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Abstract

We have cloned and sequenced a cDNA coding for rice elongation factor 18 (EF-18). The clone was 1420 bp long and contained an open reading
frame coding for 229 amino acids. The overall identity between rice EF-1§ and rice EF-1§’ [Matsumoto, S., Oizumi, N., Taira, H. and Ejiri, S. (1992)
FEBS Lett. 311, 46-48] is 60% at the amino acid sequence level; a higher percent identical residues (81%) were especially observed in the C-terminal
region. Rice EF-18 has no conserved phosphorylation site for casein kinase IT and no leucine zipper motif, although these motifs are well conserved

in EF-16 (= § in plants) subunits of animal EF-1.
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1. Introduction

Eukaryotic elongation factor 1 (EF-1) is composed of
four non-identical subunits, EF-1a, §, f’ and 7. EF-la,
corresponding in function to prokaryotic EF-Tu, reacts
with GTP and aminoacyl-tRNA to form a ternary com-
plex, and catalyzes the binding of aminoacyl-tRNA to
the A site of ribosome concomitant with the hydrolysis
of GTP. EF-188’y, corresponding in function to prokar-
yotic EF-Ts, catalyzes the exchange of GDP bound to
EF-la with exogenous GTP, and stimulates the EF-la-
dependent aminoacyl-tRNA binding to ribosomes. In-
terestingly, both EF-18 and f’ have GDP/GTP exchange
activity. They were named simply from the order of their
molecular weights [1,2]; although confusing, in animals,
EF-1§ and EF-15’ are termed EF-15 and EF-15, respec-
tively [3].

In Artemia salina, it was demonstrated that the activity
of EF-18 (#’ in plants) was regulated by phosphorylation
of the serine residue at position 89 by endogenous casein
kinase I (CK II) [4]. The consensus sequence for phos-
phorylation was well conserved in EF-18 and EF-18 of
A. salina (3,5], human [6-8] and Xenopus laevis [9,10],
EF-18 of Saccharomyces cerevisiae [11], and EF-18" of
silkworm [12]. In addition to the conserved phosphoryl-
ation site, EF-19 in 4. salina, human, and X. laevis pos-
sess a leucine zipper motif in the N-terminal region {8,9].

* Corresponding author. Fax: (81) (196) 24 5084.

Recently, we have found that rice and wheat EF-15" do
not contain a serine residue corresponding to the CK 11
phosphorylation site of A. salina [13,14]. Wheat EF- 1§
was not phosphorylated by purified CK II, whereas
serine residue(s) in wheat EF-18 was phosphorylated
[15].

To investigate the molecular structure of the plant
EF-18, we cloned the cDNA of EF-18 from rice. We
show here the first plant cDNA sequence encoding EF-
15, and find that the sequence has no conserved phos-
phorylation site and no leucine zipper motif.

2. Materials and methods

Rice EF-18 subunit was isolated from rice (Oryza sativa L., var.
Toyonishiki) embryo according to the method of Ejiri [16]. The subunit
was cleaved with cyanogen bromide or lysylendopeptidase, and the
resulting peptides were separated by reverse-phase HPLC using an
ODS-120T column (Tosoh Corp.) in 0.1% TFA with an acetonitrile
gradient of 0-80% in 80 min. The amino acid sequences of the frag-
ments were analyzed with a gas phase protein sequencer (Shimazu
Corp., Modet PSQ-1).

A Agt10 rice (Oryza sativa L., var. Hayayuki) cDNA library provided
by Dr. K. Toriyama was screened with a *P-labeled 470-bp fragment
corresponding to nucleotides 94-563 of rice EF-18’ cDNA([13], and five
positive plaques were obtained. After plaque purification, the inserts
were subcloned into the EcoRI site of the phagemid Bluescript II KS*
vector. The sequences were determined using the Sequenase version 2.0
kit applied to double stranded DNA (USB Corp.) [17].

For Southern analysis, DNA digested with a restriction enzyme was
electrophoresed on a 0.7% agarose gel, then transferred to a nylon
membrane {Gene Screen Plus, New England Nuclear) essentially by the
procedure of Reed and Mann [18]. The filter was hybridized with
random primed radiolabeled fragments [19] in 6 x SSC (1 x SSCis 0.15
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M Nadl, 0.015 M sodium citrate) and 1% SDS, and following hybrid-
ization washed with 2 x SSC and 1 % SDS at 65 °C.

3. Results and discussion

3.1. Isolation of a cDNA clone encoding rice EF-18

A Agtl0 rice cDNA library containing 1 x 10° recom-
binants, which had been amplified once, was screened at
low stringency with a 470 bp PCR-amplified fragment
encoding a part of rice EF-18" cDNA. We obtained five
positive clones. Four clones were found to contain in-
serts of about 1.0 kb corresponding to EF-15" cDNA, as
judged by restriction map analysis. The other clone,
named RB, and which carried a cDNA insert of about
1.4 kb possibly encoding EF-15, was analyzed further.

3.2. Characterization of rice EF-18 cDNA and protein
Fig. 1 shows the nucleotide and deduced amino acid
sequences of the cDNA. The cDNA insert (1420 bp)

GCCAGCAGCCGCGCCGCTGCCTCTCCTCCTCCTCCCCTCGCCGCCGATCCAATCCGGTCA 60
CTTTCAGTCTTTTITTCTTGAGGGGGAGATGGCGGTTTCTTTCACCAACGTTAGCTCAGAG 120
M AV S F TNV S S E 1

GCAGGCCTCAAAAAGCTCGATGAGTACCTTCTCACTCGCAGCTACATCTCTGGGTACCAA 180
A G L K K 1L DE Y L L T R S Y |1 86 Y Q 31

GCCTCCAACGATGACTTGGCTGTGTACTCTGCATTTTCAACTGCGCCCTCTTCAAGCTAT 240
A_S N D D L AV Y § A F S T AP S § S Y 51

ACCAATGTTGCTAGGTGGTTTACTCACATTGATGCACTCCTACGTCTGAGTGGAGTTACT 300
I NV ARWTFTHIDALULRLSGVT 7

GCTGATGGTCAAGGCGTAAAGGTCGAGTCGACAGCTGTTCCTTCAGCTTCAACCCCTGAT 360
ADG QG V KV ESTAVYPSASTEPD 91

GTTGCTGATGCAAAGGCTCCTGCAGCTGATGATGACGATGATGACGATGTTGACCTTTTT 420
V ADAKAPAADTDTDTGDTDT DTDVDTLF 111

GGTGAGGAGACTGAAGAGGAGAAGAAGGCAGCTGAGGAGCGTGCTGCTGCTGTCAAGGCT 480
G E E T E EE KK A A EE®RAAAV KA 131

TCTGGCAAGAAGAAGGAATCTGGGAAGTCCTCAGTGTTGCTTGATGTCAAACCATGGGAC 540
$ G K K KE $GK S SV LLDVY KU®PWD 151

GATGAGACTGACATGACCAAATTGGAAGAAGCTGTGAGGAATGTTAAGATGGAAGGCCTC 600
DETDMTKLEEAV RNV KMEGL 1m

CTTTGGGGCGCATCCAAGCTTGTCCCGGTTGGTTACGGTATCAAGAAATTGCAAATCATG 660
L WG A S KL VPV GEGY G I KKLOAaLt M 191

ATGACCATTGTCGATGATCTTGTGTCGGTTGATAGTCTGATTGAGGACTACTTCTACACC 720
M T Il VDDLV SVDSLIEDYFYT 211

GAACCAGCGAATGAGTACATCCAGAGCTGCGACATTGTTGCGTTCAACAAGATCTAGATC 780
EP ANEY I QS CD I VAFNK | * 229

TTCCTTGAGTCAGGTGATGGCGATCGGTGCAGCGGCCGCCGCGCCACGCACGCACCGTCA 840
GGCATCGACGACGAGCGAGACGCCCTCGGCGCAGAAGACACTCACGGCGATGGCAGGTGA 900
CGAGGACGGCGCTGCTGGTGGTGTTGGTAGCGGGGGCGATGACGATGACGATGCGCGGEG 960
CGGAGGCGCAGAGCCGAGCTGCGCGGCGCAGCTCACGCAGCTEBGCGCCGTGCGCGCGAGT 1020
CGGCGTGGCECCGCCGGEECAGCCGCTGCEAGCCCCCGGCGGAGTGCTGCCTGCTGGGCG 1080
CCGTGTCGCACGACTGCCGTGCGGCACGCTCGACATCATCAACAGCCTCCCGCCAAGTGC 1140
GGCCTCCCGCGCGTCACCTGCCAGTGATGGAGATGGTGTGCCAAGGTAATTGCGTTTGCT 1200
CGTGCGAGGATGAGAAGAGAAGATTGAATAAGATGTTTGATGGCAACAAGTCATCAGGCG 1260
ATCCGATCCCTGCAGCTATGAATGGGGTATACGTAGTAGTGGTCTCGTTAGCATCTGTGT 1320
GTCGCATATCAGCGCCGTGCGTGCCGTGTCTGTCCTGCTTGCTCTGCTGATCGTTCAATG 1380
AACGACAAATTAATCTAACTCTGGAGTGACAAGTCGTTCG 1420

Fig. 1. Nucleotide and deduced amino acid sequences of the rice EF-18
¢DNA. The underlined amino acids were confirmed by protein se-
quencing. The asterisk indicates stop codon.

S. Matsumoto et al.| FEBS Letters 338 (1994) 103-106
A B CD
kb '?

94- ; o
6.6-u ™

I

i

Fig. 2. Southern blot analyses of EcoRI (lanes A, C) or BamHI (lanes
B, D) digested rice (Oryza sativa L., var. Hayayuki) DNA (10 ug) with
the Kpnl/HindIlI fragment of rice EF-18 ¢cDNA (nucleotides 178-616,
Fig. 1) (lanes A, B) or the EcoRI fragment of rice EF-15" ¢cDNA
(nucleotides 1-980) [13] (lanes C, D) as probes.

contains 687 bp of coding region encoding 229 amino
acids, which is 6 amino acids longer than rice EF-15’
protein. By contrast, human EF-16 and X. laevis EF-16
are 281 and 265 amino acids long, respectively. The pu-
tative initiation codon ATG at position 88-90 is not
preceded by a stop codon, but it is the first ATG in the
sequence. The purine residue in position 85 and the G/C-
rich sequence surrounding the first ATG conforms to the
consensus eukaryotic initiation sequence [20]. The se-
quences determined at the protein level, 62 amino acids
in total, were found within the amino acid sequence pre-
dicted from the cDNA (Fig. 1), save for one exception.
We found phenylalanine instead of tryptophan at posi-
tion 173 when the protein sequence of EF-18 was deter-
mined. The difference may be due to DNA polymor-
phisms between cultivars used. The termination codon
TAA is present at positions 775-777, followed by the
3-untranslated region which contains no consensus pol-
yadenylation signal AATAAA. The signal is also not
found in rice EF-18" [13]. The calculated molecular
weight of 24,861 Da is smaller than that of 28,000 Da
determined by SDS-PAGE. Similar results were also ob-
served in rice EF-18713], wheat EF-15" [14], A. salina
EF-18 [5] and human EF-1§ [8]. A Kpnl/HindIll frag-
ment of rice EF-18 cDNA (position 178-616, Fig. 1) or
an EcoRI fragment of rice EF-18" cDNA (position 1-
980) [13] was hybridized to EcoRI1 or BamHI digests of
the rice (Oryza sativa L., var. Hayayuki) genomic DNA.
The Southern blot analyses suggest that rice EF-18 and
EF-1§" are single-copy genes (Fig. 2). The minor bands
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Human 18 MATNFLAHEK | WFDKFKYDDAERRFYEQMNGPVRGASRQENGATV I LRDI
I | |

Rice 1B MA-——————- VSFTNVSSEAGLKK LDEY

| | I
Xenopus 18 MSAFV!TTEQVWLDKYKYDDAEKQYYENLS—--MGSASN-——————————

60 70 80 90 100

Human 16 ARARENIQKSLAGSSGPGASSGTSGDHGELVVR I ASLEVENQSLRGVVQE
[ [ [ I 1

Rice 183 LLTRSY I SGYQASNDDLAVYSAFSTAPSSSYTNVARWFTHIDALL————-
| 1 I I N |

Xenopus 18 ———————v KPHNSPQSAASALSNSGDGSELAARVANLEQENQSLHKVVKD

110 120 130 140 150

Human 18 LQQA | SKLEARLNVLEKSSPGHRATAPQTQHYS————-| PMRQVEPPAKKP

il | 1 |
Rice 18 ———==———o RLSGVTADGQGVKVESTAVPSAS~————————= TPDVADA

1 | I I
Xenopus 18 LQSAISKLESRLSTLEKSSKSQKPAAASQPAIEVAARVQXVQVTPAAKEE

160 170 180 190 200

Human 19 —~ATPAEDDEDDD | DLFGSDNEEEDKEAAQLREERLRQYAEKKAKKPALVA
P e i 1 Bl

Rice 18 KAPAADDDDDDDVDLFGEETEEEKKAAEE-RAAAVKASGKKKES————— G

FHELENE 11 (RN | | | |
Xenopus 10 NGTGEDDDDDDD|DLFGSDNEEEDAEAAR!REERLKQOYAEKKSKKPGY 1A

210 220 230 240 250

Human 18 KSS|LLDVKPWDDETDMAQLEACVRS | QLDGLVWGASKLVPVGYGIRKLQ
PEE PRLRVRERLEENY e i LETEETEELNRLgn

Rice 1f KSSVLLDVKPWDDETDMTKLEEAVRNVKMEGLLWGASKLVPVGYGIKKLQ

PR TEELERERRRRr bere 0k 0 0 v b L
Xenopus 18 KSSILLDVKPWDDETDMAKLEECVRTVOMDGLVWGSSKLVPVGYGIKKLG

260 270 280 290

Human 18 1QCVVEDDKVGTDLLEEE——-1 TKFEEHVQSVD | AAFNK |
1 e i [ R RN R

Rice 1B IMMT | VDDLVSVDSL I EDYFYTEPANEY 1 QSCO | VAFNK |

| [ I N I | P
Xenopus 18 IQCVVEDDKVGTDILEEE~——-|TKFEDYVQSVDIAAFNK |

Fig. 3. Comparison of the amino acid sequences. The presented se-
quences are: Human 16, EF-16 from human [8]; Rice 15, EF-18 from
rice; Xenopus 16, EF-18 from Xenopus laevis [9]. Gaps introduced to
optimize alignments are presented with dashes.

may be attributed to small exons or distantly related
genes.

3.3. Comparison of amino acid sequences from different
sources

A comparison of the deduced amino acid sequence of
rice EF-18 with that of human EF-1§ and X. laevis
EF-19 reveals 38 and 44% identical residues, respectively
(Fig. 3, Table 1). Amino acids 136-229 of rice EF-18
which correspond to the C-terminal region, show higher
similarity with residues 189-281 of human EF-16 (59%),
133-225 of human EF-18 (60%), 173265 of X. laevis
EF-16 (64%), and 135-227 of X. laevis EF-18 (60%). The
C-terminal region shows 51-77% identical residues to
that of EF-18 from S. cerevisiae and A. salina, and EF-
14’ from silkworm and wheat. Since the C-terminal re-
gion of EF-18 in A. salina retains the full guanine nucle-
otide exchange activity [3], it is likely that the region of
rice EF-15 possesses a similar function. It is noteworthy
that residues 148 to 154 (KPWDDET) are completely
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conserved among eukaryotes. Some of these residues are
likely to participate in the GDP/GTP exchange reaction.

The serine residue at position 89 of A. salina EF-15
was phosphorylated by CK II [4]. The sequence around
this residue (position 85-95, DLFGSDEEDEE) is well
conserved in human EF-16 (position 158-168,
DLFGSDNEEED) and X. laevis EF-18 (position 104
114, DLFGSDNEEED) (Fig. 3). Although the consen-
sus sequence DLFG-EETEEE (position 109-118) is well
conserved in rice EF-18 protein (Fig. 3), the serine resi-
due itself is absent. This serine is also missing in rice
EF-15’ (DLFG-DETEED) and wheat EF-18’ (DLFG-
DETEED) [13,14]. Wheat EF-15’ containing the threon-
ine residue in the sequences DLFG-DETEED were not
phosphorylated by purified CK IIs [15]. Since one or
more serine residues in wheat EF-15, but not threonines,
were phosphorylated by purified CK II [15], the threon-
ine residue in the rice EF-18 sequence (DLFG-EETEEE)
might not be used as a phosphorylation site. Since serine
residues in rice EF-18, but not EF-1§, are
phosphorylated in vitro (unpublished results), another
phosphorylation site may exist. The existence of this site
is now under investigation.

Besides the difference in phosphorylation sites be-
tween plant EF-18 and animal EF-14, a leucine zipper
motif in animal EF-16s (e.g. human EF-14, position 80—
115; X. laevis EF-16, position 58-93; A. salina EF-16,
position 58-93 [8]) is not present in rice EF-18 (Fig. 3).
The function of the leucine zipper therefore appears not
to be universal among eukaryotes.

Both EF-18 and EF-1§’ from plants share a similar
percentage identical amino acids with S. cerevisiae EF-18
(41-43%) as with animal EF-188bs (36-53%) (Table 1).
In contrast, the similarity with EF-Ts from E. coli is only
20-22% (Table 1). On the other hand, the similarity be-
tween rice EF-15" and wheat EF-15" (79%) is higher than
that of rice EF-18 and rice EF-18’ (60%) (Table 1). Sim-
ilarly, homology between human EF-16 and X. laevis
EF-16 or human EF-18 and X. laevis EF-18 is higher
than that of human EF-14 and human EF-18 or X. laevis
EF-16 and X. laevis EF-15 (Table 1). These results sug-
gest that EF-18 and EF-1§ in plants, or EF-16 and
EF-18 in animals, probably arose before eukaryotes di-
verged into plant and animal species.
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