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a b s t r a c t

We propose a new finite volume method for scalar conservation laws with stochastic
time–space dependent flux functions. The stochastic effects appear in the flux function
and can be interpreted as a randommanner to localize the discontinuity in the time–space
dependent flux function. The location of the interface between the fluxes can be obtained
by solving a system of stochastic differential equations for the velocity fluctuation and
displacement variable. In this paper we develop a modified Rusanov method for the
reconstruction of numerical fluxes in the finite volume discretization. To solve the system
of stochastic differential equations for the interface we apply a second-order Runge–Kutta
scheme. Numerical results are presented for stochastic problems in traffic flow and two-
phase flow applications. It is found that the proposed finite volumemethod offers a robust
and accurate approach for solving scalar conservation laws with stochastic time–space
dependent flux functions.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Many practical problems in physics and engineering applications are modeled by conservation laws with time–space
dependent flux functions. These problems have been extensively studied in the literature and their numerical solution
can be accurately computed provided the flux functions, involved coefficients, initial and boundary data are given in a
deterministic way. However, modeling realistic applications by conservation laws is complicated by the high heterogeneity
of the involved coefficients combined with insufficient information characterizing the flux functions. For instance, in the
simulation of transport models in ground water flows the exact knowledge of the permeability of the soil, the magnitude of
source terms, inflow or outflow are usually not known, see [1] and further references are therein. Another example concerns
the traffic flow in multi-lane roads where the behavior of drivers may turn to random in making the decision in which
lane should the car be, see for example [2,3]. Other applications include multi-phase flow problems [4] conservation laws
in networks [5] and production in supply chains [6]. For supply chains, the uncertainty is included in the processors as
random breakdowns and random repair times. Under these circumstances the probabilistic aspects of the problem under
consideration need to be taken into account for a realistic simulation of its numerical solution. The uncertainties mentioned
above can be conveniently described by random fields, whose statistics are usually inferred from experiments. This requires
to include, in the conservation lawsmodeling the problem at hands, a rational assessment of uncertainty, we refer the reader
to [7–11] for more details on the uncertainty quantification in conservation laws. Consequently, this leads to the notion of
scalar conservation laws with stochastic time–space dependent flux functions. For the problems considered in this study,
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a stochastic differential system, for the velocity fluctuation and the displacement, is used to quantify uncertainties in the
conservation laws. More precisely, the location of the discontinuity in the flux function is assumed to be driven by a drift
towards the expected value and a stochastic noise term governed by the derivative of aWiener process. In comparison with
the deterministic conservation laws with discontinuous flux functions, the appearance of the noise in the location of the
interface can be seen as the integral effect of microscopic interactions, which produce a continuous sequence of small and
almost stochastic velocity and location changes.

A number of numerical methods have been developed to solve stochastic partial differential equations. The obvious
methods widely used in the literature are the Monte Carlo algorithms. These methods generate a sequence of independent
realizations of the solution by sampling the coefficients involved in the problem under consideration and solving the
resulting deterministic partial differential equations using standard numerical tools. The obtained solutions are used to
compute statistical characteristics of the solution in the problem, see [12] among others. However, Monte Carlo algorithms
are known to be computationally expensive and are only recommended as the last resort. Another method widely used
in computational fluid dynamics is the Wiener chaos expansions, see for example [13,14]. In this approach, random fields
are discretized using polynomial chaos resulting in a set of coupled deterministic partial differential equations to be solved
for each chaos coefficient. However, the Wiener chaos expansions have some limitations in application to the conservation
laws with complex stochastic flux functions. For instance, large number of chaos coefficients in the expansions are needed
to accurately compute small scales. In addition, many realizations have to be performed to obtain accurate estimates of
the required statistical characteristics. Therefore, Wiener chaos expansions are computationally expensive. On the other
hand, solving stochastic partial differential equations using properties of Wick calculus was also discussed, for instance
in [15,16]. The main idea of this approach is to use properties of the Wick product along with the Hermite polynomials to
decompose solution variables using an orthogonal basis and solve series of uncoupled deterministic equations. However,
the treatment of nonlinear stochastic conservation laws in these methods is not trivial and high-order statistical moments
are not easy to compute. The concept of incorporating uncertainty in linear hyperbolic equations of conservation laws is
not new, see for example [17–19]. The mathematical equations studied in these references consist of the model scalar
wave equation with randomwave speed subject to given truncated Karhunen–Loéve expansions. In addition, the numerical
techniques presented in these references are essentially based on a spectral representation in random space that exhibits
fast convergence only when the solution depends smoothly on the involved random parameters. On the other hand, there
are several well-established techniques for modeling stochastic effects such as Galerkin projection, chaos polynomials, and
collocationmethods among others. Recently, the trend has focused on the development of numerical methods whichmodel
nonlinear hyperbolic systems of conservation laws. These include the incorporation of stochastic perturbations into the
forcing terms [20], and the incorporation of stochastic variables into the physical flux functions [8,21]. The latter method
has recently been extended by using adaptive anisotropic spectral procedures [22], such that the stochastic resolution level
is based on the local smoothness of the solution in the stochastic domain. For the construction of numerical fluxes, the
authors in [8,21,22] consider the Roe-type method which may become computationally expensive for hyperbolic systems
of conservation lawswith source terms and itmay also require entropy correction to accurately capture shocks. Furthermore,
truncation techniques in the polynomial chaos expansions may result in non-physical solutions such as negative second-
order statistical moments. So the method of polynomial chaos expansions can be applied only for limited applications in
nonlinear conservation laws. In the current work, we are interested in scalar conservation laws for which the physical flux
function switches from one form to another depending on a random location in the spatial domain. This allows the flux
function in the conservation laws under study to vary in the space and random variables. The location and speed of the
discontinuity in the flux function are resolved by solving an extra system of stochastic ordinary differential equations.

The aim of the present work is to implement a robust algorithm for solving scalar conservation laws with stochastic
time–space dependent flux functions. The key idea consists of combining a finite volume method for the spatial
discretization with a second-order explicit stochastic Runge–Kutta scheme developed in [23–25] for the time integration
of the stochastic differential equations. The emphasis in this study is given to a modified Rusanov method studied and
analyzed in [26] for the spatial discretization. This method is simple, accurate and avoids the solution of Riemann problems
during the time integration process. The combined method is linearly stable provided the condition for the canonical
Courant–Friedrichs–Lewy (CFL) condition is satisfied. Our main goal is to present a class of numerical methods that are
simple, easy to implement, and accurately solves the stochastic conservation laws without relying on a Riemann solver or
direct statistical algorithms. We should mention that the finite volumemethod presented in this paper also differs from the
traditional Rusanov approach [27] in the fact that the characteristic speed is assumed to be constant, whereas in the present
work we use an adaptive selection of the characteristic speed based on the location of shocks within the computational
domain. To the best of our knowledge, this is the first time that a finite volumemethod is used to solve stochastic equations
of nonlinear conservation laws with discontinuous time–space dependent flux functions.

Numerical results are illustrated for several test examples on scalar conservation laws with stochastic time–space
dependent flux functions. In the first case, analytical solution is available and thus it can be used for verification of
convergence rates and accuracy of the proposed numerical schemes. In the other cases, comparison to deterministic
solutions is presented to illustrate stochastic effects. Our method accurately approximates the numerical solution to these
nonlinear problems. The obtained results demonstrate good shock resolution with high accuracy in smooth regions and
without any nonphysical oscillations near the shock areas or extensive numerical dissipation. The performance of the
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developed solvers is very attractive since the computed solutions remain stable, monotone and highly accurate without
solving Riemann problems or using demanding computational resources.

The rest of this paper is organized as follows. In Section 2 we introduce the equations for scalar conservation laws with
stochastic time–space dependent flux functions. The finite volume method for stochastic conservation laws is formulated
in Section 3. This section also includes the time integration of the stochastic differential equations for the interface and
the reconstruction of the numerical fluxes in the finite volume discretization. In Section 4 we present numerical results for
several test examples. Section 5 summarizes the paper with concluding remarks.

2. Stochastic conservation laws

Let (Ω,F , P) be a probability space, whereΩ is the space of basic outcomes, F is the σ -algebra associated withΩ , and
P is the (probability) measure on F . This σ -algebra can be interpreted as a collection of all possible events that could be
derived from the basic outcomes inΩ , and that have a probability that is well defined with respect to P. A random variable
X is a mapping X : Ω −→ R. The Lp-norm of a random variable can be defined as

∥X∥p =

|X |

p1/p , for 0 < p < ∞,

where ⟨·⟩ denotes the operation of mathematical expectation. Equipped with this norm, the space Lp is a Banach space of
all random variables X defined on (Ω,F , P) and having a finite norm. In the current study, we are interested in developing
robust numericalmethods for approximating solutions of the Cauchyproblemassociatedwith the following stochastic scalar
conservation laws

∂u
∂t

+
∂

∂x
F (X, u) = 0, (x, t) ∈ R × (t0, T ],

u(t0, x) = u0(x), x ∈ R,
(1)

where (t0, T ] is the time interval, u ∈ R is the scalar unknown, the flux function F (X, u) : Ω × R −→ R is nonlinear, u0(x)
is an initial condition given at time t0, and X is a stochastic process that can depend on space or/and time variable as well.
In the deterministic case (with X = k(x)), the multiplicative flux function

F (k(x), u) = k(x)G(u), k(x) =


kL, if x < 0,
kR, if x > 0, (2)

has been widely used in the literature for theoretical and numerical analysis of conservation laws with discontinuous flux
functions. In (2), G(u) is a continuous flux function in R, kl and kR are positive constants with kL ≠ kR. In all cases, we
assume that the Jacobian F ′(k(x), u) = ∂F (k(x), u) /∂u is diagonalizable with real eigenvalues. It should be noted that
hyperbolic equations of conservation lawswith a discontinuous flux function of type (2) occur inmany physical applications,
for example in transport models in porous media [28], sedimentation phenomena [29], resonant models [30] and vehicular
traffic flows [31,32].Most practical applications of these problems cannot be solved analytically and hence require numerical
methods. One of themain difficulties in the analysis of problem (1)–(2) is the correct definition of a solution. It is well known
that after a finite time the problem (1)–(2) does not in general possess a continuous solution even if the initial data u0 is
sufficiently smooth. Hence a solution of (1)–(2) has to be understood in the weak sense. Moreover, among the difficulties
that arose when approximating solutions of (1)–(2) are numerical instability, poor shock and rarefaction resolutions, and
even spurious numerical solutions, see for instance [33–35] and references are therein.

Our objective in this paper is to develop an efficient numerical method for solving the stochastic scalar conservation laws
(1) equipped with a discontinuous flux function of the form

F (X, u) =

1 − HX (x)


f (u)+ HX (x) g(u), (3)

where f and g are continuous flux functions, and HX (x) is a Heaviside function defined as

HX (x) =


1, if P (x < X) = 1,
0, if P (x > X) = 1. (4)

Here, the stochastic processX can be seen as a random interface separating twomediawith different physical properties. The
location of this interfacemay bemovingwithin the spatial domain and time interval according to the probability P. Examples
of recent applications in stochastic interface models can be found in [36] for growing interfaces in quenched media, in [37]
for composite materials with stochastic interface defects, in [38] for dynamics of ion transfer across liquid–liquid interfaces,
and in [39] for random elliptic interface problems. The common practice in stochastic interface models is to analyze the
kinetics obtained from transition-state theory independently from stochastic molecular dynamic simulations. In general,
the interface equations derived from themicroscopic rules using regularization procedure predict accurately the roughness.
Themain contribution of the present work is to present an efficient finite volumemethod for solving conservation lawswith
discontinuous flux functions subject to the stochastic interface equation (4). Note that by setting X = 0 and changing the
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stochastic function HX (x) in (3) to the standard Heaviside function, one recover the classical equations for deterministic
conservation laws with discontinuous flux functions

F (u) =


f (u), if x < 0,
g(u), if x > 0. (5)

This class of problems has been widely studied in the literature, see for example [33–35]. The considered conservation laws
involve stochastic effect, which increases the difficulty for solving them. This makes the development of numerical methods
for stochastic conservation laws more attractive.

To close the system of Eqs. (1) and (3) an equation describing the evolution of X is required. In the current work, the
equations prescribing the evolution of the velocity fluctuation V and the displacement X are solutions of the following
system of stochastic differential equation (SDE)

dV = a (X, V ) dt + b (t) dW , V (t0) = V0,

dX = Vdt + ϵdW , X(t0) = X0,
(6)

where a (X, V ) is a given drift function, b (t) is a given diffusion function,W is aWiener process, X0 and V0 are known initial
conditions at time t0, and ϵ is a constant characterizing the rate of dissipation in the SDE. Note that in the system (6), the
two terms in the right-hand side of each equation may represent the effects of the turbulent flow on the solution and they
depend on the Lagrangian time scale and the velocity fluctuation standard deviation. In practice, the drift term a (X, V )
refers to fluctuations caused by the large scales, whereas the diffusion term b (t) is related to short term fluctuations.

The newmodel (6) presented in this paper to detect the interface in the conservation laws (1) is similar to the stochastic
model for molecular motion in fluid dynamic equations. In these models, the kinetic fluid equations are solved through the
stochastic motion of particles

dVi

dt
= −

1
τ
(Vi − Ui)+


4es
3τ

dWi

dt
,

dXi

dt
= Vi,

(7)

where Xi is the position of the ith particle, Vi is themolecular velocity of the particle, τ is the relaxation time, es is the sensible
energy of the fluid and Ui is its mean velocity, compare [40] among others. Here, at the microscopic scale, Eqs. (7) represent
statisticalmoments of the particle ensemble in the particle location X at time t . Themean velocityU is equivalent to the fluid
velocitymeasured on themacroscopic fluid dynamic scale according to the ergodic theorem [41]. Note that the conservation
law (1) and the interface equation (6) are not fully coupled such that once the SDE (6) is solved for the interface X , the flux
function F (X, u) is updated using (3) and then used in the numerical solution of the conservation laws (1). A possible fully
coupled version of the model consists on solving the following system of stochastic differential equations

du = −


∂

∂x
F (X, u)


dt + σ (t, x) dW , u(t0) = u0,

dV = a (X, V ) dt + b (t) dW , V (t0) = V0,

dX = Vdt + ϵdW , X(t0) = X0,

(8)

where σ is the amplitude of the random noise to be defined accordingly. However, the drawback of considering the coupled
system (8) lies on the huge amount of computational cost needed for its time and space discretizations and also on the
two-scale aspect of the problem. Remark that, in general applications, the time scale for the first equation in (8) is far different
from the time scale in the two other equations. This may require an unacceptably small time steps to accurately capture the
dynamics of the numerical solutions.

It should be stressed that the numerical techniques presented in this paper can be extended, without major conceptual
modifications, to the generalized stochastic conservation laws (1) with a flux function defined as

F

X (1), . . . , X (N), u


= HX(1) f1(u)+ · · · + HX(N) fN(u), (9)

where fk(u), with k = 1, . . . ,N are continuous flux functions, and HX(k) (x) are Heaviside-type functions defined as

HX(k) (x) =


1, if P


x < X (k)


= 1,

0, if P

x > X (k)


= 1,

(10)

and satisfy the condition

HX(1) (x)+ HX(2) (x)+ · · · + HX(N) (x) = 1.
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Note that X (k), with k = 1, . . . ,N can be seen as stochastic locations of the discontinuities in the flux function (9). As in the
one-dimensional SDE (6), V =


V (1), . . . , V (N)

T and X =

X (1), . . . , X (N)

T represent respectively, the N-vector of velocity
fluctuations and stochastic processes solving the following system of stochastic differential equations

dV = A (X,V) dt + B (t) dW, V(t0) = V0,

dX = Vdt + ϵdW, X(t0) = X0,
(11)

where A (X,V) is the drift N-vector, B (t) is the diffusion N × d-matrix, W is a d-vector Wiener process, X0 and V0 are
known N-vector of initial conditions given at time t0. Here, each entry of the d-vectorW forms a Brownian motion which is
independent of the other elements.

It is worth pointing out that in general, it is difficult to derive an effective equation to be solved for the average solution.
However, for a fixed velocity the interface motion is governed by the SDE

dX = Vdt + ϵdW , (12)

where the position X(t) process is Markovian and the evolution of its probability density function p(t, x), is described by an
advection–diffusion type of partial differential equation known as the Fokker–Planck equation [42]

∂p
∂t

+
∂

∂x
(Vp)−

1
2
∂2

∂x2

ϵ2p


= 0. (13)

The initial spreading of a cloud of particles is very small and its distribution can be modeled using a Dirac delta function as

p(0, x) = δ (x − x0) .

By assuming a zero diffusion and divergence-free velocity Eq. (13) reduces to the advection equation for the interface φ

∂φ

∂t
+ V

∂φ

∂x
= 0, (14)

that is similar to the interface equation widely used in level set methods (see for example [43]) in the sense that it replaces
themicroscopicmodel by a simplermodel, namely Fokker–Planckmodel, but due to the implementation as particlemethod
no discretization of the distribution function is necessary. Indeed, by interpreting the Fokker–Planck equation (13) as an
advection equation makes the stochastic model in (6) to be consistent with the well-known interfacial flows used in the
computational fluids dynamics.

3. Finite volume method for the stochastic conservation laws

Finite volume methods are preferable in numerical solutions of partial differential equations of hyperbolic type due
to their conservation properties. These techniques have been developed mainly under assumptions of ideal input such as
deterministic flux functions, initial data and computational domain. In practice, this is hardly the case as the flux functions
and the input data involve uncertainties. In the current study, we propose a new finite volume method for stochastic
conservation laws (1). To formulate our method, we discretize the spatial domain into control volumes [xi−1/2, xi+1/2] with
uniform size 1x = xi+1/2 − xi−1/2 for simplicity. We also divide the time interval [t0, T ] into subintervals [tn, tn+1] with
uniform size1t . Following the standard finite volume formulation, we integrate the considered Eq. (1) with respect to time
and space over the domain [tn, tn+1] × [xi−1/2, xi+1/2] to obtain the following discrete equation

Un+1
i = Un

i −
1t
1x


F


Xn+1,Un

i+1/2


− F


Xn+1,Un

i−1/2


, (15)

where Xn+1 denotes an approximation of the stochastic process X at time tn+1,Un
i±1/2 = u(tn, xi±1/2),Un

i is the space average
of the solution u in the domain [xi−1/2, xi+1/2] at time tn i.e.,

Un
i =

1
1t1x

 tn+1

tn

 xi+1/2

xi−1/2

u(t, x) dt dx,

and F(Xn+1,Un
i±1/2) is the numerical flux at x = xi±1/2 and time tn. The spatial discretization of Eq. (15) is complete

when a numerical approximation of Xn+1 is computed by solving the SDE (6) and a construction of the numerical fluxes
F(Xn+1,Un

i±1/2) is chosen. In what follows we discuss the formulation of a modified Rusanov method for the numerical
approximation of the fluxes andwe also formulate a stochastic Runge–Kutta scheme for the numerical solution of the system
of stochastic differential equations.

3.1. A modified Rusanov method for spatial discretization

In general, the construction of the numerical fluxes F(Xn+1,Un
i±1/2) in the finite volume discretization (15) requires

a solution of Riemann problems at the cell interfaces xi±1/2. Let us assume that the self-similar solution to the Riemann
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Fig. 1. The control space–time domain in the modified Rusanov method.

problem associated with Eq. (1) subject to the initial condition

u(0, x) =


UL, if x < 0,
UR, if x > 0, (16)

is given by

u(t, x) = Rs

x
t
,UL,UR


,

where Rs is the Riemann solution which has to be either calculated exactly or approximated. Thus, the intermediate state
Un
i+1/2 in (15) at the cell interface x = xi+1/2 is defined as

Un
i+1/2 = Rs


0,Un

i ,U
n
i+1


. (17)

From a computational viewpoint, this procedure is very demanding and may restricts the application of the method
for which Riemann solutions are difficult to approximate or simply are not available. In order to avoid these numerical
difficulties and reconstruct an approximation of Un

i+1/2, we adapt a modified Rusanov method proposed in [26] for the
numerical solution of conservation laws. The central idea is to integrate Eq. (1) over a control domain [tn, tn + θni+1/2] ×

[x−, x+
] containing the point (tn, xi+1/2) as depicted in Fig. 1. Notice that, the integration of Eq. (1) over the control domain

[tn, tn + θni+1/2] × [x−, x+
] is used only at a predictor stage to construct the intermediate states Un

i±1/2 which will be used
in the corrector stage (15). Here, Un

i±1/2 can be viewed as an approximation of the averaged Riemann solution Rs over the
control volume [x−, x+

] at time tn + θni+1/2. Thus, the resulting intermediate state is given by x+

x−
u(tn + θni+1/2, x) dx = 1x−Un

i +1x+Un
i+1 − θni+1/2


F(Xn+1,Un

i+1)− F(Xn+1,Un
i )


, (18)

where Un
i denotes the space average of the solution u in the cell [x−, x+

] at time tn given by

Un
i =

1
1x− +1x+

 x+

x−
u(tn, x)dx, (19)

and the distance measures1x− and1x+ are defined as

1x−
=

x−
− xi+1/2

 , 1x+
=

x+
− xi+1/2

 .
By setting x−

= xi and x+
= xi+1, Eq. (18) reduces to

Un
i+1/2 =

1
2


Un
i + Un

i+1


−
θni+1/2

1x


F(Xn+1,Un

i+1)− F(Xn+1,Un
i )


, (20)

where Un
i+1/2 is an approximate average of the solution u in the control domain [tn, tn + θni+1/2] × [xi, xi+1] defined as

Un
i+1/2 =

1
1x

 xi+1

xi
u(tn + θni+1/2, x)dx. (21)

Note that other selections for x− and x+ in (18) are also possible. In order to complete the implementation of the above finite
volumemethod, the time parameter θni+1/2 has to be selected. Based on the stability analysis reported in [26] for conservation
laws, the variable θnj+1/2 is selected as

θni+1/2 = αn
i+1/2θ̄i+1/2, θ̄i+1/2 =

1x
2Sni+1/2

, (22)
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where αn
i+1/2 is a positive parameter to be calculated locally and Sni+1/2 is the local Rusanov velocity defined as

Sni+1/2 = max
F ′(Xn+1,Un

i )
 , F ′(Xn+1,Un

i+1)
 . (23)

Notice that the introduction of the local time step θni+1/2 in the predictor stage (20) is motivated by the fact that θni+1/2 should
not be larger than the value of θ̄i+1/2 which corresponds to the time required for the fastest wave generated at the interface
xi+1/2 to leave the cell [xi, xi+1], compare Fig. 1.

It is clear that by setting αn
i+1/2 = 1, the proposed finite volume method reduces to the classical Rusanov method [27],

whereas for αn
i+1/2 =

1t
1xS

n
i+1/2 one recovers the well-known Lax–Wendroff scheme [44]. Another choice of the slopes αn

i+1/2
leading to a first-order scheme is αn

i+1/2 = α̃n
i+1/2 with

α̃n
i+1/2 =

Sni+1/2

sni+1/2
, (24)

where

sni+1/2 = min
F ′(Xn+1,Un

i )
 , F ′(Xn+1,Un

i+1)
 .

In the present work, we consider a second-order scheme incorporating limiters in its reconstruction as

αn
i+1/2 = α̃n

i+1/2 + σ n
i+1/2Φ


ri+1/2


, (25)

where α̃n
i+1/2 is given by (24) and Φi+1/2 = Φ


ri+1/2


is an appropriate limiter which is defined by using a flux limiter

function Φ acting on a quantity that measures the ratio ri+1/2 of the upwind change to the local change, compare for
instance [45]. Thus,

σ n
i+1/2 =

1t
1x

Sni+1/2 −
Sni+1/2

sni+1/2
,

and the ratio of the upwind change is calculated locally as

ri+1/2 =
Ui+1−q − Ui−q

Ui+1 − Ui
, q = sgn


F ′(Xn+1,Un

i+1/2)

.

As slope limiter functions, we consider the Minmod function

Φ(r) = max (0,min (1, r)) , (26)

and the van Albada function

Φ(r) =
r + r2

1 + r2
. (27)

Note that other slope limiter functions such as van Leer or Superbee functions from [44,46] can also apply. The reconstructed
slopes (25) are inserted into (22) and the numerical fluxes Un

i+1/2 are computed from (20). Remark that if we setΦ = 0, the
spatial discretization (25) reduces to the first-order scheme.

3.2. Stochastic Runge–Kutta schemes for time integration

The modified Rusanov scheme proposed in the previous section is applied to the conservation laws (1) provided the
location of the discontinuity X in the flux function is known a priori. For the deterministic flux function (2), this step does
not require any further calculations. However, in the stochastic case, a numerical solution of the SDE (6) is needed as a
prepossessing step. Let us rewrite the system (6) in a vector form as

dY = F (t, Y) dt + G (t) dW, Y(t0) = Y0, (28)

where

Y =


V
X


, F (t, Y) =


a(X, V )

V


, G (t) =


b(X, V ) 0

0 ϵ


.

Applied to Eq. (28), the canonical Euler–Maruyama method yields

Y0
= Y0,

Yn+1
= Yn

+ F (tn, Yn)1t + G(tn)1W, n = 0, 1, . . . ,
(29)

where Yn is the approximation of the stochastic process Yt a time t = tn and 1W is the Brownian increment N (0,
√
1t).

It is well-known that the Euler–Maruyama scheme (29) is only O

(1t)0.5


accurate, see for example [47]. As described in
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the previous section, the spatial discretization isO

(1x)2


accurate. Therefore, in order to preserve an overall second-order

accuracy in the presented method, it is necessary that the time integration of the SDE (28) should be at least O

(1t)2


accurate.

In the present work, we apply a class of stochastic Runge–Kutta (SRK) methods studied in [23–25] for the numerical
solution of systems of stochastic differential equations. The methods exhibit a weak convergence with second order in the
case of additive noise. Thus, the considered error of the SRK approximation Y is bounded asψ(Yn)


−


ψ(Y(tn))

 ≤ Cψ (1t)2,

with some constant Cψ > 0 for all functionals ψ ∈ C6
P (R

2,R) with polynomial growth and sufficient small time step 1t ,
see for example [24]. The s-stage SRK method applied to the SDE (28) is given by

Y0
= Y0,

Yn+1
= Yn

+

s
i=1

αi F (tn + ci1t,Hi)1t +

2
k=1

s
i=1

βi G
(k)(tn) Î(k),

(30)

where the SRK stages Hi, with i = 1, . . . , s are defined as

Hi = Yn
+

s
j=1

Aij F (tn + cj1t,Hj)1t +

2
l=1

s
j=1

Bij G
(l)(tn) Î(l). (31)

According to the definition of the diffusion matrix in (28), G(1)(t) = b(t) and G(2)(t) = ϵ. The random variables Î(k)
used by the SRK method are, for example, independent identically N (0,1t) distributed or simply independent identically
distributed with

P

Î(k) = ±

√
31t


=

1
6

and P

Î(k) = 0


=

2
3
, k = 1, 2.

The coefficients αi, ci, βi, Aij and Bij appeared in the SRK method (30)–(31) are usually given by the following extended
Butcher tableau

c1 A11 · · · A1s B11 · · · B1s
...

...
. . .

...
...

. . .
...

cs As1 · · · Ass Bs1 · · · Bss
α1 · · · αs β1 · · · βs

Note that the considered SRKmethod (30) is a simplified version of themore general second-order SRKmethods introduced
in [25]. Since only additive noise is considered, many order conditions turn out to be automatically fulfilled. In the
simulations presented in the present work, we have implemented an explicit SRK method with the number of stages s = 2.
Its associated extended Butcher tableau is given by

0 0 0 0 0
1 1 0 1 0

1
2

1
2 1 0

(32)

In summary, the implementation of the proposed algorithm to solve the stochastic conservation law (1) is carried out in the
following two steps. Given (Xn,Un), we compute


Xn+1,Un+1


via:

Step 1. Solve for (Xn+1, V n+1) the SDE (6) using the second-order SRK scheme as:

Hn
= Yn

+ F (tn, Yn)1t +

2
l=1

G(l)(tn) Î(l),

Yn+1
= Yn

+
1
2

F (tn, Yn)1t +
1
2

F (tn +1t,Hn)1t +

2
l=1

G(l)(tn) Î(l),

(33)

where Y,F and G are defined in (28).
Step 2. Solve for Un+1

i the conservation law (1) using the proposed predictor–corrector method as:

Un
i+1/2 =

1
2


Un
i + Un

i+1


−
αn
i+1/2

2Sni+1/2


F(Xn+1,Un

i+1)− F(Xn+1,Un
i )


,

Un+1
i = Un

i −
1t
1x


F


Xn+1,Un

i+1/2


− F


Xn+1,Un

i−1/2


,

(34)

where Sni+1/2 and αn
i+1/2 are defined in (23) and (25), respectively.
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It is evident that, due to the stochasticity in the conservation law (1), the above algorithm is used to generate a numberM of
realizations. Thus, a Monte Carlo simulation is performed for the solution samples Un

m for m = 1, . . . ,M , and we estimate
the expectation of the solution Un+1 at time tn+1 by

⟨ψ(Un+1)⟩ ≈
1
M

M
m=1

ψ

Un+1
m


.

Note that other SRK methods from [25] can also be applied for solving the SDE system (28).

4. Numerical results

We present numerical results for several test problems to check the accuracy and the performance of the proposed
finite volume method. As with all explicit time stepping methods the theoretical maximum stable time step1t is specified
according to the CFL condition

1t = Cr
1x

max
i

αn
i+1/2S

n
i+1/2

 , (35)

where Cr is a constant to be chosen less than unity. In all our simulations, the fixed Courant number Cr = 0.75 is used and
the time step is varied according to (35). In all the simulations (unless stated) we performM = 1000 realizations and mean
solutions are displayed. The following test examples are selected:

4.1. Accuracy test problems

Our first example is a deterministic conservation law with exact steady-state solution which can be used to quantify the
results obtained by the classical Rusanov method and the proposed modified Rusanov method. This example can also serve
to test the ability of the above finite volume method to converge to the correct entropy solution. The problem statement is
given by Eqs. (1)–(2) where

G(u) = u(1 − u), k(x) =


2, if 0 ≤ x ≤ 2.5,
25 − 2x

10
, if 2.5 < x < 7.5,

1, if 7.5 ≤ x ≤ 10,

(36)

and an initial condition given by

u0(x) =


0.9, if 0 ≤ x ≤ 2.5,

1 +
√
0.28

2
, if 2.5 < x ≤ 10.

This problem has a steady exact solution given by

u∞(x) =


0.9, if 0 ≤ x ≤ 2.5,

1
2

+


k(x)2 − 0.72k(x)

2k(x)
, if 2.5 < x < 7.5,

1 +
√
0.28

2
, if 7.5 ≤ x ≤ 10.

We compute the approximate solution at time t = 20. At this time the approximated solutions are almost stationary, and
therefore error norms can be calculated. We consider the L∞-, L1- and L2-error norms defined as

max
1≤i≤N

|Ui − u∞(xi)| ,
N
i=1

|Ui − u∞(xi)|1x,

 N
i=1

|Ui − u∞(xi)|21x,

respectively. Here, Ui and u∞(xi) are respectively, the computed and exact steady-state solutions at gridpoint xi, whereas N
stands for the number of gridpoints used in the spatial discretization. The obtained results for the classical Rusanov method
are listed in Table 1 along with their corresponding convergence rates. Those corresponding to the proposed modified
Rusanov method using the van Albada limiter are presented in Table 2. It reveals that increasing the number of gridpoints
in the computational domain results in a decay of all considered error norms in both methods. The results provided by
the modified Rusanov method are more accurate than the results provided by the classical Rusanov method. Our modified
Rusanovmethod exhibits good convergence behavior for this nonlinear problem. As can be seen from the convergence rates
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Table 1
Errors for the accuracy test problem (36) using the classical Rusanov method.

M L∞-error Rate L1-error Rate L2-error Rate

50 6.22252E−03 – 1.42606E−02 – 7.13845E−03 –
100 3.36303E−03 0.887 6.94884E−03 1.037 3.50372E−03 1.026
200 1.69172E−03 0.991 3.42991E−03 1.018 1.73552E−03 1.013
400 8.48215E−04 0.995 1.70387E−03 1.009 8.63612E−04 1.006
800 4.24668E−04 0.998 8.49169E−04 1.004 4.30760E−04 1.003

Table 2
Errors for the accuracy test problem (36) the modified Rusanov method.

M L∞-error Rate L1-error Rate L2-error Rate

50 1.84252E−04 – 2.98443E−04 – 1.68312E−04 –
100 5.35180E−05 1.783 7.23079E−05 2.045 4.27158E−05 1.978
200 1.36748E−05 1.968 1.79117E−05 2.013 1.06081E−05 2.009
400 3.45575E−06 1.984 4.45720E−06 2.006 2.64244E−06 2.005
800 8.68570E−07 1.992 1.11168E−06 2.003 6.59364E−07 2.002

Table 3
Errors for the linear SDE (37) using the Euler–Maruyama and SRK schemes.

1t Euler scheme SRK scheme
ϵ = 0.01 Rate ϵ = 0.3 Rate ϵ = 0.01 Rate ϵ = 0.3 Rate

2−1 4.905E−03 – 5.156E−03 – 2.659E−03 – 8.832E−02 –
2−2 3.566E−03 0.46 3.990E−03 0.37 6.788E−04 1.97 2.383E−02 1.89
2−3 2.557E−03 0.48 2.962E−03 0.43 1.697E−04 2.00 6.125E−03 1.96
2−4 1.796E−03 0.51 2.139E−03 0.47 3.986E−05 2.09 1.542E−03 1.99
2−5 1.210E−03 0.57 1.513E−03 0.50 9.108E−06 2.13 3.778E−04 2.03

presented in these tables, the classical Rusanovmethod shows only a first-order accuracy, whereas a second-order accuracy
is achieved in our method for this test example in terms of the considered error norms. A similar trend has been observed
in the errors (not reported here) obtained using the MinMod limiter in the proposed modified Rusanov method.

Next we examine the accuracy of the considered SRK scheme for solving stochastic differential equations. To this end we
solve the linear stochastic differential equation

dX = λ(µ− X)dt + ϵdW , X(0) = X0. (37)

It is easy to verify that the expected analytical solution of (37) is given by

X(t) = X0e−λt
+ µ


1 − e−λt . (38)

The exact solution (38) is also used to evaluate the expected error function at time tn as

E(tn) =
X(tn)−


Xn ,

where X(tn) and

Xn


are the expected exact and numerical solutions at time tn, respectively. In our computations we use

λ = 1, µ = 1.2, X0 = 1 and simulations are stopped at time tn = 2. In Fig. 2wedisplay the evolution in time of the errorE(t)
for the Euler–Maruyama and the SRK schemes using a uniform step size 1t = 2−5 and two values of ϵ namely, ϵ = 0.01
and ϵ = 0.3. As expected, the errors in the SRK solutions are far too small compared to those in the Euler–Maruyama
scheme. Larger errors are detected for larger values for ϵ in both schemes. It is evident that the stochastic fluctuations are
more pronounced in the error plots for the simulation with ϵ = 0.3 than for the case with ϵ = 0.01. For this test example,
we have used M = 10 000 and it may be noted that this number of realizations were sufficient for a weak convergence of
the computations. To illustrate this convergence behavior, we summarize in Table 3 the L∞-norm of the error E(t) using
different time steps. Convergence rates for the Euler–Maruyama and SRK schemes are also reported in this table for the
considered values of ϵ. A simple inspection of Table 3 reveals that a decay of the error norm is achieved by decreasing the
time steps for both schemes. However, a faster decay has been observed in the error computed using the SRK scheme. As
can be seen, the rate of convergence in the Euler–Maruyama scheme is of O


(1t)0.5


whereas the SRK scheme exhibits a

second-order accuracy for the considered values of ϵ. It should be stressed that, in our simulations the computational time
required for the SRK scheme is about 2.3 times the computational time needed for the Euler–Maruyama scheme.

4.2. Stochastic Burgers flow problem

We first consider the deterministic inviscid Burgers equation with a discontinuous flux function given by (2) with

G(u) =
1
2
u2, k(x) =


1, if x < 5,
3, if x > 5, (39)
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Fig. 2. Evolution of the error E(t) in the Euler–Maruyama and the SRK schemes for the linear SDE (37) using1t = 2−5 . ϵ = 0.01 (left plot) and ϵ = 0.3
(right plot).

Fig. 3. Comparison of different limiters for the deterministic Burgers equation (left plot) and their corresponding parameter αi+1/2 (right plot) at time
t = 0.5.

and an initial condition given by

u0(x) =


1, if x < 5,
2, if x > 5. (40)

In a first run with this test example, we compare the results obtained using the two considered limiter functions (26) and
(27) in the modified Rusanov method on a mesh with 100 gridpoints. In the left plot in Fig. 3 we display the computed
solutions at time t = 0.5 along with a reference solution obtained by applying the method on the very fine mesh of 10000
gridpoints. For comparison reasons, we have also included the solution computed with the classical Rusanov method. Note
that for a better comparison, a zoom of the solutions is included within the results. It is clear from the results presented
in this figure that the numerical diffusion is more pronounced in the results obtained using the classical Rusanov scheme.
This excessive numerical dissipation has been successfully removed by using the modified Rusanov method with both the
MinMod and the van Albada limiters. It is seen that for the considered conditions, the van Albada limiter gives better results
followed by the MinMod limiter. The associated selection of the parameter αi+1/2 in these methods is depicted in the right
plot in Fig. 3. As mentioned earlier in the classical Rusanov method, αi+1/2 = 1 and it remains constant while a locally
variable αi+1/2 is used in the proposed modified Rusanov method. This variation in αi+1/2 has been detected in the area on
the computational domain where the shock and rarefaction waves appear. Different features are observed in the plots of
αi+1/2 using the MinMod and the van Albada limiters. Hence, our next computations with the modified Rusanov method
will be realized with the van Albada limiter only.
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Fig. 4. Comparison of different methods for the deterministic Burgers equation using 100 gridpoints (left plot) and 200 gridpoints (right plot) at time
t = 0.5.

Next we compare the performance of the proposed finite volume method to the well-established Roe method [48]. The
computed results using a mesh with 100 and 200 gridpoints are depicted in Fig. 4. It is seen that for this test example, the
results obtained using the classical Rusanov and the Roe methods are roughly the same. For both meshes, the proposed
finite volume method is more accurate, as it is clearly seen in the vicinity of the shock and the contact waves. The modified
Rusanov method offers a fine approximation to the solution since it removes the smearing of the classical Rusanov and
Roe methods produced in the shock. For the considered meshes, it has been found that the proposed finite volume method
requires three to four times less computational work than the Roe scheme. We have also found that the CPU time needed
for the modified Rusanov method is less than 1.5 times more than that needed for the classical method. The additional
computational effort used by the procedure in the selection of the parameter αi+1/2 has been kept to the minimum that
the modified method is still effective. The proposed finite volume method seems to be a good compromise between the
accuracy and the computational efficiency.

Our next concern is to examine the performance of the proposed finite volume method for solving stochastic Burgers
equations. Therefore, we solve the stochastic conservation law (1) subject to the following flux function

F(K(x), u) = K(x)
u2

2
, K(x) =


1, if x < X,
3, if x > X, (41)

and the initial condition (40). The governing stochastic differential equations for the velocity fluctuation V and the
displacement X are

dV = 0.4 cos (πX) dt + 0.5e−0.5t2dW , V (0) = 0,
dX = Vdt + ϵdW , X(0) = 5.

(42)

In Fig. 5 we show 10 independent sample paths along with the mean solution of the displacement X computed using the
SRK schemewith ϵ = 0.01 and ϵ = 0.1. A large perturbation is obtained for large values of ϵ and the noise in the trajectories
becomemore clear for larger values of ϵ. As can be seen, in this test example, the expected interface is no longer the constant
X = 5 as in the deterministic flux (39). It is therefore, evident that the stochastic solution exhibits different behavior than
that illustrated for the deterministic solution. The SRK scheme performs well for solving the nonlinear system of stochastic
differential equations (42).

The evolution in time–space phase domain of the mean solutions and their corresponding standard variations is
presented in Figs. 6 and 7 for ϵ = 0.01 and for ϵ = 0.1, respectively. For these results we have used a mesh with 200
gridpoints to reduce the grid dependence in the simulated results. As can be seen from these figures, smaller standard
deviations are obtained for smaller values of stochastic magnitudes ϵ. It is also seen that the variation of the variance
solutions is large and the maximum values are located along the shock line. The proposed finite volume method accurately
resolves this stochastic conservation law without exhibiting nonphysical oscillations. It is clear that the uncertainty in the
considered Burgers equation seems to play a diffusion role in the problem, compare the resolution of shocks in the results
presented in Figs. 6 and 7. For the sake of comparison, we illustrate in Fig. 8 the evolution in the time–space domain of
the numerical solution of the deterministic Burgers equation (40). Notice that increasing the value of ϵ, the numerical
expected solutions in the stochastic simulations deviate from the solutions in the deterministic situation. The performance
of the modified Rusanov method and the stochastic Runge–Kutta scheme is very attractive since the computed solutions
remain stable and accurate even for relatively coarse meshes without solving Riemann problems or requiring complicated
representation of the uncertainty.
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Fig. 5. Sample paths for the trajectory X along with the mean value of X in the stochastic Burgers equation with ϵ = 0.01 (left plot) and ϵ = 0.1 (right
plot).

Fig. 6. Evolution in the time–space domain of the expected solution (left plot) and the standard deviation (right plot) for the stochastic Burgers equation
with ϵ = 0.01.

Fig. 7. Evolution in the time–space domain of the expected solution (left plot) and the standard deviation (right plot) for the stochastic Burgers equation
with ϵ = 0.1.
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Fig. 8. Evolution in the time–space phase domain of the numerical solution for the deterministic Burgers equation.

4.3. Stochastic traffic flow problem

Traffic flow models remain challenging for numerical solutions, even though great progress has been made in the
development ofmodern shock capturingmethods for equations of conservation laws in the last decades. Taking into account
the nature of vehicular roads and the behavior of drivers, these models offer a realistic one-dimensional conservation law
with stochastic discontinuous coefficient entries, see for example [49]. The well-known Lighthill–Whitham and Richards
model [31] for traffic flows can be formulated in a conservation law of the form (1) where

u(t, x) = a(x)ρ(t, x),

with a(x) and ρ(t, x) are the lane number and the density per-lane, respectively. In this example, we consider a stochastic
flux function given by

F(K(x), u) = K(x)u(1 − u), K(x) =
v(t, x)
vmax

, (43)

where v(t, x) is the free flow velocity at the location x and vmax is the maximum allowable speed. Here, we consider a
road with length of L = 10 km with an initial density ρ(x) = 0.2 veh/km. The coefficients a(x) and v(t, x) are stochastic
discontinuous functions given by

a(x) =


4, if x < X,
2, if x ≥ X, v(t, x) =


1, if x < X,
0.6, if x ≥ X . (44)

In this example, the SDE we used to model the velocity fluctuation V and the displacement X are given as

1
ϵ
dV =


1
2

− V

X3dt + dW , V (0) = 0 km/h,

dX = Vdt + ϵdW , X(0) = 3 km.
(45)

The computational road is divided into 200 gridpoints and the duration of this simulation is 900 s. To display the results we
use dimensionless variables obtained by scaling the space x and time t by x/L and tvmax/L, respectively.

Fig. 9 shows 10 independent sample paths alongwith themean solution of the dimensionless displacementX obtained by
solving the SDE (45) using the SRK schemewith ϵ = 0.001 and ϵ = 0.01. This figure reveals that the magnitude of the noise
in the stochastic traffic flow problem increases as the values of ϵ become large. Note that, unlike the previous test example,
for the considered test problem, the expected value of the trajectory X remains constant and equals to 3 km for both values
of ϵ. The SRK scheme captures the correct dynamics of the displacement in the nonlinear system of stochastic differential
equations (45). It is worthmentioning that a deterioration of the accuracy in solving the system (45)will consequently result
in a degradation of the accuracy in the finite volume solution of the traffic flow problem (43).

In Figs. 10 and 11 we present the evolution in time–space phase domain of the dimensionless mean density solutions
and their corresponding standard variations for ϵ = 0.001 and for ϵ = 0.01, respectively. Note that for a larger diffusion
coefficient ϵ, the effects of uncertainties aremore pronounced in the expected solutions. This can be attributed to the fact that
a stochastic flux function adds numerical diffusion to the traffic flowproblemwhich could be neglected if a physical diffusion
is introduced in the original problem. We observe that the standard deviation attains the highest values in the regions of
a steep gradient. Apparently, the overall traffic flow features for this example are preserved with no spurious oscillations
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Fig. 9. Sample paths for the trajectory X along with the mean value of X in the stochastic traffic flow problem with ϵ = 0.001 (left plot) and ϵ = 0.01
(right plot).

Fig. 10. Evolution in the time–space domain of the expected solution (left plot) and the standard deviation (right plot) for the stochastic traffic problem
with ϵ = 0.001.

Fig. 11. Evolution in the time–space domain of the expected solution (left plot) and the standard deviation (right plot) for the stochastic traffic problem
with ϵ = 0.01.
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Fig. 12. Evolution in the time–space phase domain of the numerical solution for the deterministic traffic flow problem.

appearing in the results obtained using the proposed methods. Obviously, the computed results verify the stability and the
shock capturing properties of the proposed finite volume method.

The evolution of the deterministic dimensionless density (obtained using fixed X = 3 km in (44)) is shown in Fig. 12.
Our finite volume method captures the correct traffic jam structure and it advects the moving fronts without deteriorating
the location of backward and forward waves. It is also clear that by using a limiting procedure in the local selection of the
parameter αi+1/2 in (25), high resolution is obtained in those regions where the gradients of the solution are steep such
as the moving fronts. Remark that although the expected trajectory in the SDE (45) is X = 3 km, the obtained stochastic
and deterministic solutions are not similar. For example, the shock is better captured in the deterministic solution than its
stochastic counterpart, and diffusion is more pronounced in the stochastic solution than the deterministic one. Our method
accurately resolves this nonlinear stochastic traffic flow problem.

4.4. Stochastic two-phase flow problem

The Buckley–Leverett equation has served as one of the simplestmodel of two-phase flow in a stochastic porousmedium,
see for example [4]. Here the governing equations are (1) where the flux function is not convex and it is given by

F(K(x), u) =
u2

u2 + K(x)(1 − u)2
, K(x) =


50, if x < X,
5, if x > X . (46)

The initial condition is

u0(x) =


0, if 0 ≤ x ≤ 1 −

1
√
2
,

1, if 1 −
1

√
2

≤ x ≤ 1.

In this example, the SDEs we used to model the velocity fluctuation V and the displacement X are given as

dV =
2Xu(1 − u)

(1 + X)u2 − 2Xu + X
2 dt +

t
1 + t

dW , V (0) = 0,

dX = Vdt + ϵdW , X(0) = 0.5.

(47)

This problem is more complicated than the previous one since the drift term in the first equation in (47) depends on the
displacement X and the solution u as well. Recall that this drift term is obtained by differentiating the flux function F(X, u)
with respect to u. In order to illustrate the stochastic nature of the solutions in the system (47), we generate the trajectories
for the solution u computed at the point x = 0.5. In Fig. 13 we present 10 independent sample paths along with the mean
solution of the displacement X computed using the SRK schemewith ϵ = 0.01 and ϵ = 0.4. Larger fluctuations are detected
in the trajectories obtained for ϵ = 0.4. As can be seen, good behavior is recovered by the SRK scheme for the considered
stochastic inputs in the system (47) without any significant loss of accuracy.

The evolution in time–space phase domain of the mean solutions and their corresponding standard variations is
presented in Figs. 14 and 15 for ϵ = 0.01 and for ϵ = 0.4, respectively. For sake of completion, we also present in
Fig. 16 the evolution in the time–space domain of the solution of the deterministic Buckley–Leverett problem obtained
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Fig. 13. Sample paths for X along with the mean solution for the stochastic Buckley–Leverett problem with ϵ = 0.01 (left plot) and ϵ = 0.4 (right plot).

Fig. 14. Evolution in the time–space phase domain of the expected solution (left plot) and the standard deviation (right plot) for the stochastic
Buckley–Leverett problem with ϵ = 0.01.

by setting X = 0.5 in (46). In all these results, the spatial domain is discretized into 200 gridpoints. Note that the exact
solutions to these examples are not available, but the computed solutions using the proposed method seem to converge to
the physically relevant solutions in all selected test cases. The proposed finite volumemethod captures the shock accurately,
does not diffuse the fronts or gives oscillations near the steep gradients. As can be seen, larger deformation and diffusion
have been detected in the stochastic solutions than those obtained for the deterministic problem. For the considered random
perturbations in the SDE (47), the stochastic location of the interface in the flux function acts like diffusion in the sense
that the computed solutions are damped. Note that, the random external force in the stochastic differential equations (47)
does not directly contribute to the mean solution of the Buckley–Leverett problem. However, due to the nonlinearity of the
equations, the mean solution is driven by the velocity fluctuation V and the displacement X that represent the uncertainty
of the solution.

5. Conclusions

A simple and accurate finite volume Runge–Kutta method to solve the scalar conservation laws with stochastic time–
space dependent flux functions has been presented. The method combines the attractive attributes of the finite volume
method for spatial discretization and the stochastic Runge–Kutta scheme for time integration to yield a procedure for either
linear or nonlinear equations of conservation laws. The newmethod has several advantages. First, it can solve deterministic
conservation laws with discontinuous flux functions without large numerical errors, thus demonstrating that the proposed
scheme achieves perfect numerical accuracy in the treatment of discontinuity in the flux functions. Second, it can compute
the numerical flux corresponding to the real state of solutionwithout relying on Riemann problem solvers. Third, reasonable



K. Mohamed et al. / Journal of Computational and Applied Mathematics 237 (2013) 614–632 631

Fig. 15. Evolution in the time–space phase domain of the expected solution (left plot) and the standard deviation (right plot) for the stochastic
Buckley–Leverett problem with ϵ = 0.4.

Fig. 16. Evolution in the time–space phase domain of the numerical solution for the deterministic Buckley–Leverett problem.

accuracy can be obtained easily and no special treatment is needed for the numerical solution of the stochastic differential
equations, because it is performed automatically in the integrated numerical flux function. Finally, the proposed approach
does not require either nonlinear solvers or direct statistical approaches. Furthermore, it has strong applicability to various
scalar conservation laws with stochastic time–space dependent flux functions as shown in the numerical results.

The proposed finite volume Runge–Kutta method has been tested on stochastic Burgers equation, stochastic problems
in traffic flow and two-phase flow applications. The obtained results indicate good shock resolution with high accuracy
in smooth regions and without any nonphysical oscillations near the shock areas. The convergence to the correct steady-
state solution has been clearly verified in a deterministic scalar conservation law with discontinuous flux functions. Results
presented in this paper have shown high resolution of the proposed finite volume method and confirm its capability
to provide accurate and efficient simulations for scalar conservation laws with stochastic time–space dependent flux
functions. Future work will concentrate on extending the proposed method to hyperbolic systems of conservation laws
with stochastic time–space dependent flux functions in one and two space dimensions. Furthermore, since the difficulties
arising from coefficientswithmultiplicative noisewould not fit into the frame of this paper, wewill only dealwith stochastic
conservation laws involving multiplicative noise in a forthcoming paper.
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