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1.  I N T R O D U C T I O N  

Let  X be  an a rb i t r a ry  Banach  space, X* be its dual  space, and ix, f*> be the  general ized dual i ty  
pai r ing  be tween x E X and f*  E X*.  The  mapp ing  J : X ~ 2 X° defined by 

J ( x )  = { f*  e X *  : <x, f*> = I[f*]] IIxl], Iif*II = Ilxll} 

is called the  normal ized dual i ty  mapping.  I f  X* is s t r ict ly convex, then  J is single-valued. We 
shall denote  the  single-valued dual i ty  mapp ing  by j .  

An ope ra to r  T : D i T  ) c X ~ X with domain  D ( T )  and range  R i T  ) is called s t rongly  accret ive 
if, for each x , y  E D i T  ), there  exist  a j (  x - y) E J ( x  - y) and a cons tan t  k > 0 such t h a t  

(Tx  - Ty ,  j ( x  - y)) > kiix - yi] 2. (1.1) 

T is called C-strongly accret ive if, for each x,  y E D(T ) ,  there  exist a j ( x  - y) E J ( x  - y) and 

a s t r ic t ly  increasing funct ion ¢ : [0, oo) ~ [0, co) with ¢(0) = 0 such t h a t  

(Tx  - T y , j ( x  - y)> > ¢(lix - yil)II x - yiI. (1.2) 

I t  is known (see, e.g., [1]) t h a t  the  class of  s t rongly accretive opera to r s  is a p roper  subset  of  
the  class of  C-strongly accret ive operators .  Closely related to the  class of  s t rongly  accret ive ire- 
spectively,  C-strongly accretive) opera tors  is the  class of s t rongly  pseudocont rac t ive  (respectively, 

C-s t rongly pseudocont rac t ive)  operators .  
An  ope ra to r  A : D i A  ) c X --* X with  domain  D i A  ) and range R ( A )  is called s t rongly  pseudo- 

cont rac t ive  if, for each x, y E D i A ) ,  there  exist a j ( x  - y) E J(  x - y) and  a cons tan t  t > 1 such 

This project supported by the National Natural Science Foundation of P.K. China. 

~peset  by ~,~S-~_~ 

75 



76 X.P.  DING 

that 
(Ax  - Ay,  j ( x  - y)) <_ ~]]x - y[[2. (1.3) 

A is called C-strongly pseudocontractive if, for each x, y E D(A)  there exist a j ( x - y )  E J ( x - y )  

and a strictly increasing function ¢ : [0, oo) --, [0, c~) with ¢(0) = 0 such that 

(Ax  - Ay,  j ( x  - y)) >_ IIz - yl] 2 - ¢ ( l l x  - y l l ) l l x  - yll. (1.4) 

Furthermore, A is said to be ¢-hemicontractive if the fixed point set F ( A )  of A is nonempty, 
and for each x ~ D(A)  and x* ~_ F(A), there exist a j ( x - x * )  ~ J ( x - x * )  and a strictly increasing 
function ¢ : [0, oo) --* [0, c~) with ¢(0) = 0 such that 

(Ax  - x * , j  (x - x*)) _< IIx - x*ll  - ¢ ( l l x  - x * l l ) I I z  - x * l l .  ( 1 . 5 )  

It was shown in [1] that the class of strongly pseudocontractive operators is a proper subset 
of the class of C-strongly pseudocontractive operators. The example in [2] shows that the class 
of C-strongly pseudocontractive operators is a proper subset of the class of ¢-hemieontractive 
operators.  From the inequalities (1.1)-(1.4), it is easy to see tha t  A is a s trongly (respec- 
tively, C-strongly) pseudocontraetive operator if and only if T = I - A is strongly (respectively, 
C-strongly) accretive where I is the identity operator. The classes of strongly pseudocontractive 
operators and strongly accretive operators have been extensively studied by many authors. In 
particular, Deimling [3, Theorem 13.8] proved that if T : X ~ X is strongly accretive and semi- 
continuous (i.e., xn ~ x implies that Txn  --" Tx) ,  then T maps X onto X; that is, for each 
] e X, the equation T x  = f has a solution in X. 

Chidume [4] proved that the Mann iterative sequence [5] can be used to approximate the fixed 
point of the continuous strongly pseudocontractive operator A : K -~ K, where K is a bounded 
closed convex subset of a uniformly smooth Banach space X. He pointed out that it is not known 
whether or not the Ishikawa iterative sequence converges for this class of nonlinear operators, 
see [4, p. 550]. Deng and Ding [6, Theorem 1] proved that the Ishikawa iterative sequence can 
be used to approximate the fixed point of the Lipschitz locally strongly pseudocontractive oper- 
ator. They also pointed out that it is an open problem that the Lipschitz continuity of A can 
be dropped in Theorem 1. Ding [7] proved that the Mann and Ishikawa type iterative sequences 
with errors converge strongly to the unique fixed point of continuous locally strongly pseudocon- 
tractive operator A : K -~ K and to the unique solution of the equation T x  = I involving a 
semicontinuous locally strongly accretive operator T : X --* X under weaker assumptions, where 
K is a closed convex subset of a uniformly smooth Banach space X. These results answered 
positively the open problems mentioned by Chidume [4] and Deng-Ding [6]. 

Recently, Osilike [1,8] studied the classes of C-strongly accretive operators and ¢-hemicontrac- 
tive operators and proved that the Ishikawa type iterative sequence strongly converges to the 
unique solution of the Lipschitz C-strongly accretive operator equation T x  = f and to the unique 
fixed point of the Lipschitz ¢-hemicontractive operator A in q-uniformly smooth Banach spaces 
• and in arbitrary Banach spaces, respectively. 

The objective of this paper is to prove that the Mann and Ishikawa type iterative sequences 
with errors strongly converge to the unique solution of the Lipschitz C-strongly accretive operator 
equation T x  = f and to the unique fixed point of the Lipschitz ¢-hemicontractive operator A in 
arbitrary Banach spaces under weaker assumptions. These results improve and generalize many 
corresponding results in recent literature. 

2. P R E L I M I N A R I E S  

Let us recall the following two iterative sequences due to Mann [5] and Ishilmwa [9], respectively. 
(I) The Mann iterative sequence is defined as follows: for a convex subset K of a Banach 

OO space X and an operator T : K --* K, the sequence {Xn}n=O is defined by 

xo E K ,  xn+l = (1 - an) Xn + anTxn ,  n >_ O, (2.1) 
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where {an}~ffi0 is a real sequence satisfying a0 = 1, 0 < an _< 1 for all n > 1 and ~'~n an = co 
(or E n  an(1 - an)  = co). 

(II) The Ishikawa iterative sequence is defined as follows: for an operator T : K --. K ,  the 
OO sequence {xn}nffio is defined by 

xn+a = (1 - an) zn + anTyn,  xo e K,  
(2.2) 

y n = ( 1 - ~ n )  x n + ~ n T x n ,  n>_O, 

where {an}~=0 and {/3n}~=0 are sequences of real numbers satisfying the conditions: 0 < an < 
/3n < 1 for all n > 0, lima/3n = 0 and ~ n  an/3n = co. 

The two iterative sequences have been extensively used and studied by many authors for 
approximating either fixed points of various nonlinear mappings or solutions of nonlinear operator 
equations in Banaeh spaces. 

(III) The Ishikawa iterative sequence with errors is defined in [10] as follows: for a nonempty 
subset K of a Banaeh space X and an operator T : K --, X, the sequence {xn} in K is defined 
by 

Xn+l = (1 - an) xn + anTyn  + Un, Xo 6 K,  
(2.3) 

yn = (1 - Zn +  nTz. + Vn, n O, 

where {un}, {vn} are two sequences in X and {an}, {/~n} are two sequences in [0, 1] satisfying 
certain conditions. 

It is clear that  the Mann and Ishikawa iterative sequences are all special cases of the Ishikawa 
iterative sequence with errors. 

In the proof of our main results, we shall need the following results. 

LEMMA 2.1. [11, p. 303] Let {an}~°=o and {bn}n°°=o be two nonnegative real sequences satisfying 

an+l <_ an + bn, V n  >_ O. 

oo b I[ Y]n=O n < co, then limn--,oo an exists. 

LEMMA 2.2. Let ¢ : [0, co) -* [0, co) be a strictly increasing [unction with ¢(0) = 0 and let 
{An}~ffi0, { 6n } ~=O, and {an} be three nonnegative tea/sequences satisfying 

oo A (i) ~-~n=O n = co, 
(ii) ¢¢ co Y~n=o 6n < co and ~']~n=o an < co. 

Suppose {an}n°°= o is a nonnegative real sequence satisfying 

¢(a.+x) 
an+l <_ (1 + 6n) an - An 1 + ¢ (an+x) + an+x an + an, 

Then limn-~oo an = O. 

PROOF. By the inequality (2.4), we have 

Vn _> 0. (2.4) 

It follows that 

an+l <_ (1 + 6n) an + e-n, V n  > O. (2.s) 

0 __~ an+ 1 _~ a k H (1 + 6j) + (1 + 6~) cj, Vn > O. (2.6) 

j=k L =j+I 
O0 

Since ~'~ffi0 6n < co, I'[nffi0(1 + 6n) converges to a finite number. Hence it follows from con- 
dition (ii) and inequality (2.6) that  {an}n°°=o is bounded. Suppose an _< D, Vn _> 0. Then 
(2.5) implies that  

an+l < an + D6n + an, V n  >_ O. 
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By using Lemma 2.1 with bn = D&n + ~ ,  limn-~oo an exists. Let limn-.oo an = & _> 0. We claim 
that & = 0. If& > 0, then there exists a nonnegative integer N _> 0 such that  an > &/2, V n  >_ N .  

Since ¢ is strictly increasing, we have 

¢(an+l )  >_ ¢ ( ~ ) ,  Vn > _ N.  (2.7) 

It follows from (2.4) and (2.7) that  

¢(&/2)6/2 <An  ¢ (an+l) (2.8) 
A n l + ¢ ( D ) + D  - l + ¢ ( a n + l ) + a n + l a n < - a n - a n + l + D 6 n  +cn,  

and m n n 

¢(6/2)&/2 Z A j < a N - a n + ' + Z ( D & j + c J )  
1 + ¢(D) + D - 

j = N  j f N  
n 

~_ aN + Z (Dej q- c j ) .  
j = N  

( 2 . 9 )  

By condition (ii) and inequality (2.9), we have ~n°°__0 An < co, which contradicts condition (i). 
Hence, limn-~oo an = 6 = 0. This completes the proof. 

REMARK 2.1. If an = 0 Vn > 0, Lemma 2.2 reduces to Lemma of Osilike [8]. 

3.  M A I N  R E S U L T S  

THEOREM 3. I. Let X be an arbitrary Banach space and T : D(T)  c X --* X be a Lipschitz 

C-strongly accretive operator with domain D(T)  and range R(T) .  Suppose the equation T x  = f 
has a solution. Let  {un}~°=o, {vn}~°=o be two sequences in X and {ccn}n°°__.o, {]~n}~=o be two real 

sequences in [0, 1] satisfying 
oo V (i) E,,=o II .II < co and En°°_o II'~-II < co, 

(ii) E~__o~n = co, 
(iii) E,°°_ o an(1 - an)/~n < co, 
(iv) o0 2 

~"~n----O C~n < co" 

Suppose that, for some xo • D(T) ,  the Ishikawa type iterative sequences {xn}~_-o and {Yn}~--o 
with errors defined by 

y .  = (1 - ~ . )  x .  + 8 .  ( I  + ( I  - T ) x . )  + r . ,  ' (3.1) 
Xn+l = (i  - an) xn + an ( f  + (I  - T)yn) + Un, V n  >_ 0 

are both contained in D(T) .  Then {xn}~=0 converges strongly to the unique solution of  the 

equation T x  = f . 

PROOF. By inequality (1.2), if the equation Tx = f has a solution, then the solution is unique. 
Let x* • D(T)  be the unique solution and let L be the Lipschitz constant of T. Define an 

operator S : D(T)  --* X by 

S x  = f + (I  - T)x ,  V x  • D(T) .  

Then x* is a fixed point of S, and S is also Lipschitz with constant L.  = 1 + L. Since T is 
C-strongly accretive, we have that for all x, y • D(T) ,  

((I  - S )x  - ( I  - S ) y , j ( x  - y)) = (Tx  - T y , j ( x  - y)) 

> ¢ ( l l x  - v l l ) l l x  - vii 

¢ ( l l z  - v i i )  IIx - vii  2 
-> 1 + ¢ ( l l x  - v i i )  + I I= - vii  

= o- (x ,  v ) l l z  - vii 2, 
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where a(x,y) = ¢(llx - y[l)/(1 + ¢([Ix - VII) ÷ H x - VH) e [0,1) for all x,y E X. Hence, 

( ( I  - s ) x  - t ( ~ ,  v ) x  - ( ( ~  - s ) v  - t ( x ,  v ) v ) ,  j ( x  - v ) )  > 0 .  

I t  follows from [12, L e m m a  1.1] t ha t  for all x , y  E D ( T )  and r > O, 

IIz - vi i  < Ilx - y + r [ ( I  - s ) x  - t ( x ,  y ) x  - ( ( I  - S ) y  - t ( x ,  y ) y ) ] l l .  ( 3 . 2 )  

By (3.1), we obta in  

X n  = X n + l  ÷ a n X n  - -  o z n S y n  - -  "ttn 

= (1 + a n )  X n + l  + a n  [ ( I  - S ) x n + z  - t (Xn+ l ,  x * )  x . + z ]  - (1 - t ( xn+z ,  x * ) )  a n x n  

÷ (2 -- t (Xn+ l ,  X* ) )  a 2 (Xn -- Syn) ÷ an ( S X n + l  -- SYn) ÷ an t i  (Xn+ l ,  X*)  U n -- 2anU n - u n .  

On the  o ther  hand,  we have 

x* = (1 + an )  x* + an  [(I - S ) x *  - ¢ ( xn+l ,  x*)  x*] - (1 - a (xn+l ,  x*)) anx* .  

I t  follows t ha t  

xn  - x* = (1 + an )  (xn+z - x*) 

+ an  [(I - S ) x n + l  - a ( xn+l ,  x*)  Xn+l - ( ( I  - S ) x *  - a ( xn+l ,  x*)  x*)] 

- (1  - t ( ~ n + ~ ,  x * ) )  a n  ( ~ n  - ~ * )  + (2  - t ( ~ n + l ,  x * ) )  a ~  ( ~ n  - S v n )  

+ a n  ( S x n + I  - S y n )  - [1 + an  (2 - a (Xn+l, x*))] un. 

Thus  we have 

X n + l  a n  IIx.-  x*ll > (1 +an) - ~* + : - - ~ .  [(Z- S)xn+~ 

- t ( x n + , ,  - ( ( *  - - t 

I 

- (1  - t ( z . + l ,  z * ) ) a n  I I z .  - z*ll - ( 2  - t (xn+~, z * ) )a~ .  I I z .  - Sv. l l  

- an I lSz .+z  -- SV=II -- 3 IN- I I  

> (1 + an)IIz-+x - x*l l  - (1 - g ( X n + l , X * ) )  an I Iz. - z * l l  
2 

- -  ( 2  - -  (7  (Xn+l ,  X*) )  a n II=n - Sv. l l  - an IlSxn+z - Sy. l l  - 3 I1=.11 • 

It follows that 

IIX.+l - =*11 

By (3.1), we have 

IIv .  - ~*11 

II=n -- Svnll 

1 + (1 - a ( X n + l , x * ) ) a n  II~n - x* l l  
1 + a n  

+ 2a2. II=n - Sv. l l  + an I lSxn+,  - SV. I I  + 3 IN . I I  • 

= I1(1 - ~n) (xn - x* )  ÷ ~n (sxn  - x* )  ÷ vnll 

< (1 ÷ ~n (L .  - 1) ) I lxn - x*ll ÷ IIv.II  

< L, I1=. - =*11 + Ilvnll, 

_< I I z .  - z*ll + L .  Ilvn - z*ll  _< (1 + L .  2) Ilxn - x*ll  + L .  Ilvnll, 

(3.3) 

(3.4) 

I l S x . + I  - SV. I I  _< L .  I1(1 - a . )  ( = .  - v . )  + a .  ( S v .  - v . )  + ~.11 

= L ,  I1(1 - a . )  ~ .  (= .  - S= . )  - (1 - an) Vn + an (SVn - Vn) + =-II 

_< [L .  (Z - a . ) ~ .  (1 + L . )  + a . L .  = (1 + L . ) ]  I I z .  - =*11 

÷ L .  (1 + a . L . ) t l v - I I  + L .  I lu-II • (3.5) 
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Using (3.4) and (3.5) in (3.3), we obtain 

Ilzn+l - z*ll -< 1 + (1 - a (Xn+l ,  x*) )  an IIx. - z*ll 
1 + a n  

+ [an (1 - a n ) ~ n L ,  (1 + L,)  + (L 3 + 3L, 2 + 2) a~n] IIx. - x*ll 

+ a . L .  (1 + 2 a .  + a .L.) I Iv . I I  + L . a .  Ilu.II + 3 Ilu.II 

< [1 + (1 - a (x,+x, x*))an] [1 - an + a~] [[xn - x*ll 

+ Inn ( 1 -  a n ) ~ n L ,  (1 + L , ) +  (L 3 + 3L2n + 2)a2n] IIz.-  z*ll 

+ L.  (3 + L.)IIv.II + (3 + L.)Ilu.II  (3.6) 

_< [1 - a n ~  (xn+x, x*) + a~] Ilx. - x*ll 

+ [ a .  (1 - a n ) ~ . L .  (1 + L. )  + (L.  3 + 3L.  2 + 2) a~] IIx. - x*ll 

+ L.  (3 + L.)IIv.II + (3 + L.)Ilunll 

= [1 - a . ~  ( x . + l ,  x*)] Ilxn - x*ll 

+ [an (1 - an) j3nL, (1 + L,)  + (L3, + 3 (L, 2 + 1)) a2n] IIx. - x*ll 

+ L, (3 + L,)IIv,  II + (3 + L,)Ilunll • 

Now let a .  = IIx. - x*ll, ~ .  = a . ( 1  - a n ) ~ . L . ( 1  + L . )  + (L.  3 + 3(L.  2 + 1))a2., and c~ = 
L,(3 + L.)l[v.II + (3 + L.)llu.ll.  Then the inequality (3.6) reduces to 

(~ ( a n + l )  
an+l <_ (1 q- 5n) an -- an" 1 -I- ¢ (an+l q- an+l) an -t- On. 

= ~-~.=0 C~ < OO. It  ~n=0  an co, ~-~,=0 ~fn < co, and By the assumptions (i)-(iv), we have ~ ~ oo 
co follows from Lemma 2.2 that  limn-.oo an = 0, so that  {xn}n=o converges strongly to x*. This 

completes the proof. 

COROLLARY 3.1. Let X be an arbitrary Banach space and T : X --* X be a Lipschitz C-strongly 
o o  o o  accretive operator. Suppose the equation T x  = f has a solution. Let  {Un}n= 0 and {Vn}n=O 

a o o  be two sequences in X and { n}n=O and {f~n}~=0 be two real sequences in [0, 1] such that the 
conditions (i)-(iv) in Theorem 3.1 hold. Then the Ishikawa type iterative sequence with errors 

defined by (3.1) for an arbitrary Xo E X converges strongly to the unique solution of  the equation 

T z  = f .  

PROOF. The conclusion follows from Theorem 3.1 with D(T)  = X .  

COROLLARY 3.2. Let X be an arbitrary Banach space and T : X --* X be a Lipschitz C-strongly 
o o  accretive operator. Suppose the equation T x  = f has a solution. Let  {Un}n=O be a sequence 

o o  in X and {an}n=0 be a rea/sequence in [0, 1] such that 

(i) E.°°_o Ilu.II < oo, 
(ii) oo En----0 a n  ---- O0~ 

(iii) ~"~n°°__o aZn < co. 

Then for any xo E X ,  the Mann type iterative sequence with errors defined by 

z . + l  = (1 - a . )  z .  + an (1 + (I  - T ) x . )  + u . ,  V n  >_ 0 

converges strongly to the unique solution of the equation T x  = f . 

PROOF. The conclusion follows from Corollary 3.1 with fin = 0 and vn = 0 for all n > 0. 

COROLLARY 3.3. Let X be an arbitrary Banach space and T : X --* X be a Lipsehitz strongly 

accretive operator. Suppose that {un}n~ffi0 and {v,}n~=0 are two sequences in X and {(~,}n~ffio 
and {f~-}~=0 be two real sequences in [0, 1] such that the conditions (i)-(iv) in Theorem 3.1 hold. 
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Then for any f E X,  the Ishikawa type iterative sequence {x,}~__ 0 with errors defined by (3.1) 
for an arbitrary xo E X converges strongly to the unique solution of the equation Tx  = f . 

PROOF. For any fixed f E X, the existence of a solution of the equation Tx = f follows from [13]. 
It follows from Corollary 3.1 that  the conclusion holds. 

THEOREM 3.2. Let X be an arbitrary Banach space and A : D(A) C X --* X be a Lipschitz 
¢-hemicontractive operator with domain D( A ). Let {un}~=o and {Vn}~=o be two sequences in X 
and {ocn}n°°=0 and {f~n}n~=0 be two real sequences in [0, 1] such that the conditions (i)-(iv) in 
Theorem 3.1 hold. Suppose that for some xo E D(A), the Ishikawa type iterative sequences 
{Xn}n~=O and {Yn}~=o with errors de/~ned by 

Yn = (1 - ~n)Xn + /3nAxn + Vn, 

X,+l = (1 - ~ )  x~ + a~Ay~ + u, ,  Vn_>0 
(3.7) 

are both contained in D(A). Then {Xn}~=0 converges strongly to the unique fixed point x* of A. 

PROOF. The inequality (1.5) implies the fixed point set F(A) of A is singleton. Let x* be the 
unique fixed point of A. By (1.5), we have that  for all x 6 D(A), 

((I - A ) x  - ( I  - A)x*,  j (x - x*)) > ¢ (llx - x*ll)IIx - x*ll G (x, x*)IIx - x*ll ,  

wherea(x,x*) = ¢(llx-x*ll)/(l+¢(llx-x*ll)+llx-x*ll) ~ [0,1), Vx E D(A). Hence it follows 
from Lemma 1.1 of [12] that  for all x E D(A) and r > 0, 

IIx-x*ll < IIx-x* + r [ ( I - A ) x - a ( x , x * ) x - ( ( I - A ) x * - ~ ( x , x * ) x * ) ] l l .  

The rest of argument is now essentially same as in the proof of Theorem 3.1, and hence, is 
omitted. 

C O R O L L A R Y  3.4. Let K be a nonempty closed convex subset of an arbitrary Banach space X and 
A : K --* K be a Lipschitz strongly pseudocontractive operator. Suppose {an}~=o and {~n}~=o 
are two real sequences in [0, 1] such that 

( i )  oo E n = 0 0 t n  = (X) ,  

(ii))-~n~__0 an(1 - an)~n < co, 
2 (iii) End__0 oL n < co. 

Then for any xo E K, the Ishikawa iterative sequence {Xn} defined by 

Y n  = (1  - t 3 n )  X n  + ~nAxn, 

xn+l = (1 - an) x ,  + a,Ay~, Vn >0, (3.8) 

converges strongly to the unique fixed point x* of A. 

PROOF. The existence of the unique fixed point x* of A follows from [14]. Since K is convex and 
A a selfmapping on K,  by the definition of the Ishikawa iterative sequence, for any x0 E K,  we 
must have {Xn}~_-0, {Yn}~--0 C K.  The conclusion follows from Theorem 3.2 with Un = Vn = 0, 
V n > 0 .  

REMARK 3.1. The results in Section 3 generalize the corresponding results of Osilike [1,8] to 
Ishikawa type iterative sequences with errors and to arbitrary Banach spaces which do not depend 
on any geometric structure of the underlying Banach space X, respectively. Hence, it is easy to 
see that  our results also improve and generalize the corresponding results in [4,10,15-21] to the 
more general class of operators, to Ishikawa type iterative sequences with errors and to arbitrary 
Banach spaces which do not depend on any geometric structure of the underlying Banach space X. 
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