular weight of gene 39 protein implies that it may characterized as a gammaherpesvirus on the basis of its genome se-
lack a domain (or domains) that is present in VP5. This quence (Telford et al., 1995).

putative domain would probably be located in the HSV-
1 capsomer protrusions since their length is the most

three mammalian herpesvirus subfamilies (Table 2). Inpronounced structural difference between the two cap-
contrast, the CCV gene 53 protein is substantially smallersids.
than VP19c, although this protein is more variable in size
among herpesviruses (Table 2). Again, no homology is

Triplex proteins evident between these CCV proteins and their putative
HSV-1 counterparts (Davison, 1992).For HSV-1, the estimated copy numbers of VP19c and

VP23 are both close to being integral multiples of the
Essential structural elements—Capsomer

number of triplexes (320) (Newcomb et al., 1989). These
protrusions and triplexes

proteins have been identified as forming the triplexes on
the basis of the observation that treatment of purified The presence and seemingly conserved subunit com-

position of triplexes implies that they are an importantcapsids with 2.0 M guanidine hydrochloride removed the
two sets of triplexes (120 in all) closest to the pentons, feature of herpesvirus capsid design. Evidence, both

from null mutants in HSV-1 genes UL18 (coding for VP23)concomitant with extraction of comparable fractions of
both proteins (Newcomb et al., 1993). We have not been (Desai et al., 1993) and UL38 (coding for VP19c) (Pertuiset

et al., 1989) and from recombinant baculovirus expres-able to obtain CCV capsids in sufficient quantities for
similar experiments; nevertheless, we tentatively assign sion of HSV-1 capsid proteins (Thomsen et al., 1994;

Tatman et al., 1994), indicates that both triplex proteinsthe CCV proteins coded by genes 53 and 27 as triplex
components on the basis that the CCV capsid definitely are required for capsid morphogenesis, although their

precise roles have yet to be defined. In addition, it haspossesses triplexes (Figs. 2a, 2c, 2e, and 3a), and the
copy numbers of these proteins match those of VP19c been proposed that they serve to stabilize the mature

capsid by reinforcing the bonding between neighboringand VP23, respectively. We also note that the molecular
weight of CCV gene 27 protein is close to that of VP23 capsomers (Baker et al., 1990).

The capsomer protrusions rise 8–9 nm above the CCV(Table 1). The significance of this match is enhanced by
the consideration that inferred counterparts to VP23 are capsid base, and Ç11 nm in the case of HSV-1. The

fact that these protrusions—which represent a majorremarkably uniform in size (33–35 kDa) throughout the
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and Steven, A. C. (1991). Liquid–crystalline, phage-like, packing ofbiosynthetic investment—are common to CCV and HSV-
encapsidated DNA in herpes simplex virus. Cell 64, 1007–1015.1 attributes functional significance to them. As to what

Booy, F. P., Trus, B. L., Newcomb, W. W., Brown, J. C., Conway, J. F.,
function(s) might be involved, we can as yet only specu- and Steven, A. C. (1994). Finding a needle in a haystack: Detection
late. Since there is no direct contact between neigh- of a small protein (the 12 kDa VP26) in a large complex (the 200

MDa capsid of herpes simplex virus). Proc. Natl. Acad. Sci. USA 91,boring protrusions, they are clearly not required for inter-
5652–5656.capsomer interactions. However, they may participate in

Cheng, R. H., Veddy, V., Olson, N. H., Fisher, A., Baker, T. S., andintracapsomer stabilization; they may provide conduits
Johnson, J.E. (1994) Functional implications of quasi-equivalence in

for the exit of scaffolding proteins or the passage of a TÅ 3 icosahedral animal virus established by cryo-electron micros-
DNA (Baker et al., 1990; Booy et al., 1991), and they copy and X-ray crystallography. Structure 2, 271–282.

Chiu, W. (1993). What does electron cryomicroscopy provide that X-raypresumably contain sites for linking the capsid to the
crystallography and NMR spectroscopy cannot? Annu. Rev. Biophys.tegument. However, it is not obvious why such elaborate
Biomol. Struct. 22, 233–255.structures should be required for any of these purposes.

Conway, J. F., Trus, B. L., Booy, F. P., Newcomb, W. W., Brown, J. C.,
and Steven, A. C. (1993). The effects of radiation damage on the

Evolutionary implications structure of frozen hydrated HSV-1 capsids. J. Struct. Biol. 111, 222–
233.

The observed conservation of overall architecture, Conway, J. F., Trus, B. L., Booy, F. P., Newcomb, W. W., Brown, J. C.,
and Steven, A. C. (1995). Visualization of three-dimensional densityprincipal structural features, and molecular composition
maps reconstructed from cryo-electron micrographs of viral capsids.(apart from VP26) between the capsids of CCV and HSV-1
J. Struct. Biol. in press.attests to a remarkably stable and successful molecular

Crowther, R. A. (1971). Procedures for three-dimensional reconstruction
design. This conservatism at the level of large-scale of spherical viruses by Fourier synthesis from electron micrographs.
three-dimensional structure stands in marked contrast to Phil. Trans. R. Soc. London. Ser. B 261, 221–230.

Davison, A. J. (1992). Channel catfish virus: A new type of herpesvirus.the absence of discernible amino acid sequence homol-
Virology 186, 9–14.ogy between corresponding capsid proteins. This para-

Davison, A. J. (1993). Herpesvirus genes. Rev. Med. Virol. 3, 237–244.dox is reminiscent of observations that some proteins
Davison, A. J., and Davison, M. D. (1995). Identification of structural

with unrecognizably different sequences fold into essen- proteins of channel catfish virus by mass spectrometry. Virology 206,
tially the same conformations (e.g., Orengo et al., 1993). 1035–1043

Davison, M. D., Rixon, F. J., and Davison, A. J. (1992). Identification ofThe much greater size and complexity of herpesvirus
genes encoding two capsid proteins (VP24 and VP26) of herpescapsids point to an even more remarkable instance of the
simplex virus type 1. J. Gen. Virol. 73, 2709–2713.same general phenomenon. In this context, an intriguing

Desai, P., DeLuca, N. A., Glorioso, J. C., and Person, S. (1993). Mutations
issue is whether corresponding proteins in CCV and in herpes simplex virus type 1 genes encoding VP5 and VP23 abro-
HSV-1 have homologous folds, or whether it is only the gate capsid formation and cleavage of replicated DNA. J. Virol. 67,

1357–1364.three-dimensional design of the full icosahedral shell that
Fuller, S. D. (1987). The T Å 4 envelope of Sindbis virus is organizedis invariant.

by interactions with a complementary T Å 3 capsid. Cell 48, 923–
934.
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