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a b s t r a c t

We investigate a coloring problem, called ordered coloring, in grids and someother families
of grid-like graphs. Ordered coloring (also known as vertex ranking) has applications,
among other areas, in efficient solving of sparse linear systems of equations and scheduling
parallel assembly of products. Ourmain technical results improve upper and lower bounds
for the ordered chromatic number of grids and related graphs.
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1. Introduction

A (simple) graph is a pairG = (V , E), where V (the vertex set) is a finite set and E (the edge set) is a family of two-element
sets of V . A simple path of graph G is a sequence of some of the vertices of G such that consecutive vertices in the sequence
are connected with an edge of G and no vertex repeats in the sequence. The notion of ordered coloring is defined as follows.

Definition 1. An ordered coloring of graphG = (V , E)with k colors is a function C: V → {1, . . . , k} such that for each simple
path p in G the maximum color assigned to vertices of p occurs in exactly one vertex of p. The ordered chromatic number of a
graph G, denoted by χo(G), is the minimum k for which G has an ordered coloring with k colors.

In this paper we focus on the problem of computing ordered colorings (also known as vertex rankings) for grids and
related graphs, with as few colors as possible.

The problem of computing ordered colorings is a well-known and widely studied problem (see for example [1]) with
many applications including VLSI design [2] and parallel Cholesky factorization of matrices [3]. The problem is also
interesting for the Operations Research community, because it has applications in planning efficient assembly of products in
manufacturing systems [4]. In general, it seems that the ordered coloring problem can model situations where interrelated
tasks have to be accomplished fast in parallel (assembly from parts, parallel query optimization in databases, etc.)

In general graphs, finding the exact ordered chromatic number of a graph is NP-complete [5,6] and there is an O(log2 n)
polynomial time approximation algorithm [7], where n is the number of vertices. Since the problem is generally hard, it
makes sense to study specific graph topologies and the focus of this paper is the calculation of the ordered coloring number
of several grid-like families of graphs. Our main focus are grid graphs, which can be formally defined as follows.

Definition 2. An m1 × m2 grid, denoted by Gm1,m2 , is a graph with vertex set {0, . . . ,m1 − 1} × {0, . . . ,m2 − 1} and edge
set


{(x1, y1), (x2, y2)} | |x1 − x2| + |y1 − y2| ≤ 1


.

✩ A preliminary version of this work appeared in the Proceedings of the 16th International Colloquium on Structural Information and Communication
Complexity (SIROCCO), 2009.
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Whenm1 = m2 = m, we have a square grid, denoted by Gm. In a standard drawing of the grid graph, vertex (x, y) is drawn
at point (x, y) in the plane; vertices with the same x are said to be in the same column and ones with the same y to be in the
same row. A chain (or path) graph with n vertices is denoted by Pn and a ring (or cycle) graph with n vertices is denoted by
Cn. The grid Gm1,m2 can also be defined as the Cartesian product of two paths Pm1 × Pm2 .

It is known from [1] that for general planar graphs the ordered chromatic number is O(
√
n). Grid graphs are planar and

therefore the O(
√
n) bound applies. One might expect that, since the graph families we study have a relatively simple and

regular structure, it should be easy to calculate their ordered chromatic numbers. This is why it is rather striking that, even
though it is not hard to show upper and lower bounds that are only a small constant multiplicative factor apart, the exact
value of these ordered chromatic numbers is not known. The main contribution of this paper is to further improve on these
upper and lower bounds and to the best of our knowledge this is the first such attempt.

Paper organization. In the rest of this sectionwe provide the necessary definitions and some preliminary known results that
will prove useful in the remainder. In Section 2 we present our results improving the known upper bounds on the ordered
chromatic number of grids, tori and related graphs, while in Section 3we show lower bounds for square grids and tori. Some
discussion and open problems are presented in Section 4.

1.1. Preliminaries

First, let us remark that Definition 1 is not the typical definition of ordered coloring found in the literature. Instead, the
following definition is more standard, but it is not hard to show that Definitions 1 and 3 are equivalent (see for example [1]).

Definition 3. An ordered k-coloring of a graph G = (V , E) is a function C: V → {1, . . . , k} such that for every pair of distinct
vertices v, v′, and every path p from v to v′, if C(v) = C(v′), there is an internal vertex v′′ of p such that C(v) < C(v′′).

We note that for the complete graph Kn, we have χo(Kn) = n and for every non-complete graph G on n vertices, we have
χo(G) < n. Moreover, it is easy to prove that the ordered chromatic number is monotone under taking subgraphs, i.e., if
X ⊆ Y , then χo(X) ≤ χo(Y ).

A standard concept in graph theory, that will prove useful in the remainder (especially for proving lower bounds), is that
of a graph minor.

Definition 4. A graph X is a minor of Y , denoted as X 4 Y , if X can be obtained from Y by a sequence of the following
operations: vertex deletion, edge deletion, and edge contraction. Edge contraction is the process of merging both endpoints
of an edge into a new vertex, which is connected to all vertices adjacent to the two endpoints.

It is known that the ordered chromatic number is monotone with respect to minors (see for example [8], Lemma 4.3).

Proposition 5. If X 4 Y , then χo(X) ≤ χo(Y ).

A similar concept, which is also standard in graph theory, is that of a topological minor.

Definition 6. A graph X is a topological minor of Y if X can be obtained from Y by a sequence of the following operations:
vertex deletion, edge deletion, and vertex smoothing. Vertex smoothing is the process of deleting a vertex v with exactly
two adjacent vertices u and w, deleting its incident edges vu and vw, and adding the edge uw (if it does not exist).

It is known that a topological minor is also a minor (but not necessarily vice versa).
If v is a vertex of graph G = (V , E), we denote by G − v the graph resulting from deleting vertex v from G (and all edges

incident to v). We use the notation G − S to denote the deletion of all vertices in set S ⊆ V from G.

Definition 7. A subset S ⊆ V is a separator of a connected graph G = (V , E) if G − S is disconnected or empty. A separator
S is inclusion minimal if no strict subset S ′

⊂ S is a separator.

In the rest of this section we show some simple upper and lower bounds on χo(Gm).
For an ordered coloring of them×m grid, Gm, we can use a recursive method of coloring. We usem unique colors for the

middle row (these are the highest colors we are going to use) and then at most m/2 unique colors for the middle column
(we use the same set of at most m/2 unique colors above and under the middle row and these are the highest colors we
are going to use except for them colors of the middle row). The grid minus the middle row and the middle column consists
of four equal grids of (almost) half side length that we recursively color using exactly the same colors for each of the four
grids. This method requires at most 3m colors, i.e., χo(Gm) ≤ 3m. However, this coloring remains ordered even if we add
two edges in every internal face of the standard drawing of Gm. This indicates that 3m is not optimal and in fact, in Section 2,
we improve the above upper bound.

There is also a lower bound of χo(Gm) ≥ m from [1]. Another proof (in [7]) is immediate from the fact that the treewidth
and pathwidth of a graph G are at most theminimum elimination tree height (see [3] for the definition) of G. In the following
we provide a new proof, based on a minor argument, that gives a glimpse of our lower bound method used in a following
section.

Proposition 8. For m ≥ 1, χo(Gm) ≥ m.
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Fig. 1. The rhombus subgraph Rx and its separation.

Table 1
Summary of upper bounds. The last col-
umn indicates on which upper bounds
each result is based.
Graph Upper bound Based on

Gm 2.519m Rm,Om
Rm 1.500m –
Tm 1.118m Rm
Om 1.618m TmGm 3.500m Rm

Proof. By induction. Base: For m = 1, it is true, as χo(G1) = 1. For the inductive step, with m > 1, consider a Hamilton
path p of Gm, which always exists. Consider an optimal ordered coloring C of Gm, i.e., one using χo(Gm) colors. In this optimal
coloring, there is a vertex v with a uniquely occurring color in p (and thus in the whole Gm). If we restrict coloring C to
graph Gm − v, we get a coloring using one color less than the coloring for Gm, which is ordered for Gm − v. Therefore,
χo(Gm − v) ≤ χo(Gm) − 1. Moreover, Gm − v contains Gm−1 as a topological minor (and thus also as a minor), because if
v = (x, y), one can startwithGm−v, and then remove all edges completely in row y, all edges completely in column x, smooth
all vertices of row y, and smooth all vertices of column x, so that the resulting graph is a Gm−1. Thus, from Proposition 5,
χo(Gm − v) ≥ χo(Gm−1) and since χo(Gm) ≥ χo(Gm − v) + 1, we get χo(Gm) ≥ χo(Gm−1) + 1 and from the inductive
hypothesis, χo(Gm) ≥ (m − 1) + 1 = m. �

In Section 3, we improve the above lower bound. Our improvements are also relying onminor arguments like in the proof
above, but involve a careful analysis of separators in grid graphs.

2. Upper bounds

In this sectionwe exhibit ordered colorings for several grid-like families of graphs.We aremainly interested in them×m
(square) grid, Gm. In order to color the grid efficiently we rely on separators whose removal leaves some subgraphs of the
grid to be colored. The subgraphs we will rely on are the rhombus Rx, the wide-side triangle Tx, and the orthogonal triangle
Ox. These are depicted in Figs. 1, 2, and 3 and formal definitions similar to Definition 2 are not hard to infer. Another graph
topology we will investigate is the torus, which is a variation of the grid with wraparound edges added, connecting the last
vertex of every row with the first vertex, and the last vertex of every column with the first. The square torus graphGm can
also be defined as the Cartesian product of two cycles Cm×Cm. A summary of our upper bound results can be seen on Table 1.
It is interesting that the golden ratio φ ≈ 1.618 appears in some of these bounds.

As was evident in the previous section, one strategy for constructing an ordered coloring of a graph is to attempt to find
a separator, that is, a set of vertices whose removal disconnects the graph. The vertices of the separator are all assigned
distinct colors that will be themaximum colors used in the graph coloring. This way, we can recursively construct a coloring
for the connected components that remain after the removal of the separator, such that the same colors are used in each
connected component, because paths in the original graph with endvertices in different connected components have a
unique maximum color in some vertex of the separator. The problem is, then, to find a separator that has few vertices
and the maximum ordered chromatic number over all connected components that remain after removal of the separator is
as low as possible.

In theproofswegive below,wepartition the graphswith thehelp of separators. All results are in the order ofm, sowithout
furthermentionwe do not include terms logarithmic onm. These termsmight be introduced by constant additive terms in a
recursive bound. We are also omitting, in most cases, floors and ceilings, because we are interested in asymptotic behavior.
In that sense, a result like, for example, χo(Gm) ≤ 2.67m should be read as an asymptotic upper bound of 2.67m ± o(m).
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Fig. 2. The wide-side triangle Tx and its separations.

In order to find improved upper bounds we need to find more intricate separators than those of the example of the
previous section. The idea is to use separators along diagonals in a standard drawing of the grid. We will also need to find
efficient colorings of some subgraphs that are left after we remove diagonal-like separators. This is the reason why we first
present efficient colorings for the rhombus and the two triangle subgraphs of the grid.

In the figures of the following sections thicker lines indicate the selection of separator vertices which will receive unique
and maximum colors. Thinner lines that lie on different sides of a thicker line may reuse the same color range.

2.1. Rhombi and triangles

The rhombus. The rhombus Rx is the first subgraph of the grid shown in Fig. 1. It has height x. We have the following upper
bound.

Proposition 9. χo(Rx) ≤ 3x/2 = 1.5x.

Proof. Use a diagonal separator to cut the rhombus in half (x/2 unique colors are used), then cut also the remaining parts
in half with a diagonal separator (x/4 unique colors, used in both parts). This is shown in Fig. 1. Therefore, we have the
recursive formula χo(Rx) ≤ x/2 + x/4 + χo(R⌊x/2⌋), which implies χo(Rx) ≤ 3x/2. �

The wide-side triangle. The wide-side triangle Tx is the subgraph of the grid shown in Fig. 2. Its long side has length x. First,
we provide a simple upper bound.

Proposition 10. χo(Tx) ≤ 7x/6 ≈ 1.167x.

Proof. See the first separation of the wide-side triangle in Fig. 2. Use a separator diagonally, parallel to one of the diagonal
sides of the triangle Tx, with 2x/6 unique colors. In the two remaining parts, separate diagonally by using separators
parallel to the other diagonal side of the triangle Tx; each of those separators uses x/6 unique colors. With one more
use of x/6 unique colors, we end up with connected components that are subgraphs of the rhombus R2x/6. Therefore,
χo(Tx) ≤ 2x/6 + x/6 + x/6 + χo(R⌊2x/6⌋), and since by Proposition 9, χo(Rx) ≤ 3x/2, we have χo(Tx) ≤ 7x/6. �

An improved upper bound can be obtained by the previous one, by making the observation that the graph on the left of
the thickest separator in Fig. 2 is also awide-side triangle. Thus, wemay try to color it recursively in the sameway. However,
this would not improve the bound because the graph that remains on the right side uses 5x/6 colors anyway. This indicates
that the thickest separator would be better positioned if we moved it slightly to the right, since it seems that the remaining
graph on the right side requires more colors.

Suppose that we move it slightly to the right, as in the last part of Fig. 2 and that the ratio of its length over the length
of the long side of the triangle is w ∈ [1/3, 1/2] (previously we had w = 1/3). We will optimize with respect to this w.
Now, the rhombi on the right have length x(1 − 2w), and the separators between them have length x(1 − 2w)/2. From the
previously shown upper bound for the rhombus, and the fact that we need two sets of colors for the separators we conclude
that the right part needs at most 5

2x(1−2w) colors. Assuming that the two parts are well balanced, the whole triangle needs
atmostwx+ 5

2x(1−2w) colors. The triangle formed on the left of the separator has length 2wx, thus from the above it needs
2w2x+

5
2 (2wx)(1− 2w) and in order for the balancing assumption to hold this must be equal to the number of colors used

in the right part. Thus, we get the equation 2w2
+ 5w(1 − 2w) =

5
2 (1 − 2w), which has the solution w =

5−
√
5

8 ≈ 0.345
in the interval [1/3, 1/2]. It is not hard to verify that using a separator of this length all the above arguments hold. Thus, we
reach the following conclusion.

Proposition 11. χo(Tx) ≤
√
5x/2 ≈ 1.118x.

The orthogonal triangle. The orthogonal triangle Ox is the subgraph of the grid shown in Fig. 3. It has height x. We have the
following upper bound.

Proposition 12. χo(Ox) ≤ φx =

√
5+1
2 x ≈ 1.618x.

Proof. See Fig. 3. Use a separator diagonally to form two wide-side triangles whose long sides are of length x. We have the
formula χo(Ox) ≤ x/2 + χo(Tx) and since by Proposition 11, χo(Tx) ≤

√
5x/2, we have χo(Ox) ≤

√
5+1
2 x = φx, where we

denote by φ the golden ratio. �
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Fig. 3. The orthogonal triangle Ox and its separation.

Fig. 4. 8m/3, 18m/7 and (7 + 2φ)m/4 upper bounds.

2.2. Grids and tori

An 8m/3 upper bound for square grids. In the first part of Fig. 4, we show how anm × m grid has to be partitioned with the
help of separators to achieve an 8m/3 upper bound.

The separators use m, m/3, and m/3 colors. After the removal of the separators, the remaining components are all
subgraphs of a rhombus of height 2m/3. By Proposition 9, each remaining component can be colored with m colors. In
total, 8m/3 colors are required.

Proposition 13. χo(Gm) ≤ 8m/3 ≈ 2.667m.

An 18m/7 upper bound for square grids. In the second part of Fig. 4, we show how anm × m grid has to be partitioned with
the help of separators to achieve an 18m/7 upper bound. The separators usem, 3m/7, 3m/7,m/7, andm/7 colors. Then, we
have rhombi of height 2m/7 that remain and, by Proposition 9, each rhombus can be colored with 3m/7 colors. In total, we
have 18m/7 colors.

Proposition 14. χo(Gm) ≤ 18m/7 ≈ 2.571m.

A (7+2φ)m/4upper bound for square grids. In the third part of Fig. 4we showhowanm×m grid canbepartitioned to achieve
a (7+2φ)m/4upper bound;we showonly thepartitioning of the subgraphunder the first-level separator, since the subgraph
over it is done in a symmetric way. We will show in the following section that shrinking this particular partition gives the
best currently known result. The separators usem+m/2+m/4 = 7m/4 unique colors. The remaining subgraphs of the grid
to be colored are rhombi of heightm/2 and orthogonal triangles of heightm/2. By Propositions 9 and 12 they can be colored
with 3m/4 and φm/2 colors, respectively. Therefore the total use of colors is 7m/4 + max(3m/4, φm/2) = (7 + 2φ)m/4.

Proposition 15. χo(Gm) ≤ (7 + 2φ)m/4 ≈ 2.559m.

Improving the upper bounds by extending and shrinking colorings. The aforementioned upper bounds may be slightly
improved by extending or shrinking the underlying grid. The reason is that, even though for the most part the grid is
partitioned into rhombi, different subgraphs are formed along the boundary of the grid (see again Fig. 4).

In the case of the 8m/3 and 18m/7 bounds, we can see that wide-side triangles are formed along the boundary of the
grid. Each suchwide-side triangle has about half the area of a rhombus in the grid. Therefore, it might be beneficial to extend
the grid and the coloring by x at every direction (up, down, left, right) to the point where each extended wide-side triangle
uses the same number of colors as each rhombus. However, extending the coloring of the grid will also make the separators
longer and we must check if the additional colors used in the separators do not cancel any effect from the balancing we
did on wide-side triangles and rhombi. The method of extending indeed gives an improvement for the 8m/3 coloring. The
extension by x at every direction is shown in the first part of Fig. 5. The value of extension is chosen so that wide-side
triangle T2m/3+2x is using the same number of colors as rhombus R2m/3 (we use the colorings for the rhombus and the wide-
side triangle from Propositions 9 and 11, respectively) and it is x = (3

√
5 − 5)m/15 ≈ 0.114m. We also check that, since
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Fig. 5. An 8m/3 coloring extended and a (7 + 2φ)m/4 coloring shrunk.

x < m/6, the two graphs formed at the top-right and bottom-left corner of the first part of Fig. 5 are subgraphs of rhombus
R2m/3. The extended grid has side lengthm′

= m + 2x ≈ 1.228m. The first level separator has sizem + 2x, the second level
separator 1

3m + x and the third level separator 1
3m + x. After removal of the separators, only connected components that

can be colored with at mostm colors are left. In total, 8
3m+ 4x = 4(13 + 3

√
5)m′/31 colors are used and therefore we have

the following.

Proposition 16. χo(Gm) ≤ 4(13 + 3
√
5)m/31 ≈ 2.543m.

In the case of the (7 + 2φ)m/4 coloring, we follow the opposite approach of shrinking the coloring. Four orthogonal
triangles are formed at the corners of the grid, each using more colors than each of the rhombi. Therefore, slightly shrinking
the grid so that the orthogonal triangles use the same number of colors as the rhombi improves the result. We shrink the
grid by x at every direction (up, down, left, right), as shown in the second part of Fig. 5. The optimal amount of shrinking (so
that the rhombus Rm/2 is using the same number of colors as the orthogonal triangle O(m/2)−2x, according to the colorings of
Propositions 9 and 12, respectively) is x = (7−3

√
5)m/16 ≈ 0.01824m. The shrunk grid has sidem′

= m−2x ≈ 0.9635m.
The first level separator has size m − 2x, the second level separator 1

2m − x and the third level separator 1
4m − x. After

removal of the separators, only connected components that can be colored with at most 3m/4 colors are left. In total,
5
2m − 4x = 3(7 +

√
5)m′/11 colors are used. Thus, we get our best upper bound for the ordered chromatic number of

the square grid.

Proposition 17. χo(Gm) ≤ 3(7 +
√
5)m/11 ≈ 2.519m.

Torus. An efficient coloring of the torus Gm is as follows: Use the two diagonals as separators (at most 2m vertices). The
remaining two connected components are subgraphs of the rhombus Rm which can be colored with at most 3m/2 colors.
Therefore, we have the following proposition.

Proposition 18. χo(Gm) ≤ 7m/2 = 3.5m.

Rectangular grids. Intuitively, a rectangular grid begins to resemble a chain when one of its dimensions, say m1, is much
smaller than the other, i.e., m1 ≪ m2. We may attempt to exploit this observation in the following manner: given a grid
withm1 rows andm2 columns, pick them1-th column, the 2m1-th column, . . ., the (⌊m2/m1⌋·m1)-th column. These ⌊m2/m1⌋

columns will be used as separators, thus partitioning the graph into subgraphs ofm1 ×m1 grids; each subgraph will use the
same colors. However, the column separators do not all need distinct colors, because we can color them in a way similar to
the coloring of a chain: the middle column receives the highest colors, then we color recursively the columns to the left and
those to the right. This results to an upper bound of χo(Gm1,m2) ≤ m1 ⌈1 + log(⌊m2/m1⌋)⌉ + χo(Gm1,m1).

Moreover, the above upper bound can be further improved slightly. Instead of using columns as separators wemay use a
zig-zag line starting from the top left corner and proceeding diagonally to the right until it hits the bottom, then to the right
and up again, and so on. This requires the same number of colors for the separators, since we can still color them in a chain-
like fashion, but now wide-side triangles are formed (instead of grids), each of length 2m1, for which χo(T2m1) ≤

√
5m1,

from Proposition 11. Thus, we reach the following conclusion.

Proposition 19. χo(Gm1,m2) ≤ m1 ⌈1 + log(⌊m2/m1⌋)⌉ +
√
5m1.

3. Separators, vertices with unique colors, and lower bounds

In this section we prove lower bounds on the ordered chromatic number of square grids and tori.
An important observation is the following: Consider an optimal ordered coloring of a non-complete connected graph

G = (V , E), say with k colors. If the maximum color assigned to more than one vertices is i, then vertices with colors
i + 1, . . . , k must form a separator in G, otherwise between any two vertices colored with i, there exists a path in G with
maximum color i occurring two times. In particular, the above set of uniquely colored vertices contains an inclusionminimal
separator in G.
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Fig. 6. Vertex v with two grid direction neighbors in the separator.

The following lemma proves useful.

Lemma 20. Given a connected graph G = (V , E), an optimal ordered coloring C of G, and any set W ⊆ V of vertices with
uniquely occurring colors in C,

χo(G) ≥ |W | + χo(G − W ).

Proof. Consider the optimal ordered coloring C of G, using χo(G) colors. The coloring restricted to V − W is an ordered
coloring of G − W using χo(G) − |W | colors. Therefore, χo(G) ≥ |W | + χo(G − W ). �

Thus, we can reason about a lower bound on χo(G) by reasoning about inclusion minimal separators in G: We examine
cases on the size and shape of an inclusionminimal separator induced by some of the uniquely occurring colors of an optimal
coloring C and then, for each case, argue that the cardinality of a set of vertices W with uniquely occurring colors plus the
ordered chromatic number of G − W is at least the desired lower bound (the choice of the set W depends on the inclusion
minimal separator). In order to argue that in a grid after the removal of a setW the ordered chromatic number of a remaining
connected component is high, we will rely heavily on Proposition 5 (monotonicity of the ordered chromatic number under
taking minors or subgraphs) and make use of induction.

Before proceeding to the proof of the lower bounds, we should state some auxiliary results, related to separators in
general, and also to the form of separators in grid-like graphs. The following lemma is from [9] and is similar to an exercise
in [10].

Lemma 21. A separator S of a connected graph G is inclusion minimal if and only if every vertex of S has a vertex adjacent in
every connected component of G − S.

We are now ready to state and prove some facts about the form of inclusion minimal separators in Gm. We remark that
any inclusion minimal separator S of Gm form ≥ 2 has size |S| < m2.

Lemma 22. If S is an inclusionminimal separator of Gm, wherem ≥ 2, then Gm−S consists of exactly two connected components.

Proof. Assume for the sake of contradiction thatGm−S consists of d connected components, with d > 2. InGm, contract each
of the above d components to a single vertex. By Lemma 21, the resulting graph is a supergraph of Kd,|S| and is contained as
a minor in Gm. Since Gm is planar, it contains no K3,3 minor, and therefore |S| ≤ 2. However, the only separator with |S| ≤ 2
is (up to rotation) {(0, 1), (1, 0)}, for which Gm − S has only two connected components, a contradiction. �

We say that two vertices (x1, y1), (x2, y2) of a separator of Gm are neighboring if |x1 − x2| ≤ 1 and |y1 − y2| ≤ 1. In other
words, a vertex of a separator neighbors with any vertex directly up, left, down, right (we call these the grid directions),
or directly up-left, down-left, down-right, up-right (we call these the intermediate directions). In order to avoid confusion,
in this work, we reserve the term ‘adjacent’ for connection only along the grid directions and the term ‘neighboring’ for
connection possibly also along the intermediate directions. The boundary of the grid consists of the four paths, each having
m vertices, with x = 0, x = m − 1, y = 0, and y = m − 1, respectively.

Lemma 23. The vertices of any inclusion minimal separator of Gm, for m ≥ 2, can be put in a sequence such that no vertex is
repeated, adjacent vertices in the sequence are neighboring, and either (i) the first and the last vertex of the sequence are also
neighboring, or (ii) if the first and the last vertex of the sequence are not neighboring, then the first and the last vertex of the
sequence are the only ones lying on the boundary of the grid.

Proof. By Lemma 22, for any inclusion minimal separator S of Gm, Gm − S consists of two connected components, say A
and B, and by Lemma 21, every vertex of the separator is adjacent with a vertex from both connected components. Consider
a vertex of the separator which is not on the sides of the grid. This vertex cannot have less than two neighboring vertices
in the separator, because then all its adjacent vertices in the grid that are not in the separator are in the same connected
component.

It is also not possible that a vertex v of the inclusion minimal separator has two neighbors such that both of these
neighbors are in the grid directions. Assume, without loss of generality, that vertex v = (x, y) has neighbors u = (x, y − 1)
and w = (x + 1, y) in the separator. Then, by Lemma 21, since a = (x, y + 1) and b = (x − 1, y) must be in different
components, vertex z = (x − 1, y + 1) must also be in the separator (see Fig. 6). But then, vertex v has three neighbors in
the inclusion minimal separator and this is a case that we will prove impossible immediately in the following.
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Fig. 7. Four possible neighboring cases for an inclusion minimal separator vertex.

Fig. 8. Inclusion minimal separators of types (i) and (ii).

We are now going to prove that a vertex v of an inclusion minimal separator S cannot have more than two neighbors
in S. Assume for the sake of contradiction that v has three distinct neighbors u, w, z in the separator. Define the graph G′

to be Gm with additional edges vu, vw, and vz (if they do not exist in Gm). G′ is planar, because one can add edges vu, vw,
and vz as straight line segments to the standard drawing of Gm without introducing crossings. Remember that Gm − S has
two connected components A and B. Now, in G′, contract the vertices of A to a single vertex vA and the vertices of B to a
single vertex vB. In the resulting graph, each one of v, vA, vB has an edge to each one of u, w, z, that is, G′ < K3,3, which is a
contradiction, because G′ is planar.

The four possible neighboring cases of a vertex in the inclusion minimal separator which does not lie on the sides of the
grid, ignoring rotations, are shown in Fig. 7.

We also cannot have, for an inclusion minimal separator S, a vertex v ∈ S on the boundary of the grid with only one
neighbor w ∈ S, such that w is also on the boundary of the grid, because then v has only neighbors in one connected
component of Gm − S.

Now, we are going to build a special sequence of vertices of an inclusion minimal separator S.
If there is no vertex with only one neighbor in the separator (case i), then we choose any vertex v as the initial vertex

of the sequence. Vertex v has two neighbors in S, say v′ and v′′. We choose any of them, say v′, to be the next vertex in the
sequence. Then, we extend the sequence by choosing the next element to be the neighbor of the current element not already
in the sequence, until we reach the neighbor v′′ of v (this always happens because the separator S has a finite number of
elements). We claim that the built sequence includes all vertices of separator S. Consider, the closed polygonal line K with
vertices in the order of the sequence built. By the Jordan curve theorem, K divides the plane in a region inside the curve
and an unbounded region outside the curve. Both regions contain vertices of the original graph, as can be seen in Fig. 7.
Every embedding of a path in Gm connecting two vertices in different regions has to touch closed curve K , and in particular
one of its vertices. Thus, the vertices of the built sequence are indeed a separator, and since S is inclusion minimal the built
sequence includes all vertices of S.

If there is a vertex v with only one neighbor in S (case ii), then we choose v as the initial vertex of the sequence (this
vertex has to lie on the boundary of the grid). Then, we extend the sequence by choosing the next element to be the neighbor
of the current element not already in the sequence, until we reach an element w with only one neighbor in S (this always
happens because the separator S has a finite number of elements). We claim that the built sequence includes all vertices of
separator S. Consider, the polygonal line K with vertices in the order of the sequence built. With the help of the Jordan curve
theorem, one can prove that K divides the square containing the embedding of the grid in two regions. Both regions contain
vertices of the original graph, as can be seen in Fig. 7. Every embedding of a path in Gm connecting two vertices in different
regions has to touch closed curve K , and in particular one of its vertices. Thus, the vertices of the built sequence are indeed
a separator, and since S is inclusion minimal the built sequence includes all vertices of S.

As a result, inclusion minimal separators are of the following two types, according to their aforementioned built
sequence:

(i) the first and the last vertex of the sequence are neighboring,
(ii) if the first and the last vertex of the sequence are not neighboring, then the first and the last vertex of the sequence are

the only ones lying on the boundary of the grid.

We remark that a separator of type (i) surrounds one of the connected components of Gm − S. �

Examples of the two types of inclusion minimal separators are shown in Fig. 8.

Proposition 24. For m ≥ 2, χo(Gm) ≥ 3m/2.

Proof. The lower bound is true form = 2 andm = 3, becauseχo(G2) = 3 andχo(G3) = 5.We consider any optimal ordered
coloring C of Gm. The set of vertices in Gm with uniquely occurring colors in C contains an inclusion minimal separator of
G. We will analyze all possible cases of an inclusion minimal separator S and will prove that in every case either we have
|S| + χo(Gm − S) ≥ 3m/2, or for some set W of vertices with unique colors (our choice of W depends on S) we have
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Fig. 9. Diamonds (in black) and their frontiers (in white).

|W |+χo(Gm −W ) ≥ 3m/2. Then, by Lemma 20, χo(Gm) ≥ 3m/2. Since wewant to prove a 3m/2 lower bound, it is enough
to consider only separators of size |S| < 3m/2.

Separator of type (i). If the inclusion minimal separator S is of type (i), then it surrounds a connected component, say A of
Gm − S. This connected component does not include any vertex of the boundary of the grid. Assume that this connected
component is exactly contained in a Gw,h subgraph of Gm and without loss of generality w ≥ h. This connected component
has a vertex in every one of thew columns it spans and since this vertexmust be separated by vertices above and below that
are not in the connected component, there must be at least two vertices of the separator in every one of these w columns.
Moreover, a vertex in the leftmost of the w columns must be separated by vertices to the left of it and a vertex in the
rightmost of the w columns must be separated by vertices to the right of it, i.e., there are two more vertices in the separator
that we have not counted before. In total, separator S has at least 2w + 2 vertices. Moreover, every vertex of the separator
touches a vertex of A and is thus contained in a Gw+2,h+2 grid subgraph of Gm. This grid subgraph Gw+2,h+2 is contained in
a Gw+2 subgraph of Gm. If, from Gm, we remove this Gw+2, then remove edges completely in the w + 2 rows and the w + 2
columns that Gw+2 occupied, and then smooth the remaining vertices of the w + 2 rows and w + 2 columns that Gw+2
occupied, then we end up with a Gm−w−2 graph. Thus Gm − S contains a Gm−w−2 topological minor, with Gm−w−2 ⊇ G2,
because an inclusion minimal separator of type (i) cannot touch both a boundary row and a boundary column of Gm. As a
result, |S| + χo(Gm − S) ≥ |S| + χo(Gm−w−2) ≥ 2w + 2 +

3
2 (m − w − 2) =

3
2m +

w
2 − 1.

Case i.1. If w > 1, then the 3m/2 lower bound is true.

Case i.2. If w = 1, the above bounding method does not apply and in the following we resort to a different method in
order to prove a 3m/2 lower bound:We observe that connected component A consists of a single vertex v = (x, y), because
w ≥ h. We call the inclusion minimal separator

{(x − 1, y), (x, y − 1), (x + 1, y), (x, y + 1)}

a diamond with center v = (x, y) (see Fig. 9). If under the optimal coloring C , Gm contains a set of uniquely colored vertices
which form a different inclusion minimal separator S ′ than a diamond, then we focus on S ′ and argue as in the other cases
of this proof. Otherwise, the uniquely colored vertices by C in Gm form only diamond inclusion minimal separators. We can
assume that in C the centers of each diamond are colored with color 1, because we can assume that no uniquely colored
vertex is colored with 1 (if it is we can switch color 1 with any other color that is repeating in the coloring and still have an
optimal ordered coloring).

We define the frontier of a diamond to be the set of vertices not including the center or vertices of the diamond that
neighbor with at least one of the vertices of the diamond in one of the eight directions: up, down, left, right, up-left, up-
right, down-left, down-right (see Fig. 9). If a vertex of the diamond is on the boundary of Gm, then the frontier consists of 13
vertices (left part of Fig. 9), otherwise the frontier consists of 16 vertices (right part of Fig. 9). The diamond cannot have its
center at any of (1, 1), (1,m − 2), (m − 2, 1), (m − 2,m − 2), because then it is not inclusion minimal. We call a diamond
free if there is no vertex with unique color in its frontier (i.e., no other diamond touches its frontier).

If there is a non-free diamond, then we consider it together with a diamond that touches its frontier. We have the
following five cases, ignoring symmetries: if the diamonds share some vertex, then either (a) the diamonds have two vertices
in common, or (b) the diamonds have one vertex in common; if the diamonds do not share some vertex, then the diamonds
either (c) share two common frontier vertices, or they share one common frontier vertex and (d) the two diamonds are
completely contained in three rows or columns, or (e) the two diamonds are not completely contained in three rows or
columns. These five cases are shown in Fig. 10. In all five case, we locate a set U of vertices with unique colors contained in
a Gq grid subgraph. If, from Gm, we remove this Gq subgraph, then remove all edges that lie completely in the q rows and
q columns that Gq occupied, and then smooth all vertices in the q rows and q columns that Gq occupied, what remains is a
Gm−q graph. Therefore, Gm − U contains Gm−q as a topological minor, which by induction has ordered chromatic number
χo(Gm−q) ≥

3
2 (m−q), becausem−q ≥ 2 (otherwise there are non-diamond inclusionminimal separators induced by some

uniquely colored vertices in the coloring of Gm). Using Lemma 20, χo(Gm) is at least |U| +
3
2 (m − q). The grid Gq is shown

with a gray background in every one of the five cases in Fig. 10.We check indeed that the lower bound applies in every case.

(a) |U| = 6, q = 4 and the lower bound is 6 +
3
2 (m − 4) = 3m/2;

(b) |U| = 5, q = 3 and the lower bound is 5 +
3
2 (m − 3) > 3m/2;
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Fig. 10. Non-free diamonds.

(c) |U| = 3, q = 2 and the lower bound is 3 +
3
2 (m − 2) = 3m/2;

(d) |U| = 6, q = 4 and the lower bound is 6 +
3
2 (m − 4) = 3m/2;

(e) |U| = 6, q = 4 and the lower bound is 6 +
3
2 (m − 4) = 3m/2.

Now, we prove that it is not possible that every diamond is free, because then the optimal coloring C is not ordered.
Assume that we remove all diamonds and their centers from the graph and we consider the coloring restricted to the
remaining graph G′. Since G′

⊆ Gm the coloring restricted to G′ is ordered. Graph G′ contains a connected set with more
than one vertex (for example the frontier of some removed diamond) and thus its coloring uses more than one color. In this
coloring, every color occurs more than once with the possible exception of color 1 (because we have removed all diamonds
that had the uniquely colored vertices). Thus, themaximum color in the restricted coloring of G′ is occurring in two different
vertices v and u of G′. If G′ is connected, then in a simple path of G′ from u to v, the maximum color occurring in the path is
not unique. So, it is enough to prove that G′ is connected in order to have a contradiction. The proof is by induction on the
number of free diamonds. If there is no free diamond, then we have Gm which is connected. By the inductive hypothesis,
graph Gm after the removal of k free diamonds and their centers (we denote the resulting graph with Hk) is connected.
Consider the subgraph Hk+1 of Hk, where we remove one more free diamond d. The frontier of d is still contained in Hk+1.
Thus, every simple path p in Hk between two vertices of Hk+1 that is using an internal vertex in d can be transformed to a
path with the same endvertices that avoids d, as follows: Starting from one endvertex, follow path p until you reach the first
occurrence in p of a vertex in the frontier of d, then continue with a path in the frontier of d to the last occurrence in p of a
vertex in the frontier of d, and then follow path p until you reach the other endvertex. Thus, Hk+1 is connected.

Separator of type (ii). If the inclusion minimal separator S is of type (ii), then we consider two cases according to whether
|S| < m or |S| ≥ m.

Case ii.1. If the separator has size s = |S| < m, then it can neither span all rows nor span all columns of Gm. Moreover,
since, according to Lemma 23, elements of S can be put in a sequence such that consecutive elements in the sequence are
neighboring, the following is true: If there is a vertex of S in row (or column) i and a vertex of S in row (or column) j, then there
is a vertex of S in every row (or column) between i and j. Thus, there is at least one row and one column in the boundary of
Gm that contains no vertex of S. Assumewithout loss of generality that S has neither a vertex in column x = m−1 nor in row
y = m−1. Consider the grid subgraphGm−⌈s/2⌉ ofGm that contains vertex (m−1,m−1).We claim that S cannot contain some
vertex of this Gm−⌈s/2⌉ subgraph. Assume for the sake of contradiction that it does. A sequence of S from Lemma 23 starts at
a vertex in column x = 0 or row y = 0, then goes on for at least ⌈s/2⌉ vertices before reaching a vertex in S, and then it goes
on for at least ⌈s/2⌉ vertices before reaching a vertex in column x = 0 or row y = 0. Therefore, the sequence has length at
least ⌈s/2⌉ + 1 + ⌈s/2⌉ > s, which is a contradiction because |S| = s. As a result, G − S ⊇ Gm−⌈s/2⌉ (with m − ⌈s/2⌉ ≥ 2,
because m > 3 and s < m) and by the inductive hypothesis and Lemma 20, we have χo(Gm) ≥ s +

3
2 (m − ⌈s/2⌉) ≥ 3m/2,

whenever s ≥ 2 (which is true because no single vertex forms a separator).

Case ii.2. If the separator has size s = |S| ≥ m, then we study two subcases depending on whether s ≥ m+2, or s ≤ m+1.

Subcase ii.2.1. If s ≥ m + 2, we consider the four grid G⌊m/2−s/6⌋ subgraphs of Gm, each containing one of the four corner
vertices (0, 0), (0,m − 1), (m − 1, 0), (m − 1,m − 1) of Gm. We claim that S cannot contain a vertex in every one of the
four G⌊m/2−s/6⌋ subgraphs. Assume for the sake of contradiction that it does. Consider a sequence of S from Lemma 23. In this
sequence, choose four vertices, one from each of the four G⌊m/2−s/6⌋ subgraphs. Between any two subsequent of the above
four vertices there are at leastm− 2⌊m

2 −
s
6⌋ vertices in the sequence not contained in any of the four G⌊m/2−s/6⌋ subgraphs.

Therefore, the sequence has length at least

4 + 3

m − 2

m
2

−
s
6


≥ 4 + 3


m − 2

m
2

−
s
6


= s + 4 > s,

which is a contradiction because |S| = s. As a result,G−S ⊇ G⌊m/2−s/6⌋.We check that since s < 3m/2, ⌊m/2−s/6⌋ ≥ ⌊m/4⌋,
which is greater than 1 form ≥ 8. For 3 < m < 8 andm+ 2 ≤ s < 3m/2, we have that ⌊m/2− s/6⌋ = 1 only for the pairs:

(m = 5, s = 7), (m = 6, s = 8), (m = 7, s = 10).
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For all three pairs the lower bound that we would like to prove, χo(G5) ≥ 8, χo(G6) ≥ 9, χo(G7) ≥ 11, respectively, is one
more than the size s of the separator S and since G− S contains at least one vertex, we can prove it. For the rest of the cases,
by the inductive hypothesis and Lemma 20, we have

χo(Gm) ≥ s +
3
2

m
2

−
s
6


≥ s +

3
2

m
2

−
s
6

− 1


=
3
4
(m + s − 2) ≥ 3m/2,

because s ≥ m + 2.

Subcase ii.2.2. If s = m or s = m + 1, we consider the four grid G⌈m/2−s/6⌉ subgraphs of Gm, each containing one of the
four corner vertices (0, 0), (0,m − 1), (m − 1, 0), (m − 1,m − 1) of Gm. Consider a sequence of S from Lemma 23. If S has
a vertex common with each of the four G⌈m/2−s/6⌉ subgraphs, then, in this sequence, choose four vertices, one from each
of the four G⌈m/2−s/6⌉ subgraphs. Between any two subsequent of the above four vertices there are at least m − 2⌈m

2 −
s
6⌉

vertices in the sequence not contained in any of the four G⌈m/2−s/6⌉ subgraphs. Therefore, the sequence has length at least
L = 4 + 3(m − 2⌈m

2 −
s
6⌉).

If m is of the form 3k or 3k + 2, where k is an integer, then L > s, as shown in the following.

• If m = 3k and s = m, then L = 4 + 3(3k − 2( 3
2k −

3
6k)) = 3k + 4 = s + 4.

• If m = 3k and s = m + 1, then L = 4 + 3(3k − 2⌈k −
1
6⌉) = 4 + 3(3k − 2k) = 3k + 4 = s + 3.

• If m = 3k + 2 and s = m, then L = 4 + 3(3k + 2 − 2⌈k +
1
3⌉) = 3k + 4 = s + 2.

• If m = 3k + 2 and s = m + 1, then L = 4 + 3(3k + 2 − 2⌈k +
1
6⌉) = 3k + 4 = s + 1.

Therefore, S cannot contain a vertex in every one of the four G⌈m/2−s/6⌉ subgraphs. As a result, G− S ⊇ G⌈m/2−s/6⌉ and by the
inductive hypothesis and Lemma 20, we have χo(Gm) ≥ s +

3
2 (⌈m/2 − s/6⌉) ≥ 3m/4 + 3s/4 ≥ 3m/2, because s ≥ m.

If however m is of the form 3k + 1 (and s = m or s = m + 1), then S might have a vertex in every one of four Gk+1
subgraphs at the corners of the grid (for both s = m and s = m+ 1, ⌈m/2− s/6⌉ = k+ 1). We may assume without loss of
generality that the sequence of S from Lemma 23 starts (without loss of generality) from column x = 0 and ends at column
x = m − 1, with the exception of m = 4 and s = 5. If not, i.e., if the sequence of S starts from column x = 0 and ends
at row y = 0 (without loss of generality), then consider the Gk+1 subgraph containing the corner vertex (m − 1,m − 1).
The sequence starts from column x = 0 continues for at least m − (k + 1) vertices before it reaches a vertex in the above
subgraph and then continues for at leastm − (k + 1) vertices before it reaches row y = 0, i.e., it has length at least

m − (k + 1) + 1 + m − (k + 1) = 2m − 2k − 1 = 2(3k + 1) − 2k − 1 = 4k + 1,

which is always greater than s, if s = m = 3k + 1 or if s = m + 1 = 3k + 2 and k > 1, i.e., when neitherm = 4 nor s = 5.
If the sequence of S from Lemma 23 starts from column x = 0 and ends at column x = m − 1, then, as we mentioned

before, it contains vertices in every column. Moreover, if s = m it contains exactly one vertex in every column, whereas is
s = m + 1, it contains one vertex in every column with the exception of one column (which is not on the boundary of the
grid). In the s = m + 1 case, the two vertices in the same column x = i must be neighboring (if they are not neighboring,
the separator has another column next to column iwith more than one vertices). We can assume without loss of generality
that there is no column with two vertices among the first k + 1 columns (from x = 0 to x = k). Then, since S must have a
vertex in both the Gk+1 at corner (0, 0) and the Gk+1 in corner (0,m−1), we can assume that the restriction of the separator
in the first k+ 1 columns is exactly the set {(i, k+ i) | 0 ≤ i ≤ k}. We then consider the grid Gk+1 subgraph with corners at
(1, 0), (k + 1, 0), (k + 1, k), (1, k). We call this subgraph X .

Wemay assume that S also has a vertex v in X , because otherwise we can already prove a lower bound of 3m/2 as before
with the help of X . This vertex v must be in column x = k+ 1. If k > 1, then vertex (k, 2k) of the separator cannot neighbor
(even along a diagonal) with vertex v, because v has y-coordinate at most k. Therefore, there must be one more vertex w of
the separator different from v in column k+1, which implies that s = m+1, i.e., s = m is not possible. As described above,w
has to neighbor with v. This vertex has also to neighbor with (k, 2k) and thus the only possibility is thatw = (k+1, 2k−1).
Moreover, v andw are the only vertices in column x = k+1. If k > 2, v andw are not neighboring, which is a contradiction.
If k = 2, i.e.,m = 7, then necessarily w = (3, 3) and v = (3, 2) (see Fig. 11).

By a similar argument as above, since every one of the last 3 columns (x = 5, 6, 7) has exactly one vertex of S, then the
separator restricted to these last columns is either:

l1 = {(4, 4), (5, 3), (6, 2)} or l2 = {(4, 2), (5, 3), (6, 4)}.

If the restriction is l1, then w has three neighbors in the separator, (3, 2), (2, 4), and (4, 4), and thus S is not inclusion
minimal, which is a contradiction. If the restriction is l2, then S has no vertex in the G3 grid subgraph with corners at (3, 4),
(5, 4), (5, 6), (3, 6), that we call Y (see Fig. 11), and we can prove a 3m/2 lower bound as before with the help of Y .

We have not argued about the case when k = 1 (m = 4). For m = 4, if s = m = 4 the sequence of S goes (without loss
of generality) from row x = 0 to row x = m− 1 and thus contains no vertex in column y = 0. Column y = 0 is a path graph
P4 with χo(P4) = 3. Thus, we have a lower bound of 4+ χo(G− S) ≥ 4+ 3 = 7 > 6. If s = m+ 1 = 5, then G− S contains
at least some (non-empty) component and thus we have a lower bound of 5 + χo(G − S) ≥ 5 + 1 = 6. �
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Fig. 11. The case m = 7 when s = 7 or s = 8.

Since Gm contains Gm as a subgraph, because of monotonicity of the ordered chromatic number under subgraphs, we
immediately have the following corollary.

Corollary 25. For m ≥ 2, χo(Gm) ≥ 3m/2.

4. Discussion and open problems

The most important problem still left open is the exact value of χo(Gm). For small values of m the correct answer seems
to be 2m − 1, but maybe this is just an exception for small values of m, and asymptotics could be different and closer to
2.5m. At themoment, in our lower bound proof for the square grid, after the removal of a separator, we only consider square
grids that remain (either as a subgraph or a minor). It would also be interesting to study lower bounds for the rhombus and
the triangle subgraphs, or possibly for non-square grids, and then combine them to improve the lower bound for the square
grid.
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