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Abstract—Let X be an arbitrary Banach space and T : D(T) C X — X be a Lipschitz ¢-strongly
accretive operator with domain D(T) and range R(T). The Mann and Ishikawa type iterative se-
quences with errors which strongly converge to the unique solution of the equation Tz = f un-
der weaker conditions are given. The related results deal with the problems that the Mann and
Ishikawa iterative sequences with errors strongly converge to the unique fixed point of Lipschitz
¢-hemicontractive operators.
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1. INTRODUCTION

Let X be an arbitrary Banach space, X* be its dual space, and (z, f*) be the generalized duality
pairing between £ € X and f* € X*. The mapping J : X — 2% defined by

J(@) ={f" € X*: (z, f*) = I NN=ll, I£*1 = ll=ll}

is called the normalized duality mapping. If X* is strictly convex, then J is single-valued. We
shall denote the single-valued duality mapping by j.

An operator T : D(T) C X — X with domain D(T} and range R(T') is called strongly accretive
if, for each 2,y € D(T), there exist a j{z — y) € J(z — y) and a constant £ > 0 such that

(Tz — Ty, j(z - y)) 2 kllz - y||*. (1.1)

T is called ¢-strongly accretive if, for each z,y € D(T), there exist a j(z — y) € J(z — y) and
a strictly increasing function ¢ : [0, 00) — [0, 00) with ¢(0) = 0 such that

(Tz - Ty, j(z - y)) 2 é(llz - yIDliz - yll. (1.2)

It is known (see, e.g., [1]) that the class of strongly accretive operators is a proper subset of
the class of ¢-strongly accretive operators. Closely related to the class of strongly accretive (re-
spectively, ¢-strongly accretive) operators is the class of strongly pseudocontractive (respectively,
¢-strongly pseudocontractive) operators.

An operator A : D(A) C X — X with domain D(A) and range R(A) is called strongly pseudo-
contractive if, for each z,y € D(A), there exist a j(z — y) € J(z — y) and a constant ¢ > 1 such
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that 1
(Az - Ay, j(z - ¥)) < <|lz —ylI%. (1.3)

A is called ¢-strongly pseudocontractive if, for each z,y € D(A) there exist a j(z—y) € J(z—y)
and a strictly increasing function ¢ : [0,00) — [0, 00) with ¢(0) = 0 such that

(Az — Ay, j(z - y)) 2 llz - ylI* — ¢(llz — yl) |z - yll. (1.4)

Furthermore, A is said to be ¢-hemicontractive if the fixed point set F(A) of A is nonempty,
and for each x € D(A) and z* € F(A), there exist a j(z—z*) € J(z—z*) and a strictly increasing
function ¢ : [0, 00) — [0, 00) with ¢(0) = 0 such that

(Az —2*,j(z~2*)) <[z —z*| - (lz — 2¥||) ll= — =*||- (1.5)

It was shown in [1] that the class of strongly pseudocontractive operators is a proper subset
of the class of ¢-strongly pseudocontractive operators. The example in [2] shows that the class
of ¢-strongly pseudocontractive operators is a proper subset of the class of ¢-hemicontractive
operators. From the inequalities (1.1)-(1.4), it is easy to see that A is a strongly (respec-
tively, ¢-strongly) pseudocontractive operator if and only if T = I — A is strongly (respectively,
¢-strongly) accretive where I is the identity operator. The classes of strongly pseudocontractive
operators and strongly accretive operators have been extensively studied by many authors. In
particular, Deimling [3, Theorem 13.8] proved that if T : X — X is strongly accretive and semi-
continuous (i.e., z, — z implies that Tz, — T'z), then T maps X onto X; that is, for each
f € X, the equation Tz = f has a solution in X.

Chidume [4] proved that the Mann iterative sequence [5] can be used to approximate the fixed
point of the continuous strongly pseudocontractive operator A : K — K, where K is a bounded
closed convex subset of a uniformly smooth Banach space X. He pointed out that it is not known
whether or not the Ishikawa iterative sequence converges for this class of nonlinear operators,
see [4, p. 550]. Deng and Ding (6, Theorem 1] proved that the Ishikawa iterative sequence can
be used to approximate the fixed point of the Lipschitz locally strongly pseudocontractive oper-
ator. They also pointed out that it is an open problem that the Lipschitz continuity of A can
be dropped in Theorem 1. Ding (7] proved that the Mann and Ishikawa type iterative sequences
with errors converge strongly to the unique fixed point of continuous locally strongly pseudocon-
tractive operator A : K — K and to the unique solution of the equation Tz = f involving a
semicontinuous locally strongly accretive operator T : X — X under weaker assumptions, where
K is a closed convex subset of a uniformly smooth Banach space X. These results answered
positively the open problems mentioned by Chidume [4] and Deng-Ding [6].

Recently, Osilike [1,8] studied the classes of ¢-strongly accretive operators and ¢-hemicontrac-
tive operators and proved that the Ishikawa type iterative sequence strongly converges to the
unique solution of the Lipschitz ¢-strongly accretive operator equation T'z = f and to the unique
fixed point of the Lipschitz ¢-hemicontractive operator A in g-uniformly smooth Banach spaces
-and in arbitrary Banach spaces, respectively.

The objective of this paper is to prove that the Mann and Ishikawa type iterative sequences
with errors strongly converge to the unique solution of the Lipschitz ¢-strongly accretive operator
equation Tz = f and to the unique fixed point of the Lipschitz ¢-hemicontractive operator A in
arbitrary Banach spaces under weaker assumptions. These results improve and generalize many
corresponding results in recent literature.

2. PRELIMINARIES

Let us recall the following two iterative sequences due to Mann [5] and Ishikawa [9], respectively.
(I) The Mann iterative sequence is defined as follows: for a convex subset K of a Banach
space X and an operator T : K — K, the sequence {z,}3%, is defined by

z0 € K, Tnt1 = (1 —an) zp + anTzp, n>0, (2.1)
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where {a5}72 is a real sequence satisfyingap = 1,0 < a, < 1foralln >1and ¥, ap =
(or 3, an(1 — ap) = ).

(IT) The Ishikawa iterative sequence is defined as follows: for an operator T : K — K, the
sequence {z,}52,, is defined by

n=0

Tn4l = (1 - an) ZTn + 0y Tyn, o € K,

2.2
Yn = (1 - ﬁn) Ty + BnTzy, n >0, ( )

where {an}a2 and {8,}32, are sequences of real numbers satisfying the conditions: 0 < o, <
Pn <1foralln >0, lim, B, =0and Y, anf, = co.

The two iterative sequences have been extensively used and studied by many authors for
approximating either fixed points of various nonlinear mappings or solutions of nonlinear operator
equations in Banach spaces.

(IIT) The Ishikawa iterative sequence with errors is defined in [10] as follows: for a nonempty
subset K of a Banach space X and an operator T : K — X, the sequence {z,} in K is defined
by

Tntl = (1 - an) Tn + anTyn + Un, Z9 € K,
Yn = (1 - ﬂn) Tn + BnTTy + vy, n 20,

where {un}, {vn} are two sequences in X and {an}, {8.} are two sequences in [0, 1] satisfying
certain conditions.

It is clear that the Mann and Ishikawa iterative sequences are all special cases of the Ishikawa
iterative sequence with errors.

In the proof of our main results, we shall need the following results.

(2.3)

LEMMA 2.1. [11, p. 303] Let {an}32, and {bn}32, be two nonnegative real sequences satisfying
Gn41 < G + by, Vn2>0.

IfF Y02 o bn < 00, then limp,_ ay, exists.
LEMMA 2.2. Let ¢ : [0,00) — [0,00) be a strictly increasing function with $(0) = 0 and let
{An}eo, {623320, and {cn} be three nonnegative real sequences satisfying
(1) Xneodn = o0,
(i) Yneodn <00 and 3°77 4 cq < 0.
Suppose {a,}32, is a nonnegative real sequence satisfying

¢ (an+1)
<(1+46 -A , Vn2>0. 24
an+1 < (1+ &) an ﬂ1+¢(an+1)‘+'¢7»n+1a"-‘-c" "= 24)
Then lim,, o a, = 0.
PROOF. By the inequality (2.4), we have
tnt+1 £ (1 +6,)an + cn, Vn>0. (2.5)
It follows that
n n n
0<anm<ar [[A+6)+Y | [ @ +68)|c;, Va0 (2.6)
i=k j=k |i=j+1

Since ¥ o 6n < 00, [I22,(1 + 6,) converges to a finite number. Hence it follows from con-
dition (ii) and inequality (2.6) that {a,}%, is bounded. Suppose a, < D, Vn > 0. Then
(2.5) implies that

an+lsan+D6n+cn, VnZO.
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By using Lemma 2.1 with b, = D6y, + ¢y, limp 00 @y exists. Let limy,_,o0 an = 6 > 0. We claim
that § = 0. If § > 0, then there exists a nonnegative integer N > 0 such that a, > §/2,Vn > N.
Since ¢ is strictly increasing, we have

6
d(ant1) > ¢ (-2-) ) Yn > N. 2.7
It follows from (2.4) and (2.7) that

$(6/2)6/2 ¢ (an+1)
n < n n S n — Un n 3 .
AT D) +D = M TT 4 (anp) +ampr ™ = On ~ Gnt1 + Dén tcn (28)

and so

$(6/2)8/2_ -
TraD) D 2 0 S o —emn ¥ 2 (D)
j=N j=N
. (2.9)
<any+ Z (D6j+Cj).
i=N

By condition (ii) and inequality (2.9), we have 3 .- An < 00, which contradicts condition (i).
Hence, lim,_,o an = § = 0. This completes the proof.
REMARK 2.1. If ¢, =0Vn >0, Lemma 2.2 reduces to Lemma of Osilike [8].

3. MAIN RESULTS

THEOREM 3.1. Let X be an arbitrary Banach space and T : D(T) C X — X be a Lipschitz
¢-strongly accretive operator with domain D(T') and range R(T). Suppose the equation Tz = f
has a solution. Let {u,}3%q, {vn}3o be two sequences in X and {an}s2o, {Bn}aro be two real
sequences in [0,1] satisfying
(i) E?:o lunll < 0o and ch;o [[unll < oo,

(if) Ppeo On = 00,

(iil) Yoo2gan(l — an)Bn < 0o,

(iv) oo < oo
Suppose that, for some xo € D(T), the Ishikawa type iterative sequences {Tn}ng and {yn}nxo
with errors defined by

Yn=1=0n)Zn+Ba(f+ (I —T)zs) +vn,

3.1
Tns1 = (1 —an) Tn + an (f + (I — T)yn) + tn, Vn>0 (3-1)

are both contained in D(T). Then {z,}3, converges strongly to the unique solution of the
equation Tz = f.

PROOF. By inequality (1.2), if the equation Tz = f has a solution, then the solution is unique.
Let z* € D(T) be the unique solution and let L be the Lipschitz constant of T. Define an
operator S : D(T) — X by

Sz=f+{I-T)z, Yz € D(T).

Then z* is a fixed point of S, and S is also Lipschitz with constant L, = 1+ L. Since T is
¢-strongly accretive, we have that for all z,y € D(T),

((I-8)zx-(I-S)y,jx-y)=(Tz-Ty,j(x - y))
> ¢(llz — ylDllz — vl
N o(llz —yl)
T 14+ ¢(lz—yl) + Iz -yl
=a(z,y)lz — ylI?,

lz - ylI?
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where 0(z,y) = ¢(||z — yll)/(1 + ¢(llz - yll) + lz ~ yll) € [0,1) for all ,y € X. Hence,
{((I - 8)z —a(z,y)z - ((I - S)y — a(z,y)y), j(z — y)) > 0.
It follows from (12, Lemma 1.1] that for all z,y € D(T) and r > 0,
-yl < llz -y +r((I - S)z - o(z,y)x — (I - S)y — oz, y))]- (3.2)
By (3.1), we obtain
Tp = Tptl + OnZyn — A Syn — Uy

= (14 an)Tpy1 +an [(I = 8)Zny1 — 0 (Tn41, %) Tnp1] — (1 — 0 (Tnt1,Z°)) 0n
+ (2 -0 (zp41,2*)) aﬁ (Tn — Syn) + an (STnt1 — Syn) + Ano (Tny1, ¥) Uy — 200 Up — U,

On the other hand, we have
8 =1+an)z* +an[(I - 8)2" — 0 (Tn41,2*) 2% = (1 — 0 (Tn41,2*)) ™.
It follows that
Tn — 2" = (1 + ay) (Tatr — T¥)
+an[(I - S)Znt1 — 0 (Tn+1,2") Tne1 — (I - S)z* — 0 (Tnt1,2%) 2%)]
~(1-0(@ns1,2"))an(zn —2*)+(2-0 (Tp41,7%)) a?z (Tr — Syn)
+ 0 (STpy1 — Syn) — [1 + 00 (2 — 0 (Zny1, %)) up.

Thus we have

On

lzn —z*| 2 (14 ) 1+a,

Tnt1 — 25 +

(T = 8)zns1

= (1= 0(Zn41,2")) an |20 — 2*|| = (2 = 0 (Tny1,2*)) 02 ||2, — Sy
— Oy "an+1 - Syn" -3 ”un”

— 0 (Zpt+1,2%) Tny1 — (I - S)z* — a(xn+1,z*)m')]

2 (1+om)||2ns1 — 2% = (1 = 0 (ZTn+1,2%)) an |20 — ¥
= (2= 0 (znt1,2")) 07 |12 = Synll — e 15Tn+1 = Syall — 3 [[unl.

It follows that

1 1- *
+ ( 4 (x’ﬂ+17x )) Qn ”xn _ (B*”
1+ ay (33)
+ 20‘721 1Zn — Synll + an [|STas1 — Synll + 3 |lunll .

l£n+1 — 27| <

By (3.1), we have

lyn — 2l = |1 = Br) (zn — 2*) + B (Szn — 2%) + vn|
< (14 B (Le = 1) llzn — =*|| + [lvnll
< Ly ||zn - 2*(| + |lvall ,
2n = Syall < llzn = 2*|| + La llgn = 2*|| < (1 + L) l2n — 2*|| + Lu ||unll, (34)

1STn+1 — Syall < Lu |(1 — @n) (Tn — yn) + n (Syn — yn) + unl|
= Ly [|(1 = an) Bn (Tn — Szn) = (1 — @n) vn + 0n (Syn ~ yYn) + unll
< [Lo (1= an) Bn (1 + Lu) + 0n L2 (1 + L)) lzn — 2*||
+ Lo (1 + anLa) lvall + La ||unl - (3.5)
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Using (3.4) and (3.5) in (3.3), we obtain
L A
+ [om (1 = ap) BnLs (1 + L) + (L3 + 3L% + 2) o2] ||lzn — z°||
+ anL. (1 + 204 + an L) [|vall + Lucy [Juall + 3 [|lun |l
<[+ (1= 0 (Tnr1,2) an) [1 — an + 02] an — °|

+ [an (1 — o) BuLs (1 + Lu) + (L3 + 3L2 +2) 02] |z — z°||

+ L. 3+ Li) llvall + (3 + L) [lun| (3.6)
< [1 - eno (Tny1,2%) + 2] [lzn — ¥

+ [om (1 — ap) BuLs (1 + L) + (L3 + 3L% + 2) 2] ||zn — 2*||

+ L. (3+ L) |lvall + (3 + L) [|unl
= [1 = ono (Tn41,7")] 20 — =*||

+ [om (1= an) BuLs (1 + L) + (L3 + 3 (L2 + 1)) 0] |lzn — 2|

+ L. 3+ Ls) llvall + (3 + Lu) flual .

lenss — 2% <

Now let an, = [[zn — 2*||, 6n = an(l — an)BaLe(l + L) + (L2 + 3(L2 + 1))a2, and ¢, =
L.(3 + L.)|lvnll + (3 + L.)||unl|- Then the inequality (3.6) reduces to

) (an+1)
1+ ¢ (ant1 +an+t1)

an+1 < (1 + é‘n) an — Qn Gy + Cp.

By the assumptions (i)-(iv), we have Y oo jan = 00, Yoo 18n < 00, and Y o2 1¢n < 00, It
follows from Lemma 2.2 that lim, o a, = 0, so that {z,}32, converges strongly to z*. This
completes the proof.

COROLLARY 3.1. Let X be an arbitrary Banach space and T : X — X be a Lipschitz ¢-strongly
accretive operator. Suppose the equation Tz = f has a solution. Let {u,}32, and {v,}32,
be two sequences in X and {a,}5%, and {B,}32, be two real sequences in [0,1] such that the
conditions (i)-(iv) in Theorem 3.1 hold. Then the Ishikawa type iterative sequence with errors
defined by (3.1) for an arbitrary xo € X converges strongly to the unique solution of the equation
Tz = f.

ProOF. The conclusion follows from Theorem 3.1 with D(T) = X.

COROLLARY 3.2. Let X be an arbitrary Banach space and T : X — X be a Lipschitz ¢-strongly
accretive operator. Suppose the equation Tz = f has a solution. Let {u,}3%, be a sequence
in X and {a,}3., be a real sequence in [0, 1] such that

(i) Yooz llunll < oo,
(i) Yoo an =00,
(iii) pro 0 < oo.

Then for any xq € X, the Mann type iterative sequence with errors defined by
Znrr=(1—on)Zp +an(f+ T —T)zs) + tn, Yn>0
converges strongly to the unique solution of the equation Tt = f.

PrOOF. The conclusion follows from Corollary 3.1 with 8, =0 and v,, =0 for all n > 0.

COROLLARY 3.3. Let X be an arbitrary Banach space and T : X — X be a Lipschitz strongly
accretive operator. Suppose that {u,}32, and {v,}3, are two sequences in X and {an},
and {0n}32, be two real sequences in [0, 1] such that the conditions (i)—(iv) in Theorem 3.1 hold.
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Then for any f € X, the Ishikawa type iterative sequence {zn}alo with errors defined by (3.1)
for an arbitrary xo € X converges strongly to the unique solution of the equation Tz = f,

Proor. For any fixed f € X, the existence of a solution of the equation Tz = f follows from [13].
It follows from Corollary 3.1 that the conclusion holds.

THEOREM 3.2. Let X be an arbitrary Banach space and A : D(A) C X — X be a Lipschitz
¢-hemicontractive operator with domain D(A). Let {u, }o2o and {v,}2., be two sequences in X
and {an}2o and {8,}32, be two real sequences in [0,1] such that the conditions (i)-(iv) in
Theorem 3.1 hold. Suppose that for some zo € D(A), the Ishikawa type iterative sequences
{zn}olo and {yn}32, with errors defined by

Yn = (1 - ﬂn)l‘n + B Az, + vy,

3.7
Tnt1 = (1 — an) Tn + anAyn + uy, Yn>0 (37)

are both contained in D(A). Then {z,}3, converges strongly to the unique fixed point z* of A.

PROOF. The inequality (1.5) implies the fixed point set F(A) of A is singleton. Let z* be the
unique fixed point of A. By (1.5), we have that for all € D(A),

(I - Az~ (I-A)z"j(z-2") 2 ¢(lz -2"|]) |z — 2| > o (z,2%) |lx — =*],

where o(z,z*) = ¢(||lz - z*|))/(1 + ¢l — z*||) + ||z — z*||) € [0,1), Vz € D(A). Hence it follows
from Lemma 1.1 of [12] that for all z € D(A) and r > 0,

lx —z*)| < flz—z* +7[(I - Az ~o(z,z")z — ((I - A)z* —o(z,z*)z*)]|.

The rest of argument is now essentially same as in the proof of Theorem 3.1, and hence, is
omitted.

COROLLARY 3.4. Let K be a nonempty closed convex subset of an arbitrary Banach space X and
A: K — K be a Lipschitz strongly pseudocontractive operator. Suppose {a,}32 and {5,},
are two real sequences in [0,1] such that

(l) Z;z.o=0 an = 00,
(ii) Zf;o an(l - an)ﬂn < o0,
(iii) Yooy 02 < oo.

Then for any o € K, the Ishikawa iterative sequence {z,} defined by

Yn = (1 - ﬂn) Ty + PnAzy,

3.8
Tns1 = (1 — an) Tp + anAyp, Yn >0, (38)

converges strongly to the unique fixed point z* of A.

PROOF. The existence of the unique fixed point z* of A follows from [14]. Since K is convex and
A a selfmapping on K, by the definition of the Ishikawa iterative sequence, for any zg € K, we
must have {z,}32,, {yn}32o C K. The conclusion follows from Theorem 3.2 with u,, = v, = 0,
vYn2>0.

REMARK 3.1. The results in Section 3 generalize the corresponding results of Osilike [1,8] to
Ishikawa type iterative sequences with errors and to arbitrary Banach spaces which do not depend
on any geometric structure of the underlying Banach space X, respectively. Hence, it is easy to
see that our results also improve and generalize the corresponding results in [4,10,15-21] to the
more general class of operators, to Ishikawa type iterative sequences with errors and to arbitrary
Banach spaces which do not depend on any geometric structure of the underlying Banach space X.
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