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In this paper, we study the Cauchy problem for the BGK equation with an external force.
Firstly, we establish an L∞ existence result for this equation, and obtain some weighted L∞
estimates. Then, by means of the regularizing effects to the initial datum, we construct the
approximate solutions and obtain some uniform estimates of the approximate solutions.
Finally by using compactness method and passing to the limit, we prove the existence
theorems of the L1 and Lp solutions and establish the propagation properties of the Lp

moments.
© 2012 Elsevier Inc. All rights reserved.

1. Introduction and main results

The BGK model is a relaxation model of the Boltzmann equation describing the evolution of a gas through a kinetic
theory, this means the state of the gas is represented by the density f (t, x, v) of particles which at time t � 0, at position
x ∈ R

3 move with the velocity v ∈ R
3. In the presence of an external force E(t, x, v), f is governed by the BGK equation

[4,25] ⎧⎨
⎩

∂ f

∂t
+ v · ∇x f + E(t, x, v) · ∇v f = M[ f ] − f ,

f (0, x, v) = f0(x, v),

(1.1)

where f0(x, v) is the initial state of gas. The nonlinear term M[ f ], called a local Maxwellian, is implicitly defined through
the moments of f(

ρ
ρu

ρ|u|2 + 3ρθ

)
(t, x) =

∫
R

3
v

( 1
v

|v|2

)
f (t, x, v)dv (1.2)

by the formula

M[ f ](t, x, v) = ρ(t, x)

(2πθ(t, x))3/2
exp

(
−|v − u(t, x)|2

2θ(t, x)

)
. (1.3)

It is well known that the BGK equation (1.1) is an important relaxation model of the Boltzmann equation. In the ab-
sence of the external force, the Cauchy problem and the initial–boundary value problem for the BGK equation have been
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extensively studied, see [3,6,18–22,26–28]. We only mention some works related to the problems considered in this paper.
Assuming that the total mass, inertia, kinetic energy and entropy of the initial datum are finite, Perthame [20] built an L1

theory and proved that the classical BGK equation has a positive solution in the distributional sense in 1989. Moreover this
solution was proved to propagate the initial higher order moments in [27]. On the other hand, Perthame and Pulvirenti
[21] also developed an L∞ method and showed that there exists a unique polynomially decaying solution for x in a pe-
riodic domain; later this result was generalized to the Cauchy problem of BGK equation in [19]. The main ingredient of
this method is the L∞ estimates of the macroscopic quantities and the local Maxwellians obtained in [21]. Recently, by
establishing weighted L p estimates of the hydrodynamical quantities and local Maxwellians, an L p existence theorem and
certain regularity results were developed in [28] by means of weakly compact argument.

Recently, some authors have paid their attention to investigating BGK equations with given force terms as well as self
induced electrostatic fields. Rejeb [23] gave an existence result of a classical solution to the Vlasov–Poisson–BGK equation
in one dimension. Zhang [29] proved the global existence of weak solutions in L p (p > 9) space to the Cauchy problem of
the three dimensional Vlasov–Poisson–BGK system. For the BGK equation with a given confining potential Φ(x) (namely,
E = −∇xΦ), Bosi and Cáceres [5] studied the global existence in L1 space and the long time behavior by the method of
Perthame [20].

Here, we should mention that the Boltzmann equations with external forces were also extensively studied. For example,
local existence theorems were given by Asano [1] and Glikson [12,13]. Bellomo, Lachowicz, Palczewski and Toscani [2] gave
the global existence of mild solutions, see also the recent result [8,9]. Global existence of classical solutions with small
amplitude was obtained by Guo [15] for the soft potential and by Duan, Yang and Zhu [10] for the general potential. For
solutions near a global Maxwellian, Ukai, Yang and Zhao [24] proved the stability of stationary Maxwellian solutions to the
Boltzmann equation with external forces through the energy method (see also related results in [16,17]).

In this paper, we study the Cauchy problem for the BGK equation with a general external force which depends on t , x
and v . Specially, we assume throughout this paper that the external force E(t, x, v) satisfies the following condition:

(A) ∇v · E = 0 on R
+ × R

3
x × R

3
v in distributional sense. Furthermore, E(·, · ,·) ∈ L1

loc((0,∞), L∞(R3
x × R

3
v)), i.e., for any

T < ∞, there exists a constant ET > 0 such that

T∫
0

∥∥E(t)
∥∥∞ dt � ET . (1.4)

Remark 1.1. (A) is technical assumption. For understanding the hypotheses, we list two special examples: (1) Constant
field: E(t, x, v) = E0, where E0 is constant vector; (2) E(t, x, v) = P (t) ≡ (p1(t), p2(t), p3(t)), where pi(t) (i = 1,2,3) could
be a power function tα (α > 0), exponential function et and trigonometric function sin(t) or cos(t). These examples are
obviously suitable for the assumption (A). Even so, some important examples are not included. For example, gravitational
field or repulsive field: E(t, x, v) = ± x

|x|3 ; Lorentz field: E(t, x, v) = E0(t, x) + v × B0(t, x), where E0(t, x) and B0(t, x) are

given electric intensity and magnetic intensity respectively. These are still unknown problem for the BGK equation. We will
consider these problems in the future.

Remark 1.2. The assumption that ∇v · E = 0 is standard, which is to ensure the mapping (x, v) → (X(s), V (s)) and (x, v) →
(Xt(x, v), V t(x, v)) for any s, t � 0 preserves the measure. Under this condition, for any 1 � p � ∞ and f (t, x, v), we have∥∥ f

(
t, Xt(x, v), V t(x, v)

)∥∥
L p(R3

x×R
3
v )

= ∥∥ f (t, x, v)
∥∥

L p(R3
x×R

3
v )

,∥∥ f
(
t, X(s), V (s)

)∥∥
L p(R3

x×R
3
v )

= ∥∥ f (t, ·,·)∥∥L p(R3
x×R

3
v )

.

For the sake of simplicity, we denote positive constants by C , C1 and C(α1,α2, . . . ,αn) depending on α1,α2, . . . ,αn . And
for any function f (t, x, v), we use notation:∥∥ f (t)

∥∥
p = ∥∥ f (t, ·, ·)∥∥L p(R3

x×R
3
v )

.

Then the main results of this paper can be described by the following theorems.

Theorem 1.1. Suppose that the external force satisfies (A), and the initial datum f0(x, v) is a nonnegative function such that∫
R

3
x×R

3
v

(
1 + |x|2 + |v|2 + ∣∣ log f0(x, v)

∣∣) f0(x, v)dx dv = C0 < ∞. (1.5)

Then there exists a distributional solution f (t, x, v) ∈ C([0,∞), L1(R3
x ×R

3
v)+) to the BGK equation (1.1), (1.2) and (1.3) such that∫

R
3
x×R

3
v

(
1 + |x|2 + |v|2 + ∣∣ log f (t, x, v)

∣∣) f (t, x, v)dx dv � C(T , f0, ET ), ∀t � T . (1.6)
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Remark 1.3. Although Bosi and Cáceres [5] also gave the existence of L1 solutions to the BGK equation, the external force
considered by them is induced by a confining potential which depends only on the position variable x. Here, we consider
external forces which not only depend on x but also on t and v . Our strategy of proving Theorem 1.1 relies on the L∞ result
established in Theorem 3.1 (which follows from the method introduced in [21]), while the result in [5] was obtained by
the method established in [20]. Furthermore, the force term generated by the confining potential Φ(x) in [5] and the one
considered in this paper belong to different classes.

Next, we describe our second result which do not require the assumption of finite initial entropy, but some L p regularity
is assumed.

Theorem 1.2. Suppose that the external force satisfies (A), and the initial datum f0(x, v) is a nonnegative function verifying

f0 ∈ L1 ∩ Lp(
R

3
x ×R

3
v

)
(1 < p �∞), |v|2 f0 ∈ L1(

R
3
x ×R

3
v

)
. (1.7)

Then there exists a global solution f (t, x, v) ∈ L∞([0,∞), L1(R3
x ×R

3
v)+) in the distributional sense such that

sup
0�t�T

∫
R

3
x×R

3
v

(
1 + |v|2) f (t, x, v)dx dv � C(T , f0, ET ), (1.8)

sup
0�t�T

∥∥ f (t)
∥∥

p � C(T , p, f0, ET ). (1.9)

Furthermore, if(|x|q + |v|q) f0 ∈ Lp(
R

3
x ×R

3
v

)
(1.10)

for some q ∈ (1,3/p′) ∪ (3/p′ + 2,∞), then we have the following propagation:

sup
0�t�T

∥∥(|x|q + |v|q) f (t, ·,·)∥∥p � C(p,q, f0, T , ET ). (1.11)

Remark 1.4. Zhang [29] considered self-consistent force E(t, x) given by a potential equation and proved the existence of
L p solutions to a coupled system for p > 9. For the force term satisfying assumption (A), we obtain in Theorem 1.2 similar
results under much weaker condition p > 1 for the initial datum f0. Moreover, the total energy is conservative in [29] (at
least for approximate solutions), which can be used to establish uniform estimate of kinetic energy. Nevertheless, the model
considered in this paper does not have conservation law for energy, so we need to prove some uniform estimates for kinetic
energy with different methods (see Lemma 4.3).

The rest of this paper is organized as follows. In Section 2, some preliminary lemmas are given for later use. Section 3
is devoted to establishing existence and uniqueness of solutions in weighted L∞ space, which is the starting point for
proving our main theorems. The main tools in this section include the Banach fixed point theorem and some weighted L∞
estimates which will result in uniform estimates for the second velocity moment as well as uniform estimates for entropy
and L p norm. In Section 4, by means of the regularizing effects to the initial datum and the theorem of Section 3, we
construct the approximate solutions and obtain some uniform estimates of the approximate solutions. Then we prove the
existence theorem of the L1 solutions by using compactness method and passing to the limit. Finally, in Section 5, combining
the idea in Section 4 and the asymptotic method in [28], we prove the existence theorem of the L p solutions and establish
the propagation properties of some L p moments.

2. Preliminaries

As usual, we will rewrite the BGK equation along the characteristics. Suppose that E(t, x, v) ∈ C([0,∞), C1
b (R3

x × R
3
v)),

then for any fixed point (x, v) in R
3
x ×R

3
v , the forward bi-characteristics [Xt(x, v), V t(x, v)] generated by the external force

E(t, x, v) is defined by⎧⎨
⎩

dXt(x, v)

dt
= V t(x, v),

dV t(x, v)

dt
= E

(
t, Xt(x, v), V t(, x, v)

)
,(

Xt(x, v), V t(x, v)
)∣∣

t=0 = (x, v).

(2.1)

Notice that the Cauchy–Lipschitz theorem ensures the global existence and uniqueness of solutions to the above ODE system.
Then the mild form of the BGK equation (1.1) becomes

f �(t, x, v) = f0(x, v)e−t +
t∫

0

e(s−t)M[ f ]�(s, x, v)ds, (2.2)

where f �(t, x, v) = f (t, Xt(x, v), V t(x, v)), M[ f ]�(t, x, v) = M[ f ](t, Xt(x, v), V t(x, v)).
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On the other hand, for any fixed point (t, x, v) in R
+ × R

3
x × R

3
v , we define the backward bi-characteristics

[X(s; t, x, v), V (s; t, x, v)] by solutions to the ODE system⎧⎨
⎩

dX(s; t, x, v)

ds
= V (s; t, x, v),

dV (s; t, x, v)

ds
= E

(
s, X(s; t, x, v), V (s; t, x, v)

)
,(

X(s; t, x, v), V (s; t, x, v)
)∣∣

s=t = (x, v).

(2.3)

Due to the backward bi-characteristics, we obtain another representation of the BGK equation (1.1), namely

f (t, x, v) = f0
(

X(0; t, x, v), V (0; t, x, v)
)
e−t +

t∫
0

e(s−t)M[ f ](s, X(s; t, x, v), V (s; t, x, v)
)

ds. (2.4)

For the sake of simplicity, we will use the short hands X(s) = X(s; t, x, v), V (s) = V (s; t, x, v). Notice that bi-characteristics
equation (2.3) can be rewritten as the following integral form:⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

V (s) = v −
t∫

s

E
(
τ , X(τ ), V (τ )

)
dτ ,

X(s) = x − v(t − s) +
t∫

s

t∫
θ

E
(
τ , X(τ ), V (τ )

)
dτ dθ.

(2.5)

Thanks to this integral form, it is easy to prove the following estimates for characteristics (for details, see, e.g.: [15]).

Lemma 2.1. Suppose that E(t, x, v) ∈ C([0,∞), C1
b (R3

x × R
3
v)) and satisfies (1.4), then we have that for any (t, x, v) in [0, T ) ×

R
3
x ×R

3
v ,∣∣V (s) − v

∣∣ � ET ,
∣∣X(s) − [

x − v(t − s)
]∣∣� |t − s|ET .

Moreover, we have∣∣V (s) − V (0)
∣∣ � ET ,

∣∣X(s) − X(0) − vs
∣∣ � |s|ET .

Let f (v) be a spatially homogeneous kinetic density and let ρ, u and θ be the mass density, bulk velocity and tempera-
ture of f . The following two lemmas on L p estimates for local Maxwellians were obtained in Refs. [19,21,28] by interpolation
method.

Lemma 2.2. Suppose that f (v) ∈ L p(R3)∩ L1
2(R

3)+ , 1 < p �∞ and 1/p +1/p′ = 1, then for q = 0 or 1 � q � 3/p′ or q � 3/p′ +2,∥∥|v|q M[ f ]∥∥p � C(p,q)
∥∥|v|q f

∥∥
p . (2.6)

Lemma 2.3. Suppose that f (v) ∈ L p(R3) ∩ L1
2(R

3)+ , 1 < p � ∞ and 1/p + 1/p′ = 1. Then, for q � 3/p′ + 2 and α ∈ [0,q − 3/p′],
ρθα/2 � C(p,q,α)

∥∥(
1 + |v|q) f

∥∥
p . (2.7)

For q � 3/p′ + 2, β ∈ [0,1] and α ∈ [0,q − 3/p′(1 − β)],
ρ|u|α
θ3β/2p′ � C(p,q,α,β)

∥∥(
1 + |v|q) f

∥∥
p . (2.8)

In order to prove our main results, we also need two technical results—the velocity moments lemma and the velocity
averaging lemma.

Lemma 2.4. Let E(t, x, v) ∈ C([0,∞), C1
b (R3

x ×R
3
v)) and ∇v · E = 0. Suppose that f ∈ C([0, T ), L1(R3

x ×R
3
v)) is the unique distri-

butional solution of the following Cauchy problem

∂ f

∂t
+ v · ∇x f + E(t, x, v) · ∇v f = g − f ,

f (0, x, v) = f0(x, v) (2.9)

with g � 0, f0 � 0. Assume that there exists a positive constant C(T ) such that
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∫
R

3
x×R

3
v

(
1 + |v|2)(g(t, x, v) + f0(x, v)

)
dx dv � C(T ), t ∈ [0, T ].

Then, for any bounded Kx �R
3 we have

T∫
0

dt

∫
Kx×R3

|v|3 f (t, x, v)dx dv � C
(
T ,diam(Kx)

)
,

where diam(Kx) is the diameter of the set Kx.

Proof. To shorten the presentation of the paper, we omit the proof (for the details, we refer the readers to [5]). We only
mention that the constant C(T ,diam(Kx)) can be exactly computed, namely

C
(
T ,diam(Kx)

) = (
1 + diam(Kx)

2)3/2
C(T )

(
2 +

T∫
0

∥∥E(t)
∥∥∞ dt

)
,

which will be used in Sections 4 and 5. �
Similar to the proof of Refs. [5,7,14], the velocity averaging lemma can be written as follows:

Lemma 2.5. Let En(t, x, v) ∈ C([0,∞), C1
b (R3

x ×R
3
v)) and ∇v · En = 0. Suppose that the sequence fn(t, x, v) ∈ L1((0, T )×R

3
x ×R

3
v)

is weakly compact, and the sequence gn(t, x, v) ∈ L1((0, T ) ×R
3
x ×R

3
v) is also locally weakly compact such that

fn + ∂t fn + v · ∇x fn + En(t, x, v) · ∇v fn = gn (2.10)

in the distributional sense. Then for any bounded sequence ψn(t, x, v) ∈ L∞([0, T ]×R
3
x ×R

3
v) that converges almost everywhere, the

sequence
∫
R3 fn(t, x, v)ψn(t, x, v)dv is compact in L1((0, T ) ×R

3).

Corollary 2.1. Let En(t, x, v) ∈ C([0,∞), C1
b (R3

x ×R
3
v)) and ∇v · En = 0. Suppose that the sequence fn(t, x, v) ∈ L1((0, T )×R

3
x ×R

3
v)

is weakly compact in L1((0, T ) × Kx × R
3) for any compact set Kx � R

3 , and the sequence gn(t, x, v) ∈ L1
loc((0, T ) × R

3
x × R

3
v) is

also locally weakly compact such that

fn + ∂t fn + v · ∇x fn + En(t, x, v) · ∇v fn = gn

in the distributional sense. Then for any bounded sequence ψn(t, x, v) ∈ L∞([0, T ]×R
3
x ×R

3
v) that converges almost everywhere and

for any compact set Kx �R
3
x , the sequence

∫
R

3
v

fn(t, x, v)ψn(t, x, v)dv is compact in L1((0, T ) × Kx).

3. Weighted L∞ bounds

In this section, we will prove the existence and uniqueness of the solutions by the contraction mapping principle
in the weighted L∞ space, and obtain some weighted L∞ estimates. Throughout this section, we assume E(t, x, v) ∈
C([0,∞), C1

b (R3
x ×R

3
v)) satisfies (1.4) and ∇v · E = 0.

Firstly, we introduce some norms. Let m,k > 0. We define the weighted L∞ norm as follows:

Nm( f )(t) = sup
(x,v)∈R3

x×R
3
v

(
1 + |v|m)∣∣ f (t, x, v)

∣∣,
Nm,k( f )(t) = sup

(x,v)∈R3
x×R

3
v

(
1 + |v|m)(

1 + |x|k)∣∣ f (t, x, v)
∣∣,

N ′
m( f )(t) = sup

(x,v)∈R3
x×R

3
v

(
1 + ∣∣V (0)

∣∣m)∣∣ f (t, x, v)
∣∣,

N ′
m,k( f )(t) = sup

(x,v)∈R3
x×R

3
v

(
1 + ∣∣V (0)

∣∣m)(
1 + ∣∣X(0)

∣∣k)∣∣ f (t, x, v)
∣∣.

Obviously,

Nm( f0) = N ′
m( f0), Nm,k( f0) = Nm,k( f0).
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Then, we have

Lemma 3.1. For any T < ∞, we have

Nm+k( f )(t)� C, Nm,k( f )(t) � C, t ∈ [0, T ]
if and only if

N ′
m+k( f )(t)� C, N ′

m,k( f )(t) � C, t ∈ [0, T ],
where constant C is only depending on T , m, ET and k.

Proof. By the definitions, we have

N ′
m+k( f ) = sup

(x,v)∈R3
x×R

3
v

(
1 + ∣∣V (0)

∣∣m+k)∣∣ f (t, x, v)
∣∣

� sup
(x,v)∈R3

x×R
3
v

(
1 + (|v| + ET

)m+k)∣∣ f (t, x, v)
∣∣

� sup
(x,v)∈R3

x×R
3
v

C(m,k, ET )
(
1 + |v|m+k)∣∣ f (t, x, v)

∣∣ = C(m,k, ET )Nm+k( f ).

Similarly,

N ′
m,k( f ) = sup

(x,v)∈R3
x×R

3
v

(
1 + ∣∣V (0)

∣∣m)(
1 + ∣∣X(0)

∣∣k)∣∣ f (t, x, v)
∣∣

� sup
(x,v)∈R3

x×R
3
v

(
1 + (|v| + ET

)m)(
1 + (|x − vt| + T C(T )

)k)∣∣ f (t, x, v)
∣∣

� sup
(x,v)∈R3

x×R
3
v

C(m,k, ET )
(
1 + |v|m)(

1 + |x|k)∣∣ f (t, x, v)
∣∣ + C(m,k, T , ET )

(
1 + |v|m+k)∣∣ f (t, x, v)

∣∣
= C(m,k, T , ET )

(
Nm,k( f ) + Nm+k( f )

)
.

We have the same kind of estimates by inversion of characteristics. Then, the proof of Lemma 3.1 is completed. �
In this section, we assume that the initial datum f0(x, v) satisfies the following two conditions:

(A1) There exist m > 5, k > 3 such that

Nm+k( f0) < ∞, Nm,k( f0) < ∞. (3.1)

(A2) There exist a function ϕ(v) ∈ L1(R3) and a constant δ > 0 such that |ϕ(v)| � δ for |v| < 1, and (1+|x|k) f0(x, v) � ϕ(v)

for any (x, v) ∈R
3
x ×R

3
v .

Obviously, the condition (A1) ensures that (1 + |v|2) f0(x, v) ∈ L1(R3
x × R

3
v). Therefore, we can define the initial mass

density ρ(0, x), the mean velocity u(0, x), the temperature θ(0, x) and the Maxwell distribution M[ f0]. With the above
notations and assumptions, the main results of this section can be described by follows.

Theorem 3.1. Suppose that the external force E(t, x, v) ∈ C([0,∞), C1
b (R3

x × R
3
v)), ∇v · E = 0 and satisfies (1.4). Let the initial

datum f0(x, v) be a nonnegative function and satisfies conditions (A1) and (A2). Then there exists one and only one mild solution
f (t, x, v) ∈ C([0,∞), L1(R3

x × R
3
v , (1 + |v|2)dx dv)) to the initial value problem (1.1), (1.2) and (1.3). Moreover, there exist two

nonnegative functions C1(t), C2(t) such that

N ′
m+k

(
f (t)

)
, N ′

m,k

(
f (t)

)
� C1(t) < ∞, (3.2)

ρ(t, x),
∣∣u(t, x)

∣∣, θ(t, x) � C1(t) < ∞, (3.3)(
1 + |x|k)ρ(t, x), θ(t, x) � C2(t) > 0. (3.4)

Proof. A nonnegative function f (t, x, v) ∈ C([0,∞), L1(R3
x ×R

3
v , (1 + |v|2)dx dv)) is a mild solution if and only if f satisfies

the integral equation

f (t, x, v) = f0
(

X(0), V (0)
)
e−t

t∫
e(s−t)M[ f ](s, X(s), V (s)

)
ds.
0
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We define a nonlinear operator F by

F f = f0
(

X(0), V (0)
)
e−t +

t∫
0

e(s−t)M[ f ](s, X(s), V (s)
)

ds. (3.5)

Then, we only need to show that the operator F has a unique fixed point in the function space C([0, T ], L1(R3
x × R

3
v , (1 +

|v|2)dx dv)) and satisfies (3.2), (3.3) and (3.4). Now, we consider the function space X :

X =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f (t, x, v) ∈ C([0, T ], L1(R3
x ×R

3
v , (1 + |v|2)dx dv))+,

N ′
m+k( f (t))� eCt Nm+k( f0),

N ′
m,k( f (t))� eCt[Nm+k( f0) + Nm,k( f0)],

(1 + |x|k)ρ(t, x) � C(T ,k, ET ) > 0, θ(t, x) > 0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.6)

where C is sufficiently large. Define metric in X as follows

d( f1, f2) = sup
t∈[0,T ]

exp(−Gt)

∫
R

3
x×R

3
v

∣∣ f1(t, x, v) − f2(t, x, v)
∣∣(1 + |v|2)dx dv,

where G is sufficiently large. Then the function space X with the metric d is a complete metric space.
Firstly, we will show that F f satisfies the following for f ∈ X ,

N ′
m+k(F f )(t)� eCt Nm+k( f0), (3.7)

N ′
m,k(F f )(t)� eCt[Nm+k( f0) + Nm,k( f0)

]
, (3.8)(

1 + |x|k)ρ(F f )(t, x) � C(T ,k, ET ) > 0, (3.9)

θ(F f )(t, x) � C(T ,k, ET ) > 0. (3.10)

Multiplying both sides of (3.5) by 1 + |V (0)|m+k , we obtain

0 �
(
1 + ∣∣V (0)

∣∣m+k)
(F f )(t, x, v) = e−t(1 + ∣∣V (0)

∣∣m+k)
f0

(
X(0), V (0)

)
+

t∫
0

es−t(1 + ∣∣V (0)
∣∣m+k)

M[ f ](s, X(s), V (s)
)

ds.

By Lemmas 2.1, 2.2 and 3.1, we have

N ′
m+k(F f )(t)� e−t Nm+k( f0) +

t∫
0

es−t(1 + (∣∣V (s)
∣∣ + C(T )

)m+k)
M[ f ](s, Xn(s), Vn(s)

)
ds

� e−t Nm+k( f0) + C(m,k, ET )

t∫
0

es−t Nm+k
(
M[ f ])ds

� e−t Nm+k( f0) + C(m,k, ET )

t∫
0

es−t N ′
m+k

(
f (s)

)
ds

� e−t Nm+k( f0) + C(m,k, ET )Nm+k( f0)

t∫
0

es−teC s ds

= e−t Nm+k( f0) + C(m,k, ET )

C + 1
Nm+k( f0)

(
eCt − e−t).

Taking C � C(m,k, ET ), the above inequalities imply that

N ′
m+k(F f )(t)� eCt Nm+k( f0).

Multiplying both sides of (3.5) by (1 + |V (0)|m)(1 + |X(0)|k) and computing in the same way, we can get

N ′ (F f )(t)� eCt(Nm+k( f0) + Nm,k( f0)
)
.
m,k
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Next, we show (3.9). For any t ∈ [0, T ] and x ∈ R
3,

ρ(F f )(t, x) � e−t
∫
R

3
v

f0
(

Xn(0), Vn(0)
)

dv � e−t
∫
R

3
v

ϕ(Vn(0))

1 + |Xn(0)|k dv

� e−t
∫

|Vn(0)|�1

δ

1 + |Xn(0)|k dv

� e−t
∫

|v|�|1−ET |

δ

[1 + (|x| + |tv| + C ET )k] dv

� C(k, ET )e−T
∫

|v|�|1−ET |

δ

2k(1 + tk)(1 + |x|k) dv

� C(k, T , ET )

(1 + |x|k) .

Then we obtain (3.9).
By Lemma 2.3 and (3.9), θ(F f ) can be estimated as follows:

1

θ(F f )
= (

1 + |x|k)2/3 ρ2/3(F f )

θ(F f )
· 1

((1 + |x|k)ρ(F f ))2/3
� C(k, T , ET ).

Then, (3.10) holds. Consequently, the operator F maps X into itself.
Secondly, we will show that the operator F is a contraction from X to itself. By Lemma 2.3, it has been proved in [21]

that there exists a positive constant L such that for any f1, f2 ∈ X∫
R

3
x×R

3
v

∣∣M[ f1] − M[ f2]
∣∣(1 + |v|2)dx dv � L

∫
R

3
x×R

3
v

| f1 − f2|
(
1 + |v|2)dx dv.

Then for any f1, f2 ∈ X , we obtain

d(F f1, F f2) �
L

G + 1
d( f1, f2).

Taking G � L, we obtain that the operator F is a contraction. According to the contraction mapping theorem, the operator
F has a unique fixed point in X . Obviously, the fixed point is the unique solution to the BGK equation verifying (3.7), (3.8),
(3.9) and (3.10). �
Remark 3.1. By Lemma 3.1, Theorem 3.2 implies that

Nm+k
(

f (t)
)
, Nm,k

(
f (t)

)
� C1(t) < ∞, ∀t ∈ [0, T ].

4. Proof of Theorem 1.1

In this section, we will prove the existence theorem of the L1 solutions by using compactness method. So we are in
a position to construct approximate solutions to (1.1)–(1.3). We always assume that the initial datum f0 satisfies (1.5).
Following the method in [7], we have

Lemma 4.1. Suppose that the initial datum f0 satisfies (1.5),k > 5, then there exist sequences f n
0 ∈ C∞(R3

x ×R
3
v), f̄ n

0 ∈ C∞
c (R3

x ×R
3
v)

and positive constant C0 such that

f n
0 = f̄ n

0 + exp(−|v|2)
n(1 + |x|k) � exp(−|v|2)

n(1 + |x|k) , (4.1)

lim
n→∞

∫
R

3
x×R

3
v

(
1 + |x|2 + |v|2)∣∣ f n

0 − f0
∣∣dx dv = 0, (4.2)

∫
R

3
x×R

3
v

∣∣ log f n
0

∣∣ f n
0 dx dv � C0, (4.3)

lim
n→∞ H

(
f n

0

) = H( f0). (4.4)
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We also assume that En(t, x, v) = E(t, x, v) ∗ Jn , where Jn(t, x, v) are mollifying functions. Then we have En(t, x, v) ∈
C∞([0,∞)×R

3
x ×R

3
v),

∫ T
0 ‖En(t)‖∞ dt � ET and ∇v · En(t, x, v) = 0. So En ensures the existence of characteristics equations

(2.1), (2.3) and satisfies all assumptions of Lemmas 2.1–2.5. And it is obvious that for n = 1,2, . . . , f n
0 and En satisfy all

assumptions of Theorem 3.1. Hence, the approximate BGK equation⎧⎨
⎩

∂ fn

∂t
+ v · ∇x fn + En(t, x, v) · ∇v fn = M[ fn] − fn,

fn(0, x, v) = f n
0 (x, v),

(4.5)

has a unique global solution fn(t, x, v), where(
ρn

ρnun

ρ|un|2 + 3ρnθn

)
(t, x) =

∫
R

3
v

( 1
v

|v|2

)
fn(t, x, v)dv, (4.6)

and

M[ fn](t, x, v) = ρn(t, x)

(2πθn(t, x))3/2
exp

(
−|v − un(t, x)|2

2θn(t, x)

)
. (4.7)

By Theorem 3.1 and Remark 3.1, the solution satisfies

Nm,k( fn)(t) � C(T )
(
Nm+k

(
f n

0

) + Nm,k
(

f n
0

))
. (4.8)

Obviously, for m,k > 5, we have∫
R

3
x×R

3
v

(
1 + |x|2 + |v|2) fn(t, x, v)dx dv � C(n, T , f0, ET ), ∀t � T ,

and ∥∥ fn(t)
∥∥∞ � C(n, T , f0, ET ), ∀t � T .

Then for any t � T , we have∫
R

3
x×R

3
v

(
1 + |x|2 + |v|2 + ∣∣ log fn(t, x, v)

∣∣) fn(t, x, v)dx dv � C(n, T , f0, ET ). (4.9)

Notice that since Nm+k( f n
0 ) and Nm,k( f n

0 ) are dependent on n, (4.9) is not a uniform estimate. In fact, we will show that
the constant in (4.9) is not dependent on n, for that we need the following lemma.

Lemma 4.2. (See [5].) Suppose that fn ∈ C([0,∞), L1(R3
x ×R

3
v)) is a solution of the BGK equation (4.5), (4.6) and (4.7) in distribu-

tional sense and satisfies condition (4.9), then we have

∂t( fn log fn) + v · ∇x( fn log fn) + En · ∇v( fn log fn) = (
M[ fn] − fn

)
(1 + log fn)

in the distributional sense. Moreover, for any 0 � t1 � t2 , we have

H( fn)(t1) − H( fn)(t2) =
t∫

0

∫
R

3
x×R

3
v

(
fn − M[ fn]

)
log f dx dv dt

=
t∫

0

∫
R

3
x×R

3
v

(
fn − M[ fn]

)(
log fn − log M[ fn]

)
dx dv dt � 0.

Now, we give the uniform estimate of the approximate solutions.

Lemma 4.3. Suppose that fn ∈ C([0,∞), L1(R3
x ×R

3
v)) is a distribution solution of the BGK equation (4.5), (4.6), (4.7) with condition

(1.5) and satisfies condition (4.9), then we have∫
R

3
x×R

3
v

(
1 + |x|2 + |v|2 + ∣∣ log fn(t, x, v)

∣∣) fn(t, x, v)dx dv � C(T , f0, ET ), ∀t � T .
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Proof. Using the characteristics flow (2.1), the BGK equation can be rewritten as

∂ f �
n

∂t
= M[ fn]� − f �

n , (4.10)

where f �
n (t, x, v) = f (t, Xt

n(x, v), V t
n(x, v)), M[ fn]�(t, x, v) = M[ fn](t, Xt

n(x, v), V t
n(x, v)). Integrating both hand sides in

R
3
x ×R

3
v , we have∫

R
3
x×R

3
v

fn(t, x, v)dx dv =
∫

R
3
x×R

3
v

f n
0 (x, v)dx dv � C( f0). (4.11)

We multiply both sides by |V t
n(x, v)|2, and integrate in R

3
x ×R

3
v ,

∫
R

3
x×R

3
v

∂ f �
n

∂t

∣∣V t
n(x, v)

∣∣2
dx dv =

∫
R

3
x×R

3
v

∣∣V t
n(x, v)

∣∣2(
M[ fn]� − f �

n
)

dx dv.

Obviously, the right-hand side can be easily computed by∫
R

3
x×R

3
v

∣∣V t
n(x, v)

∣∣2(
M[ fn]� − f �

n
)

dx dv =
∫

R
3
x×R

3
v

|v|2(M[ fn] − fn
)
(t, x, v)dx dv = 0,

the left-hand side can be computed by∫
R

3
x×R

3
v

∂ f �
n

∂t

∣∣V t
n(x, v)

∣∣2
dx dv =

∫
R

3
x×R

3
v

∂

∂t

(
f �
n

∣∣V t
n(x, v)

∣∣2)
dx dv − 2

∫
R

3
x×R

3
v

(
En

(
t, Xt

n, V t
n

) · V t
n(x, v)

)
f �
n dx dv.

Therefore, we get

∂

∂t

∫
R

3
x×R

3
v

|v|2 fn(t, x, v)dx dv = ∂

∂t

∫
R

3
x×R

3
v

∣∣V t
n(x, v)

∣∣2
f �
n dx dv

� 2
∫

R
3
x×R

3
v

∣∣En
(
t, Xt

n, V t
n

) · V t
n(x, v)

∣∣ f �
n dx dv

�
∥∥En(t)

∥∥∞

( ∫
R

3
x×R

3
v

f �
n dx dv +

∫
R

3
x×R

3
v

∣∣V t
n(x, v)

∣∣2
f �
n dx dv

)

�
∥∥En(t)

∥∥∞

( ∫
R

3
x×R

3
v

fn(t, x, v)dx dv +
∫

R
3
x×R

3
v

|v|2 fn(t, x, v)dx dv

)

�
∥∥En(t)

∥∥∞

(
C( f0) +

∫
R

3
x×R

3
v

|v|2 fn(t, x, v)dx dv

)
.

Applying Gronwall type estimates, we have∫
R

3
x×R

3
v

|v|2 fn(t, x, v)dx dv � e
∫ T

0 ‖En(t)‖n dt
(

C( f0) +
∫

R
3
x×R

3
v

|v|2 f n
0 (x, v)dx dv

)
� C(T , f0, ET ). (4.12)

Analogously,

∂

∂t

∫
R

3
x×R

3
v

|x|2 fn(t, x, v)dx dv = ∂

∂t

∫
R

3
x×R

3
v

∣∣Xt
n(x, v)

∣∣2
f �
n dx dv

� 2
∫

3 3

∣∣V t
n(x, v) · Xt

n(x, v)
∣∣ f �

n dx dv
Rx×Rv
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�
∫

R
3
x×R

3
v

∣∣Xt
n(x, v)

∣∣2
f �
n dx dv +

∫
R

3
x×R

3
v

∣∣V t
n(x, v)

∣∣2
f �
n dx dv

�
∫

R
3
x×R

3
v

|x|2 fn dx dv +
∫

R
3
x×R

3
v

|v|2 fn dx dv

� C(T , f0, ET ) +
∫

R
3
x×R

3
v

|x|2 fn(t, x, v)dx dv.

Then ∫
R

3
x×R

3
v

|x|2 fn(t, x, v)dx dv � C(T , f0, ET ). (4.13)

Thanks to Lemma 4.1 and Lemma 4.2, we obtain∫
R

3
x×R

3
v

fn log fn(t, x, v)dx dv �
∫

R
3
x×R

3
v

f n
0 log f n

0 (x, v)dx dv � C0.

On the other hand, due to the above inequalities (4.12) and (4.13), we have

−
∫

fn�1

fn log fn(t, x, v)dx dv

= −
∫

exp(−(|x|2+|v|2)) fn�1

fn log fn(t, x, v)dx dv −
∫

fn�exp(−(|x|2+|v|2))

fn log fn(t, x, v)dx dv

�
∫

R
3
x×R

3
v

(|x|2 + |v|2) fn(t, x, v)dx dv +
∫

fn�exp(−(|x|2+|v|2))

f 1/2
n (t, x, v)dx dv

� C(T , f0, ET ).

Here, we use the inequality f 1/2 log f −1 < 1 for f < 1. Therefore,∫
R

3
x×R

3
v

fn| log fn|(t, x, v)dx dv =
∫

R
3
x×R

3
v

fn log fn(t, x, v)dx dv −
∫

fn�1

fn log fn(t, x, v)dx dv � C(T , f0, ET ).

Then the proof of Lemma 4.3 is completed. �
Proof of Theorem 1.1. It follows from Lemma 4.3 and the Dunford–Pettis theorem [11] that { fn(t, x, v): n = 1,2, . . .} is
weakly compact in L1((0, T ) × R

3
x × R

3
v) for any T > 0. Hence, there exists a nonnegative function f (t, x, v) ∈ L1((0, T ) ×

R
3
x ×R

3
v) such that

fn(t, x, v) ⇀ f (t, x, v) (n → ∞)

in L1((0, T ) × R
3
x × R

3
v) (choosing a subsequence if necessary), we will show that the weak limit f is the distribution

solution of the BGK equation. Here and below in this paper, we use the symbols ⇀, ⇁ and → to represent the weak
convergence, weak∗ convergence, and strong convergence.

For any t � 0, denote

(
ρn,ρnun,ρn|un|2 + 3ρnθn

)
(t, x) =

∫
R

3
v

(
1, v, |v|2) fn(t, x, v)dv, (4.14)

(
ρ,ρu,ρ|u|2 + 3ρθ

)
(t, x) =

∫
R

3
v

(
1, v, |v|2) f (t, x, v)dv. (4.15)

By Lemmas 2.4, 2.5 and the standard procedure developed in [20], we can show that for any T > 0 and Kx �R
3
x ,



J. Wei, X. Zhang / J. Math. Anal. Appl. 391 (2012) 10–25 21
⎧⎪⎨
⎪⎩

ρn → ρ, in L1((0, T ) ×R
3
x

)
,

ρnun → ρu, in L1((0, T ) ×R
3
x

)
,

ρn|un|2 + 3ρnθn → ρ|u|2 + 3ρθ, in L1((0, T ) × Kx
)
.

(4.16)

Hence, we have for almost all (t, x) ∈ (0, T ) ×R
3
x (choosing a subsequence if necessary)

lim
n→∞

(
ρn,ρnun,ρn|un|2 + 3ρnθn

) = (
ρ,ρu,ρ|u|2 + 3ρθ

)
(t, x).

Let G = {(t, x) ∈ (0, T ) ×R
3
x : ρ(t, x) = ∫

R3 f (t, x, v)dv = 0}, then we have

lim
n→∞(ρn, un, θn)(t, x) = (ρ, u, θ)(t, x), θ(t, x) > 0

for almost all (t, x) ∈ G . Consequently,

M[ fn](t, x, v) → M[ f ](t, x, v) in G ×R
3
v , a.e. (4.17)

On the other hand, it is easy to prove that∫
R

3
x×R

3
v

(
1 + |x|2 + |v|2 + ∣∣ log M[ fn]

∣∣)M[ fn](t, x, v)dx dv � C(T , f0, ET ), ∀t � T . (4.18)

This implies that {M[ fn]: n = 1,2, . . .} is weakly compact in L1((0, T ) ×R
3
x ×R

3
v). By the Dunford–Pettis theorem, we have

M[ fn](t, x, v) ⇀ m(t, x, v) (4.19)

in L1((0, T )×R
3
x ×R

3
v) (choosing subsequence if necessary), where m(t, x, v) ∈ L1((0, T )×R

3
x ×R

3
v). Then, ρn = ∫

R3 M[ fn]dv
converges weakly to

∫
R3 m dv in L1((0, T ) ×R

3
x). Noting that ρn converges strongly to ρ in L1((0, T ) ×R

3
x), we obtain∫

R3

M[ fn]dv = ρn →
∫
R3

m dv = ρ in L1((0, T ) ×R
3
x

)
.

Since ρ(t, x) = 0 for almost all (t, x) ∈ Gc , we get
∫
R3 M[ fn]dv → 0 in L1(Gc). So, M[ fn] → 0 in L1(Gc × R

3
v). This implies

that (choosing a subsequence if necessary)

M[ fn] → 0 in Gc ×R
3
v , a.e. (4.20)

By (4.17) and (4.20), we obtain

M[ fn] → M[ f ] in (0, T ) ×R
3
v ×R

3
x , a.e. (4.21)

It follows from (4.19) and (4.21) that m(t, x, v) = M[ f ](t, x, v) and M[ fn](t, x, v) → M[ f ](t, x, v) in L1((0, T ) ×R
3
x ×R

3
v).

Now, by passing to the limit in the BGK equation (4.5)–(4.7), we know that f (t, x, v) is a solution to (1.1)–(1.3) in the
distributional sense. �
5. Proof of Theorem 1.2

In this section, we will prove the existence theorem of the L p solutions and establish the propagation properties of some
L p moments. Let f0 satisfies the assumption of Theorem 1.2. Following the method in [28], we cutoff the initial datum f0
and obtain a sequence f n

0 of the cutoff initial data as follows:

f n
0 = μn(x, v)max

{
f0(x, v),n

} + exp(−|v|2)
n(1 + |x|k) � exp(−|v|2)

n(1 + |x|k) , (5.1)

where μn is any cutoff function such that 0 �μn � 1 and μn = 0 for |x|2 +|v|2 � n2, furthermore, limn→∞ μn(x, v) = 1 and

lim
n→∞

∫
R

3
x×R

3
v

(
1 + |v|2)∣∣ f n

0 − f0
∣∣(x, v)dx dv = 0, lim

n→∞
∥∥ f n

0 − f0
∥∥

L p = 0. (5.2)

We also assume that En(t, x, v) = E(t, x, v) ∗ Jn , where Jn(t, x, v) are mollifying functions. Then for n = 1,2, . . . , f n
0 and En

satisfy all assumptions of Theorem 3.1. Hence, the approximate BGK equation⎧⎨
⎩

∂ fn

∂t
+ v · ∇x fn + En(t, x, v) · ∇v fn = M[ fn] − fn,

f (0, x, v) = f n(x, v)

(5.3)

n 0
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has a unique global positive solution fn(t, x, v). From Lemma 4.3,∫
R

3
x×R

3
v

(
1 + |x|2 + |v|2) fn(t, x, v)dx dv � C(T , f0, ET ), ∀t � T . (5.4)

Proof of Theorem 1.2. Firstly, we will prove that∥∥ fn(t)
∥∥

p � C(T , f0, p), ∀t � T . (5.5)

In fact, we notice that the mild solution form of the BGK equation can be written as

fn(t, x, v) = f n
0

(
Xn(0), Vn(0)

)
e−t +

t∫
0

e(s−t)M[ fn]
(
s, Xn(s), Vn(s)

)
ds. (5.6)

Taking L p norms on both sides of (5.6), we have

∥∥ fn(t)
∥∥

p � exp(−t)
∥∥ f n

0

∥∥
p +

t∫
0

exp(s − t)
∥∥M[ fn](s)

∥∥
p ds,

where we use that the mapping (x, v) → (Xn(s), Vn(s)) preserves the measure for any s, t � 0. Using the L p estimate
‖M[ fn](s)‖p � C(p)‖ fn(s)‖p by Lemma 2.2, we further obtain

∥∥ fn(t)
∥∥

p � exp(−t)
∥∥ f n

0

∥∥
p + C(p)

t∫
0

exp(s − t)
∥∥ fn(s)

∥∥
p ds.

Then, the Gronwall Lemma implies that∥∥ fn(t)
∥∥

p � exp
((

C(p) − 1
)
t
)∥∥ f n

0

∥∥
p . (5.7)

On the other hand, from the definition of f n
0 , we have∥∥ f n

0

∥∥
p � C(p)

(‖ f0‖p + 1
)
. (5.8)

Thus, combining (5.7) and (5.8), we get the estimate of (5.5).
Following from the estimates of (5.4) and (5.5), we can obtain some important conclusions. Firstly, for any T > 0, if

1 < p < ∞, L p((0, T ) × R
3
x × R

3
v) is reflexive, (5.5) obviously implies that { fn(t, x, v): n = 1,2, . . .} is weakly compact in

L p((0, T ) ×R
3
x ×R

3
v); if p = ∞, it follows from the Banach–Alauglu theorem [11] and (5.5) that { fn(t, x, v): n = 1,2, . . .} is

relatively compact in L∞((0, T ) × R
3
x × R

3
v) in the weak∗ topology. Hence, there exists a nonnegative function f (t, x, v) ∈

L p((0, T ) ×R
3
x ×R

3
v) such that for 1 < p < ∞,

fn(t, x, v) ⇀ f (t, x, v), in Lp(
(0, T ) ×R

3
x ×R

3
v

)
,

and for p = ∞,

fn(t, x, v) ⇁ f (t, x, v), in L∞(
(0, T ) ×R

3
x ×R

3
v

)
.

Secondly, it follows from (5.4) and (5.5) that for any given Kx � R
3
x , { fn(t, x, v): n = 1,2, . . .} is weakly compact in

L1((0, T ) × Kx ×R
3
v). Then we can obtain that for any Kx �R

3
x

ρn(t, x)
∣∣un(t, x)

∣∣2 + 3ρn(t, x)θn(t, x) ⇀ ρ(t, x)
∣∣u(t, x)

∣∣2 + 3ρ(t, x)θ(t, x)

in L1((0, T ) × Kx).
On the other hand, by Lemma 2.2 and (5.5), we get∥∥M[ fn](t)

∥∥
p � C(p)

∥∥ fn(t)
∥∥

p � C(p, T , f0), t ∈ [0, T ]. (5.9)

Then, Lemma 4.3 and the inequalities (5.9) imply that for any Kx � R
3
x , {M[ fn](t, x, v): n = 1,2, . . .} is weakly com-

pact in L1((0, T ) × Kx × R
3
v). By Corollary 2.1, we obtain that for any ψ(t, x, v) ∈ L∞([0, T ] × R

3
x × R

3
v), the sequence∫

R
3
v

fn(t, x, v)ψ(t, x, v)dv is compact in L1((0, T ) × Kx). Furthermore, we have that for any Kx �R
3
x

ρn(t, x)
∣∣un(t, x)

∣∣2 + 3ρn(t, x)θn(t, x) → ρ(t, x)
∣∣u(t, x)

∣∣2 + 3ρ(t, x)θ(t, x)
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in L1((0, T ) × Kx). Similar to Section 4, we can get

M[ fn] → M[ f ] in L1((0, T ) × Kx ×R
3).

Passing to the limit in the BGK equation (5.3) for n → ∞, we know that f (t, x, v) is a distributional solution to (1.1)–(1.3).
The inequalities (1.8) and (1.9) are obvious. In fact, by the definition of mild solution of BGK equation and inequalities

(5.4) and (5.5) for any t1, t2 ∈ [0, T ] and 1 � p � ∞,∥∥ fn(t1, x, v) − fn(t2, x, v)
∥∥

p � C(T , f0, ET )|t1 − t2|, n = 1,2, . . . (5.10)

then we have

fn(t, x, v) ⇀ (or ⇁) f (t, x, v) in Lp(
R

3
x ×R

3
v

)
, ∀t � 0. (5.11)

By (5.11), (5.4) and (5.5), we get∫
R

3
x

∫
|v|�R

(
1 + |v|2) f (t, x, v)dx dv = lim

n→∞

∫
R

3
x

∫
|v|�R

(
1 + |v|2) fn(t, x, v)dx dv � C(T , f0, ET ),

and for any g(x, v) ∈ L p′
(R3

x ×R
3
v) (1/p + 1/p′ = 1),∫

R
3
x×R

3
v

f (t, x, v)g(x, v)dx dv = lim
n→∞

∫
R

3
x×R

3
v

fn(t, x, v)g(x, v)dx dv � lim
n→∞

∥∥ fn(t)
∥∥

p‖g‖p′ � C(T , p, f0, ET )‖g‖p′ .

Thus,

sup
0�t�T

∫
R

3
x×R

3
v

(
1 + |v|2) f (t, x, v)dx dv � C(T , f0, ET ),

sup
0�t�T

∥∥ f (t)
∥∥

p � C(T , p, f0, ET ).

Now, we will prove the inequalities (1.11). Firstly, we establish the weighted L p estimates of the approximate solu-
tions fn . By the mild form (2.2) of the BGK equation, we have

fn(t, x, v) = f n
0

(
Xn(0), Vn(0)

)
e−t +

t∫
0

e(s−t)M[ fn]
(
s, Xn(s), Vn(s)

)
ds. (5.12)

Multiplying both sides of (5.12) by |v|q and taking L p norms in R
3
x ×R

3
v , we obtain

∥∥|v|q fn(t)
∥∥

p �
∥∥|v|q f n

0

(
Xn(0), Vn(0)

)∥∥
p +

t∫
0

∥∥|v|q M[ fn]
(
s, Xn(s), Vn(s)

)∥∥
p ds.

It follows from Lemma 2.1 and Ref. [28] (‖(|v|q + |x|q) f n
0 (x, v)‖p � C(p,q, f0, ET )) that∥∥|v|q f n

0

(
Xn(0), Vn(0)

)∥∥
p �

∥∥(∣∣Vn(0)
∣∣ + ET

)q
f n

0

(
Xn(0), Vn(0)

)∥∥
p

� C(q, ET )
∥∥(∣∣Vn(0)

∣∣ + 1
)q

f n
0

(
Xn(0), Vn(0)

)∥∥
p

= C(q, ET )
∥∥(|v| + 1

)q
f n

0 (x, v)
∥∥

p � C(p,q, f0, ET ),

and it follows from Lemma 2.1 and Lemma 2.2 that

t∫
0

∥∥|v|q M[ fn]
(
s, Xn(s), Vn(s)

)∥∥
p ds

�
t∫ ∥∥(∣∣Vn(s)

∣∣ + ET
)q

M[ fn]
(
s, Xn(s), Vn(s)

)∥∥
p ds
0
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� C(q, ET )

t∫
0

∥∥(∣∣Vn(s)
∣∣ + 1

)q
M[ fn]

(
s, Xn(s), Vn(s)

)∥∥
p ds

= C(q, ET )

t∫
0

∥∥(|v| + 1
)q

M[ fn](s)
∥∥

p ds � C(p,q, T , ET )

t∫
0

∥∥(|v| + 1
)q

fn(s)
∥∥

p ds.

Combining the above two equalities and using the Gronwall Lemma, we have∥∥|v|q fn(t)
∥∥

p � C(p,q, T , f0, ET ). (5.13)

Similarly, multiplying both sides of (5.12) by |x|q and taking L p norms in R
3
x ×R

3
v , we obtain

∥∥|x|q fn(t)
∥∥

p �
∥∥|x|q f n

0

(
Xn(0), Vn(0)

)∥∥
p +

t∫
0

∥∥|x|q M[ fn]
(
s, Xn(s), Vn(s)

)∥∥
p ds.

It follows from Lemma 2.1 and Ref. [28] that for t ∈ [0, T ]∥∥|x|q f n
0

(
Xn(0), Vn(0)

)∥∥
p �

∥∥(∣∣X(0)
∣∣ + t ET + t|v|)q

f n
0

(
Xn(0), Vn(0)

)∥∥
p

� C(q, T , ET )
∥∥((∣∣Vn(0)

∣∣ + 1
)q + ∣∣Xn(0)

∣∣q)
f n

0

(
Xn(0), Vn(0)

)∥∥
p

= C(q, T , ET )
∥∥((|v| + 1

)q + |x|q) f n
0 (x, v)

∥∥
p � C(p,q, T , f0, ET ),

and

t∫
0

∥∥|x|q M[ fn]
(
s, Xn(s), Vn(s)

)∥∥
p ds �

t∫
0

∥∥(∣∣Xn(s)
∣∣ + |t − s|ET + ∣∣(t − s)v

∣∣)q
M[ fn]

(
s, Xn(s), Vn(s)

)∥∥
p ds

� C(q, T , ET )

t∫
0

∥∥((∣∣Xn(s)
∣∣ + 1

)q + ∣∣Vn(s)
∣∣q)

M[ fn]
(
s, Xn(s), Vn(s)

)∥∥
p ds

= C(q, T , ET )

t∫
0

∥∥((|x| + 1
)q + |v|q)M[ fn](s)

∥∥
p ds

� C(p,q, T , ET )

t∫
0

∥∥((|x| + 1
)q + |v|q) fn(s)

∥∥
p ds.

Combining the above two equalities and (5.13), we have∥∥|x|q fn(t)
∥∥

p � C(p,q, T , f0, ET ). (5.14)

Hence,∥∥(|x|q + |v|q) fn(t)
∥∥

p � C(p,q, T , f0, ET ). (5.15)

The proof of ‖(|x|q + |v|q) f (t)‖p � C(p,q, T , f0, ET ) is the same to the proof of ‖ f (t)‖p � C(p, T , f0, ET ). Thus, the proof
of Theorem 1.2 is completed. �
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