
Lin28 Enhances Tissue Repair
by Reprogramming Cellular Metabolism
Ng Shyh-Chang,1,2,3,4,5,6,10,11 Hao Zhu,1,2,3,4,5,7,8,10 T. Yvanka de Soysa,1,2,3,4,5 Gen Shinoda,1,2,3,4,5

Marc T. Seligson,1,2,3,4,5 Kaloyan M. Tsanov,1,2,3,4,5 Liem Nguyen,8 John M. Asara,6 Lewis C. Cantley,6,9

and George Q. Daley1,2,3,4,5,*
1Stem Cell Transplantation Program, Division of Pediatric Hematology/Oncology, Boston Children’s Hospital and Dana-Farber Cancer

Institute, Boston, MA 02115, USA
2Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
3Harvard Stem Cell Institute, Boston, MA 02115, USA
4Manton Center for Orphan Disease Research, Boston, MA 02115, USA
5Howard Hughes Medical Institute, Boston, MA 02115, USA
6Department of Medicine, Division of Signal Transduction, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
7Division of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
8Children’s Research Institute, Departments of Pediatrics and Internal Medicine, University of Texas Southwestern Medical Center, Dallas,
TX 75390, USA
9Department of Medicine, Cornell Weill Medical College, New York, NY 10065, USA
10These authors contributed equally to this work
11Present address: Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672
*Correspondence: george.daley@childrens.harvard.edu

http://dx.doi.org/10.1016/j.cell.2013.09.059
SUMMARY

Regeneration capacity declines with age, but why
juvenile organisms show enhanced tissue repair
remains unexplained. Lin28a, a highly conserved
RNA-binding protein expressed during embryogen-
esis, plays roles in development, pluripotency, and
metabolism. To determine whether Lin28a might
influence tissue repair in adults, we engineered the
reactivation of Lin28a expression in several models
of tissue injury. Lin28a reactivation improved hair
regrowth by promoting anagen in hair follicles and
accelerated regrowth of cartilage, bone, and mesen-
chyme after ear and digit injuries. Lin28a inhibits
let-7 microRNA biogenesis; however, let-7 repres-
sion was necessary but insufficient to enhance
repair. Lin28a bound to and enhanced the translation
of mRNAs for several metabolic enzymes, thereby
increasing glycolysis and oxidative phosphorylation
(OxPhos). Lin28a-mediated enhancement of tissue
repair was negated by OxPhos inhibition, whereas
a pharmacologically induced increase in OxPhos
enhanced repair. Thus, Lin28a enhances tissue
repair in some adult tissues by reprogramming
cellular bioenergetics.
INTRODUCTION

Across the evolutionary spectrum of organisms, the juvenile

state is associated with superior tissue repair (defined as the
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partial or complete restoration of cellular content and tissue

integrity after injury). Drosophila and Tribolium larval tissues

repair robustly, but the adults’ do not (Smith-Bolton et al.,

2009; Shah et al., 2011). Tadpoles, but not adult frogs, can repair

multiple tissues (Sánchez Alvarado and Tsonis, 2006), and in

Ambystoma salamanders, regenerative capacity declines with

age (Young et al., 1983). Young fish repair their caudal fins better

than older ones (Anchelin et al., 2011), and it is well known that,

during gestation, fetal mammals repair their tissues more

robustly than do older mammals (Deuchar, 1976; Conboy

et al., 2005; Nishino et al., 2008; Porrello et al., 2011). In contrast,

insects like the Apterygota, which do not undergo complete

metamorphosis, retain remarkable larval capacities for

appendage repair throughout life (Pearson, 1984), and some

hyper-regenerative urodeles such as the neotenic Axolotl fail to

undergometamorphosis and exhibit larval regenerative potential

throughout their lifespan. These exceptions notwithstanding,

the correlation between juvenility and tissue repair has long

been discussed by Charles Darwin and others (Darwin, 1887;

Pearson, 1984; Poss, 2010), but the causal mechanisms remain

obscure.

Lin28 is an RNA-binding protein that was first described in a

C. elegans screen for heterochronic genes that regulate devel-

opmental timing. Loss of lin-28 causes precocious larval

progression to adulthood, whereas gain of lin-28 delays larval

progression and reiterates larval cell stages by promoting

progenitor self-renewal (Ambros and Horvitz, 1984; Moss

et al., 1997). Mammalian Lin28 exists as two highly conserved

paralogs, Lin28a and Lin28b, both of which repress let-7 micro-

RNAs (miRNAs) (Viswanathan et al., 2008; Newman et al., 2008;

Heo et al., 2008; Rybak et al., 2008). Inmammals, Lin28a is highly

expressed in embryonic stem cells (ESCs) and during embryo-

genesis, whereasmature let-7 rises as Lin28a levels wane during
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ESC differentiation, fetal development, and aging (Shyh-Chang

and Daley, 2013). Lin28a has also been used to reprogram

human somatic cells into induced pluripotent stem (iPS) cells

(Yu et al., 2007), and in mice, Lin28a overexpression delays

puberty and promotes growth (Zhu et al., 2010, 2011). Lin28b

is also expressed in ESCs and is extinguished in most tissues

after birth, but it is not yet known whether there are different

physiologic roles or molecular targets for Lin28a and Lin28b.

Conditional reactivation of Lin28a and LIN28B in adult mice

prevents obesity and type 2 diabetes during aging, whereas

conditional loss of Lin28a or Lin28b in fetuses causes dwarfism

and promotes a diabetic state (Zhu et al., 2011; Shinoda et al.,

2013). The human LIN28B gene shows polymorphisms that are

strongly associated with puberty and height, indicating that the

influence of Lin28 on development is evolutionarily conserved

from worms to humans (Lettre et al., 2008; Widén et al., 2010;

Ong et al., 2009, 2011; Sulem et al., 2009; Perry et al., 2009;

Ong et al., 2011; Leinonen et al., 2012).

Prior studies linking Lin28 to juvenile programs of growth,

development, and metabolism led us to ask whether reprogram-

ming the developmental age of tissueswith Lin28 could influence

their postnatal repair capacities. Here, we report that engineer-

ing the re-expression of Lin28a can enhance tissue repair in

several contexts. Surprisingly, let-7 repression is necessary but

alone insufficient to account for Lin28a’s enhancement of tissue

repair. Lin28a also binds and increases the translation of the

mRNAs for several metabolic enzymes, including Pfkp, Pdha1,

Idh3b, Sdha, Ndufb3, and Ndufb8, which, as established

through metabolomic profiling, enhance oxidative metabolism

to promote an embryonic bioenergetic state. Pharmacologic

studies with inhibitors show that Lin28a-mediated tissue repair

is more sensitive to OxPhos inhibition than is normal tissue

repair. These data suggest that Lin28a promotes repair capac-

ities in postnatal tissues by enhancing oxidative metabolism—

both glycolysis and OxPhos—and by promoting a bioenergetic

state characteristic of embryonic cells.

RESULTS

Lin28a Promotes Epidermal Hair Regrowth
Lin28a is expressed in the embryonic epidermis but disappears

by birth (Yang andMoss, 2003).We previously described a doxy-

cycline (dox)-inducible Lin28a transgenic mouse (‘‘iLin28a Tg’’)

with constitutive low levels of leaky Lin28a expression in the

absence of induction (Zhu et al., 2010). Relative to nontransgenic

wild-type littermates (WT), iLin28a Tgmice displayed thicker hair

coats and increased skin thickness (Figure 1A and Figure S1A

available online), correlating with Lin28a overexpression and

let-7 repression in the epidermis (Figures 1B–1D). The hair

appearance was not explained by greater hair follicle density

or follicle bulb diameter (Figures S1B and S1C). Given these

observations, we asked whether Lin28a overexpression might

influence hair growth.

In mice, the hair follicle cycle is normally synchronized for the

first 10weeks of life (Müller-Röver et al., 2001). The first postnatal

growth phase (anagen) ends at�postnatal day 16 (p16), followed

by the first resting phase (telogen). The second anagen begins at

p28 and is followed by a second protracted telogen phase
between p42 and p70 (Müller-Röver et al., 2001). We shaved

the hair of mice that were expected to be in the first and second

telogen phases (p21 and p70) and found that iLin28a Tgmice dis-

played enhanced dorsal hair regrowth at both of these time

points (Figure 1E). To explore the mechanism of this growth dif-

ference, we performed a full 10-week hair cycle survey and found

that, whereas WT mice conform to the expected timing of the

anagen-telogen phases, iLin28a Tg mice have extended periods

of anagen and shortened telogen (Figure 1F). Specifically, WT

mice were in telogen at p20, 24, 42, 47, 49, 56, and 69, whereas

iLin28a Tg mice manifested only a brief resting phase at p42 and

p47. We then asked whether hair regrowth occurs differently in

WT and iLin28a Tg mice when both are in anagen. We synchro-

nized hair cycling using wax depilation, which removes the entire

hair follicle and thus induces anagen in both genotypes and found

no difference in hair regrowth during anagen (Figure S1D), which

was corroborated by equivalent cell proliferation in anagen hair

follicles (Figure S1E). Additionally, we inquired whether Lin28a

induction could induce anagen during a telogen phase. We

induced Lin28a by topical application of dox at p47, when both

WT and iLin28a Tg mice were in telogen. Dox-treated WT or

DMSO-treated iLin28a Tg mice showed no hair regrowth,

whereas iLin28a Tg mice with topical dox showed patchy hair

regrowth after 7 and 14 days, indicating that Lin28a overexpres-

sion during telogen is sufficient to induce anagen in adult hair

follicles (Figure 1G). Thus, Lin28a overexpression promotes hair

regrowth by promoting anagen. Findings from this tissue context

suggested that ectopic reactivation of Lin28a might be capable

of promoting repair in other post-natal tissues as well.

Lin28a Promotes Digit Repair
Lin28a mRNA is expressed in the embryonic limb buds of E9.5–

E11.5 embryos but declines sharply by birth (Yokoyama et al.,

2008). Limb digits consist of multiple tissue types and show

limited repair capacity after amputation in neonatal mammals.

To assess their repair, mouse digits were amputated at the distal

interphalangeal joint on day 2 after birth, and digit length was

measured at 3 weeks of age. Relative to WT neonates, iLin28a

Tg neonates displayed significantly enhanced connective tissue

and bone regrowth in amputated digit tips (Figures 2A–2C). Even

after normalizing for the greater body growth in iLin28a Tg mice,

Lin28a accelerated the regrowth of injured digits over time (Fig-

ure 2D). Whereas Lin28a showed no significant increase in

expression in WT digits following amputation, Lin28a expression

was elevated in iLin28a Tg digits before and after amputation

(Figures 2E and 2F). Consistent with this pattern, only let-7b

dropped after digit amputation in WT mice, whereas several

let-7 species were repressed both before and after injury in

iLin28a Tg mice (Figure 2G).

We next asked whether Lin28a overexpression could further

improve tissue repair in MRL mice, a well-known hyper-regener-

ative strain (Clark et al., 1998; Chadwick et al., 2007; Gourevitch

et al., 2009). After backcrossing iLin28a Tg mice onto the MRL

strain for five generations, Lin28a overexpression further

enhanced digit tip repair relative toWTMRL controls, suggesting

nonoverlapping, additive mechanisms of enhanced repair. This

supports the idea that even the repair capacity of the MRL strain

couldbeaugmentedbygenetic reactivation ofLin28a (Figure 2H).
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Figure 1. Lin28a Reactivation Promotes Hair Regrowth

(A) Uninduced iLin28a Tg mice possess a thicker fur coat than WT mice.

(B) Lin28a expression in the skin of WT or iLin28a Tg mice as determined by immunohistochemistry.

(C) Lin28a mRNA levels as determined by qRT-PCR.

(D) Mature let-7 expression as determined by qRT-PCR in tail epidermis of WT and uninduced iLin28a Tg mice.

(E) (Left) Hair regrowth inmice shaved at p21was observed 1week postshaving in 0/6WT versus 6/6 Lin28a Tg littermates. (Right) Hair regrowth inmice shaved at

p70 was observed 3 weeks post-shaving in 0/6 WT versus 5/5 iLin28a Tg littermates.

(F) Histologic hair cycle analysis over 10 weeks. All sections are 1003 and H&E stained.

(G) Hair regrowth on dorsal skin in topical dox-treated p47WT and iLin28a Tg littermates 1 and 2 weeks after shaving. Ectopic hair regrowth was observed in 0/4

WT dox-treated versus 0/3 DMSO-treated Tg versus 3/4 dox-induced Tg mice.

Data are represented as mean ± SEM. *p < 0.05; **p < 0.01. See also Figure S1.
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Figure 2. Lin28a Reactivation Promotes Regrowth of Digits after Neonatal Amputation

For all digit measurements, percent regrowth is quantified by dividing the length of the regrowing digit in the injured limb with the length of the normal digit on the

opposite uninjured limb.

(A) (Left) p1 digits and the amputation site (blue hash mark). (Right) Digits 21 days after neonatal digit amputation. Red bar depicts the soft tissue dimension

measured between the digit tip and the proximal interphalangeal joint.

(B) Quantification of soft tissue regrowth 21 days after neonatal digit amputation.

(C) Quantification of bone regrowth 21 days after neonatal digit amputation. X-ray film with red bar showing that bone length was measured from the proximal

interphalangeal joint.

(legend continued on next page)
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Because Lin28a improved neonatal digit repair, we hypothe-

sized that Lin28a overexpression might also improve adult digit

tip repair. In 5-week-old mice, we amputated hindlimb digit

tips but found that reactivation of Lin28a expression conferred

no significant enhancement of repair (Figure S2), suggesting

that Lin28a alone is insufficient to enhance adult repair in this

context.

Lin28a Promotes Pinnal Tissue Repair
We assayed repair in the adult pinnal tissues of the outer ear,

another complex tissue consisting of epidermis, cartilage, and

mesenchyme that fails to regenerate completely upon injury

(Goss and Grimes, 1975; McBrearty et al., 1998; Liu et al.,

2011). Low-level leaky Lin28a overexpression in the iLin28a Tg

mice enhanced wound healing after 2 mm full-thickness punch

biopsy (Figure 3A), as indicated by smaller wound sizes detected

at 5, 8, and 11 days (Figure 3B). In WT mice, 28% of the wounds

could not be evaluated quantitatively because of poor healing

and severe tearing of the wounds, whereas only 2% of wounds

in iLin28a Tg mice displayed such severe damage (Figure 3C).

Similar to the digits, we observed a transient drop in let-7b

following injury (Figure 4A) but did not observe an increase in

Lin28a duringWT tissue repair (Figures 3D and 3E). To determine

whether direct activation of Lin28a at the site of injury would pro-

mote pinnal repair, we applied dox topically onto wounds after

punch biopsy. We detected local induction of Lin28a protein

(Figure 3D) and mRNA (Figure 3E) and measured 50% greater

wound closure after 11 days relative to uninduced iLin28a Tg

ears (Figure 3F). Hmga2, a prominent let-7 target, was also

induced in iLin28a Tg, but not in WT ears (Figure 3E). Histologi-

cally, there was an increase in mesenchymal connective tissue

after local Lin28a induction and an increase in proliferation

according to Ki67 staining (Figure 3G), indicating that Lin28a

induction promotes mesenchymal cell proliferation and tissue

repair in pinnae. Interestingly, local dox induction of LIN28B in

iLIN28B Tg mice (Zhu et al., 2011) was not sufficient to promote

ear wound healing, suggesting a Lin28a-specific mechanism for

this process (Figure S3).

Repression of let-7 Is Necessary but Insufficient for
Promoting Tissue Repair
A major downstream effect of Lin28 is the repression of let-7

miRNAs. Because a subset of let-7 miRNAs decreased after

digit and pinnal injury in WT animals (Figures 2G and 4A), we

hypothesized that repression of let-7might be essential to tissue

repair and that enforced expression of let-7 would antagonize

wound healing. We therefore assessed tissue repair in a trans-

genic mouse that expresses a dox-inducible form of the let-7

miRNA (‘‘iLet-7 mice’’; Zhu et al., 2011). Indeed, enforced over-

expression of let-7 after ear punch biopsy inhibited wound

closure and pinnal repair relative to uninduced mice, suggesting
(D) Postinjury growth kinetics (as percentage of uninjured digit length) over 21 da

(E) Lin28a mRNA expression in WT, injured WT, iLin28a Tg, and injured iLin28a T

(F) Immunohistochemistry indicating Lin28a protein expression in Tg and WT bo

(G) Mature let-7 expression in WT, injured WT, iLin28a Tg, and injured iLin28a Tg

(H) Digit tip regrowth in iLin28a Tg mice backcrossed onto the hyper-regenerativ

Data are represented as mean ± SEM. *p < 0.05; **p < 0.01. See also Figure S2.
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that let-7 repression is necessary for tissue repair (Figure 4B). To

test whether let-7 repression would be sufficient to phenocopy

the enhanced tissue repair observed with overexpression of

Lin28a, we used a locked nucleic acid (LNA)-modified antimiR

to antagonize let-7 function. Previously, let-7 antimiRs success-

fully reduced mature let-7 levels and promoted an antidiabetic

phenotype in mice, thus phenocopying Lin28a overexpression

(Frost and Olson 2011; Zhu et al., 2011). In our experiments,

the let-7 antimiR repressed a wide range of mature let-7s in

MEFs and in vivo (Figures 4C–4E), to a greater extent than

achieved by Lin28a overexpression. However, despite an effi-

cient knockdown of let-7, neither systemic nor topical delivery

of let-7 antimiR enhanced pinnal tissue repair (Figures 4F and

4G) or hair regrowth (Figure 4H). These data indicate that let-7

antagonizes normal tissue repair but also suggest that let-7

repression is necessary but not alone sufficient to explain the

mechanism of enhanced tissue repair by Lin28a.

Lin28a Alters the Bioenergetic State during Tissue
Repair
Lin28a, Lin28b, and let-7 are known to regulate glucose meta-

bolism, and transcripts encoding mitochondrial oxidative phos-

phorylation (OxPhos) and glycolysis enzymes are among the

top mRNAs bound by Lin28a (Peng et al., 2011; Zhu et al.,

2011). To test the metabolic role of Lin28a in its most physio-

logically relevant context, we profiled metabolism in whole

Lin28a�/� Lin28b�/� embryos versus Lin28a+/+ Lin28b�/� em-

bryos at E10.5 using liquid chromatography/tandem mass

spectrometry metabolomics (Shyh-Chang et al., 2013a). Lin28a

deficiency led to lower levels of some glycolytic intermediates

(Figure S4A), lower ATP/AMP and NADH/NAD ratios, and higher

levels of reduced glutathione (higher GSH/GSSG ratio, which in-

dicates lower levels of reactive oxygen species [ROS]; Fig-

ure S4B). These data demonstrate that Lin28a is physiologically

required for normal embryonic bioenergetics and are consistent

with our previous study that compared Lin28a+/� to Lin28a�/�

embryos and likewise concluded that Lin28a is essential for

normal embryonic metabolism (Shinoda et al., 2013).

These precedents prompted us to profile the metabolomic

effects of Lin28a reactivation during tissue repair. We found

that Lin28a induction led to an increase in several glycolytic inter-

mediates in pinnal tissues after injury, suggesting a general

increase in glucose oxidation, whereas WT ears exhibited few

changes (Figure 5A). Lin28a induction also enhanced the bioen-

ergetic state during tissue repair in vivo, as indicated by the

increase in acetyl-CoA and the increased ATP/AMP and GTP/

GMP bioenergetic ratios (Figure 5B).

Using 13C-glucose, we measured the flux of glucose through

glycolysis and the Krebs cycle in MEFs and found that Lin28a

increased 13C-glucose flux into glycolysis (Figure 5C), as well

as the Krebs cycle (Figure 5D), consistent with our observations
ys.

g digits, as determined by qRT-PCR.

ne from the neonatal skeleton.

digits, as determined by qRT-PCR.

e MRL strain background. Control mice are WT MRL littermates.



Figure 3. Lin28a Reactivation Promotes Pinnal Tissue Repair

(A) WT and iLin28a Tg wound healing 8 days after 2 mm diameter ear hole punches.

(B) Wound area size at days 5, 8, and 11 during the course of wound healing.

(C) Proportion of WT and iLin28a Tg ear holes torn by mice after ear hole punching.

(D) Western blot indicating Lin28a protein levels in topical dox-treated iLin28a Tg ears before (n = 2) and 3 days after (n = 2) injury, compared to WT ears.

(legend continued on next page)
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Figure 4. Let-7 Repression Is Necessary but

Insufficient for Tissue Repair

(A) Expression of mature let-7g and let-7b in WT

and iLet-7 ears before and after injury, as

determined by qRT-PCR.

(B) Ear hole wound area size after whole-animal

let-7g induction in iLet-7 mice.

(C) Mature let-7 miRNA expression in MEFs

after let-7 antimiR treatment, as determined by

qRT-PCR.

(D) Mature let-7miRNA expression in vivo after two

subcutaneous injections of let-7 antimiR.

(E) Northern blot indicating let-7a levels in the liver

and skin of control and let-7 antimiR-treated

WT mice.

(F) Ear hole wound size after subcutaneous let-7

antimiR treatment of WT mice.

(G) Ear hole wound size after local topical let-7

antimiR treatment of WT mice.

(H) Hair regrowth after let-7 antimiR treatment of

WT mice.

Data are represented as mean ± SEM. *p < 0.05,

**p < 0.01.
in vivo. Furthermore, we found that the ATP/AMP ratio increased,

whereas the GSH/GSSG ratio decreased significantly with

Lin28a overexpression (Figure 5E), confirming that Lin28a

enhances glucose oxidation to produce more ATP and ROS

during tissue repair.

To determine whether Lin28a was promoting the bioenergetic

state by simply increasing mitochondrial biogenesis, we

measured mitochondrial markers. We failed to detect increases

in the mRNA levels of mitochondrial biogenesis markers and

enzymes (Figure 5F); there was no change in mitochondrial

DNA (Figure S5C); and CMXRos staining revealed no significant

changes in the mitochondrial density and distribution (Fig-
(E) mRNA levels of Lin28a and the let-7 target Hmga2 in topical dox-treated iLin28a Tg ears, as determined

(F) Wound area size after 10 days of local topical treatment with dox.

(G) H&E, trichrome, Lin28a, and Ki-67 staining in WT, iLin28a Tg, and induced iLin28a Tg mice.

Data are represented as mean ± SEM. *p < 0.05; **p < 0.01. See also Figure S3.
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ure S5D). These data indicate that

Lin28a enhances mitochondrial OxPhos

activity rather than mass. We confirmed

this using the Seahorse analyzer to mea-

sure the O2 consumption rates of primary

MEFs from iLin28a Tg mice. Relative to

WT control MEFs, Lin28a increased both

the basal and maximal OxPhos capacity,

as indicated by the increases in O2

consumption (Figure 5G). Lin28a also

increased the basal glycolytic capacity

(Figure 5H), consistent with findings from
13C-glucose flux studies.

To assess whether Lin28a was causing

metabolic changes in a let-7-dependent

manner, we transfected a let-7 mimic

and/or the let-7 antimiR into WT and

iLin28a Tg MEFs. As expected, the let-7
LNA antimiR led to let-7 repression (Figure 5I) and increased

expression of the canonical let-7 targets Hmga2 and Imp2 (Fig-

ure 5J), whereas the let-7 mimic led to the converse (Figures 5I

and 5J). 13C-glucose flux metabolomic profiling of these trans-

fected MEFs then revealed that let-7 repression phenocopied

Lin28a’s enhancement of glycolytic flux (into 3-phosphoglyc-

erate and serine biosynthesis), whereas enforced let-7 overex-

pression suppressed WT glycolysis and partially abrogated

Lin28a’s enhancement of glycolysis (Figure 5K). However, let-7

repression failed to fully phenocopy Lin28a’s enhancement of

Krebs cycle flux, and enforced let-7 overexpression failed to

reduce WT Krebs cycle flux, though it did partially abrogate
by qRT-PCR.



Figure 5. Lin28a Alters the Bioenergetic State during Tissue Repair

(A) LC-MS/MS-selected reaction monitoring (SRM) analysis of abundance in glycolysis intermediates inWT and iLin28a Tg pinnal tissue after injury (inj), relative to

WT uninjured pinnae. G3P, D-glyceraldehyde-3-phosphate; DHAP, dihydroxyacetone-phosphate; BPG, 1,3-bisphosphoglycerate; 3PG, 3-phosphoglycerate;

PEP, phosphoenolpyruvate.

(B) SRM analysis of several metabolic indicators in WT and iLin28a Tg pinnal tissue after injury (inj), relative to WT uninjured pinnae. ATP; adenosine-50-
triphosphate; AMP, adenosine-50-monophosphate; GTP, guanosine-50-triphosphate; GMP, guanosine-50-monophosphate; GSH/GSSG, glutathione/glutathione

disulfide.

(C) Fraction of glycolytic intermediates labeled by 13C, derived from [U-13C]glucose in MEFs over 30 min, as measured by SRM analysis (n = 3).

(D) Fraction of Krebs cycle intermediates labeled at two carbons by 13C, derived from [U-13C]glucose in MEFs over 8 hr, as measured by SRM analysis (n = 3).

(E) SRM analysis of the ATP/AMP and GSH/GSSG ratios in WT and iLin28a Tg MEFs (n = 3).

(F) Mitochondrial biogenesis, glycolytic enzyme, and let-7 target mRNAs, analyzed by qRT-PCR. Lin28a and the let-7 targets Imp1 and Imp2 served as positive

controls. Relative expression levels were normalized to WT MEFs.

(G) Oxygen consumption rate (OCR) ofWT and iLin28a TgMEFs, asmeasured by the Seahorse Analyzer (n = 4 each). Oligomycin treatment inhibits ATP synthase-

dependent OCR. The proton gradient uncoupler FCCP then induces maximal OCR, and antimycin/rotenone finally inhibits all OxPhos-dependent OCR.

(H) Extracellular acidification rate (ECAR) of WT and iLin28a TgMEFs, as measured by the Seahorse Analyzer (n = 4 each). Addition of glucose induces glycolysis-

dependent lactic acid production and ECAR. Oligomycin then induces maximal ECAR, and 3BP partially inhibits glycolysis-dependent ECAR.

(I) Mature let-7 expression in WT and iLin28a Tg MEFs after transfection with a scrambled (scr) control, let-7 LNA antimiR, or let-7a duplex, as determined by

qRT-PCR.

(J) Expression of the let-7 targets Hmga2 and Imp2 in WT and iLin28a Tg MEFs after transfection with a scrambled (scr) control, let-7 LNA antimiR, or let-7a

duplex, as determined by qRT-PCR.

(K) Fraction of the glycolytic intermediate 3-phosphoglycerate (3PG) and the glycolytic side-product serine, labeled by 13C derived from [U-13C]glucose over

30 min, in MEFs after transfection with a scrambled (scr) control, let-7 LNA antimiR, or let-7a duplex (n = 3).

(legend continued on next page)
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Lin28a’s enhancement of Krebs cycle flux (Figure 5L). Most

importantly, let-7 repression failed to phenocopy Lin28a’s

enhancement of OxPhos, and enforced let-7 overexpression

failed to block Lin28a’s enhancement of OxPhos (Figure 5M).

These results show that let-7 perturbation only partially pheno-

copies the metabolic effects of Lin28a and support our conclu-

sion that let-7 perturbation alone is necessary but insufficient

to phenocopy Lin28a’s effects on tissue repair.

Lin28a Promotes the Expression of Oxidative Enzymes
Although Lin28a is well known as a repressor of let-7 miRNA

biogenesis, Lin28a also regulates mRNA translation indepen-

dently of let-7 (Polesskaya et al., 2007; Peng et al., 2011; Wilbert

et al., 2012; Cho et al., 2012). To show that Lin28a directly binds

metabolic enzyme mRNAs in primary MEFs and pinnal tissues,

we used RNA immunoprecipitation (RIP) to show that FLAG-

tagged Lin28a binds to mRNAs for Pfkp, Pdha1, Idh3b, Sdha,

Ndufb3, and Ndufb8 (Figures 6A and 6B). Furthermore, Lin28a

overexpression resulted in increased protein levels of these

metabolic genes, to varying degrees, in these settings (Fig-

ure 6C), consistent with previous studies showing that Lin28a

can directly enhance mRNA translation (Polesskaya et al.,

2007). Interestingly, phosphofructokinase (Pfkp) and pyruvate

dehydrogenase (Pdha1) are the rate-limiting enzymes that fuel

glycolysis and the Krebs cycle, respectively (Figure S6A). Isoci-

trate dehydrogenase (Idh3b) is the mitochondrial enzyme that

catalyzes the first oxidative decarboxylation step in the Krebs

cycle to produce a-ketoglutarate, NADH, andCO2, whereas suc-

cinate dehydrogenase (Sdha) oxidizes succinate to produce

fumarate and FADH2 and also serves as complex II in the elec-

tron transport chain. NADH dehydrogenases (Ndufb3/8) consti-

tute the rate-limiting complex I in the electron transport chain

that oxidizes NADH for ATP synthesis during OxPhos. Hence,

Lin28a directly binds and increases translation of multiple rate-

limiting enzyme components in both glycolysis and OxPhos

(Figures 6A–6C).

To determine whether Lin28a-mediated metabolic enhance-

ments might influence cell migration or proliferation, two

processes that are critical for tissue repair (Guo and Dipietro,

2010), we subjected MEFs to in vitro migration and pro-

liferation assays. Indeed, iLin28a Tg MEFs migrated more

than WT MEFs (Figure 6D). We then tested whether pharma-

cological inhibition of glycolysis or OxPhos could influence

MEF migration (see Figure S6A for summary of inhibitor

targets). OxPhos inhibition by antimycin-A, a specific electron

transport chain complex III inhibitor, reduced iLin28a Tg MEF

migration more than did WT MEFs (Figure 6D). The glycolysis

inhibitor 3-bromopyruvate (3BP) also reduced iLin28a Tg MEF

migration more than WT MEFs (Figure 6D), together sug-

gesting that the enhanced cell migration associated with

Lin28a expression is dependent upon enhanced glycolysis

and OxPhos.
(L) Fraction of the Krebs cycle intermediates citrate, malate, and oxaloacetate-der

8 hr in MEFs after transfection with a scrambled (scr) control, let-7 LNA antimiR,

(M) SRM analysis of several metabolic indicators in WT and iLin28a Tg MEFs a

duplex (n = 3).

Data are represented as mean ± SEM. *p < 0.05; **p < 0.01. See also Figure S5.
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To determine whether Lin28a influences cell migration in a

let-7-dependent manner, we transfected the let-7 LNA antimiR

and let-7 mimic into Tg and WT MEFs. Let-7 repression had no

significant effects on WT or iLin28a Tg MEF migration, whereas

enforced let-7 overexpression significantly inhibited both WT

and iLin28a Tg MEF migration (Figure 6E). These data are con-

sistent with our observations that let-7 repression alone is neces-

sary but insufficient to recapitulate Lin28a’s effects, suggesting

that themRNA targets of Lin28a play critical roles. Indeed, siRNA

knockdown of individual enzyme subunits like Pfkp, Pdha1,

Idh3b, Sdha, Ndufb3, or Ndufb8 (Figures S6A–S6E) all impaired

cell migration for WT and TgMEFs (Figure 6F), indicating that the

stoichiometries of these enzyme complexes are critical to cell

migration.

Cell proliferation is critical for tissue repair as well, but the

importance of OxPhos for this process is unclear. OxPhos inhibi-

tion by antimycin-A impaired the proliferation of both WT and

iLin28a TgMEFs (Figure S6F) with no changes in apoptosis, sug-

gesting that normal OxPhos is essential for cell proliferation.

Overexpression of let-7 inhibited cell proliferation in both WT

and iLin28a Tg MEFs, whereas let-7 repression did not signifi-

cantly affect proliferation in either (Figure 6G). These data are

consistent with our observations that let-7 repression is neces-

sary but insufficient to recapitulate Lin28a’s effects, suggesting

that the mRNA targets of Lin28a are critical. Depletion of Pfkp,

Pdha1, Idh3b, Sdha, Ndufb3, or Ndufb8 (Figures S6A–S6E) led

to a defect in cell proliferation for both WT and iLin28a Tg

MEFs (Figure 6H), showing that the stoichiometries of these

enzyme complexes—regulated by Lin28a—are important for

cell proliferation.

Over the course of long-term passaging, Lin28a suppressed

MEF proliferation in vitro (Figure S6F), whereas in vivo, Lin28a

promoted cell proliferation in hair follicles (Figure 1) and in pinnal

tissues (Figure 3G). Lin28a is therefore likely to be inducing

senescence in vitro after passaging through oxidative stress

(Miyauchi et al., 2004; Nogueira et al., 2008; Kaplon et al.,

2013). This counterintuitive effect is also observed when other

oncogenes like Kras, Braf, and PI3K are overexpressed in cells

cultured in vitro, even when these oncogenes are known to pro-

mote cell proliferation in vivo.

To assess the importance of Lin28a-mediated metabolic

changes in vivo, we applied specific pharmacologic inhibitors

of glycolysis and OxPhos in the setting of hair regrowth (Fig-

ure 7A). As shown in Figure 1, topical induction of Lin28a in the

epidermis improves hair regrowth during telogen. OxPhos inhibi-

tion with topical antimycin-A (+dox) suppressed hair regrowth

specifically in iLin28a Tg mice, with no effect on WT mice, indi-

cating that the effect was not due to overt tissue toxicity

(Figure 7A). Glycolysis inhibition with topical 3BP (+dox) also

suppressed hair growth specifically in iLin28a Tg mice, without

influencing WT mice. When the drugs were discontinued for

1 week, WT mice showed partial hair regrowth, whereas iLin28a
ived aspartate, labeled at two carbons by 13C derived from [U-13C]glucose over

or let-7a duplex (n = 3).

fter transfection with a scrambled (scr) control, let-7 LNA antimiR, or let-7a



Figure 6. Lin28 Promotes Wound Healing In Vitro by Enhancing Bioenergetic Metabolism

(A) RNA immunoprecipitation (RIP) using FLAG-tagged Lin28a and subsequent RT-PCR shows the metabolic enzyme mRNAs bound by Lin28a in MEFs in vitro.

(B) RNA immunoprecipitation (RIP) using FLAG-tagged Lin28a and subsequent RT-PCR shows the metabolic enzyme mRNAs bound by Lin28a in pinnal tissues

in vivo.

(C) Western blots for Lin28a mRNA targets in primary MEFs and pinnal tissues in vivo,

(D) Distance traveled byWT and iLin28a TgMEFs 18 hr after a defined scratch wasmade on equal-numberedmonolayers (n = 18). MEFs were treated with 50 nM

Anti-A, 100 uM 3BP, or DMSO vehicle control immediately after the scratch.

(E) Distance traveled by WT and iLin28a Tg MEFs treated with a scrambled (scr) control, let-7 LNA antimiR, or let-7a duplex.

(legend continued on next page)
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Tg mice showed complete regrowth, indicating that hair follicle

cycling was only transiently and not irreversibly inhibited by

this dosing regimen (Figure 7A). These results suggest that

Lin28a promotes hair regrowth by enhancing glucose oxidation

through both glycolysis and OxPhos.

We sought to confirm this mechanism in another tissue

context. Hence, we blocked OxPhos by topically applying

antimycin-A daily on ears following pinnal injury. Consistent

with the results in hair regrowth, antimycin-A abrogated Lin28a’s

enhancement of pinnal repair, with no significant effects on WT

pinnae (Figure 7B). This suggests that iLin28a Tg tissue repair

is more sensitive to OxPhos inhibition than is WT tissue repair.

In contrast, the antioxidant N-acetyl-cysteine had only a small

effect on pinnal repair in bothWTand iLin28a Tgmice (Figure 7C),

thus excluding a role for ROS or ROS-induced macrophage

recruitment in the Lin28a mechanism.

Surprisingly, daily topical application of glycolysis inhibitors

(3BP or 2-deoxy-D-glucose [2DG]) induced a substantial

enhancement in WT tissue repair, comparable to the Lin28a-

mediated enhancement (Figure 7D). 3BP also enhanced migra-

tion in WT MEFs (Figure 6D). One possible result of glycolysis

inhibition is a compensatory increase in OxPhos activity, a

phenomenon observed in cancer cells (Wu et al., 2007). To

test whether a compensatory increase in OxPhos explains

why glycolysis inhibition in WT ears enhances tissue repair

similarly to Lin28a overexpression (Figure 7D), we performed

metabolomic profiling on WT ears 1 and 7 days after daily

3BP treatment. At 1 day after topical treatment, we found that

3BP drastically reduced glycolytic intermediates and decreased

the NADH/NAD, ATP/AMP, ATP/ADP, and GTP/GMP bioener-

getic ratios, as expected with glycolysis inhibition (Figure 7E).

After 7 days of daily 3BP treatment, however, the levels of

glycolytic intermediates and the NADH/NAD ratio returned to

normal, and there was a significant increase in the ATP/AMP

and ATP/ADP ratios, indicating a compensatory increase in

OxPhos activity in vivo (Figure 7E). In WT MEFs, 3BP also led

to an increase in 13C-glucose flux through the Krebs cycle

(Figure 7F) and an increase in the maximal O2 consumption

rate (Figure 7G), further confirming that chronic glycolysis

inhibition by 3BP induces a compensatory increase in OxPhos

to enhance tissue repair. Together with our results showing

Lin28a’s enhancement of OxPhos (Figure 5A–5M) and the

necessity for increased OxPhos in Lin28a’s enhancement of

tissue repair in vivo (Figure 7A-G), these results suggest that

an enhancement of oxidative metabolism by Lin28a can confer

the higher bioenergetic capacities needed to activate adult cells

out of quiescence to enhance tissue repair.

DISCUSSION

Why some animals can fully regenerate organs when others

cannot is a longstanding mystery of biology. Recent reports

have shown that neonatal mice and select mouse strains have
(F) Distance traveled by WT and iLin28a Tg MEFs treated with siRNAs against m

(G) Cell proliferation of WT and iLin28a Tg MEFs treated with a scrambled (scr) c

(H) Cell proliferation of WT and iLin28a Tg MEFs treated with siRNAs against me

Data are represented as mean ± SEM. *p < 0.05; **p < 0.01. See also Figure S6.
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underappreciated regenerative capabilities, suggesting that

some of the evolutionary ability to regenerate is retained in

mammals but is lost with development and age (Porrello et al.,

2011; Clark et al., 1998). Most in vivo experiments have focused

on loss-of-function screens in highly regenerative organisms like

zebrafish and planaria. We have taken an alternative approach to

this question by engineering improved tissue repair in mice and

then discerning the underlying mechanisms.

Our work demonstrates that the highly conserved hetero-

chronic gene and juvenility regulator Lin28a, first described in a

genetic screen for C. elegans mutants with altered develop-

mental timing (Ambros and Horvitz, 1984), promotes mammalian

tissue repair by altering cellular metabolism. Lin28a is highly

expressed in the early mammalian embryo, declines during

midgestation, and is silenced in most tissues after birth (Shyh-

Chang and Daley, 2013). We have shown that engineering

Lin28a reactivation in postnatal tissues reactivates an embryonic

metabolic state that confers a reparative potential reminiscent of

embryonic tissues. More generally, our studies support the

concept that mammalian tissue repair can be substantially

improved by engineering the reactivation of genes that regulate

juvenile developmental stages. Importantly however, some

tissues such as adult digits and the adult heart do not show

improved tissue repair (Figures S2 and S6), illustrating that

Lin28a’s influence is context dependent. In the zebrafish, lin-28

reactivation has also been found to promote retinal regeneration

(Ramachandran et al., 2010).

It is surprising that Lin28a can promote tissue repair through

mechanisms independent of let-7. Although overexpression of

let-7 could inhibit tissue repair, let-7 repression alone failed to

promote it. Though let-7 repression is necessary but insufficient

to promote tissue repair, it is possible that let-7-dependent and

-independent functions of Lin28 synergize during tissue repair.

There is ample evidence that Lin28a, like other RNA-binding pro-

teins, regulates the translation of thousands of mRNAs and thus

operates at the systems level (Peng et al., 2011; Wilbert et al.,

2012; Cho et al., 2012). Future mechanistic and therapeutic

investigation will focus on identifying additional targets of

Lin28a that might also play a role in tissue repair.

Lin28a is emerging as a progenitor and stem cell factor that

regulates metabolism to promote self-renewal (Shyh-Chang

et al., 2013b), and here we demonstrate its effects in vivo.

Because specific inhibition of OxPhos can negate Lin28a’s

beneficial effects on tissue repair without detriment to WT tissue

repair, Lin28a is promoting tissue repair at least in part by

enhancing oxidative metabolism and bioenergetics. Mechanisti-

cally, enhanced ATP/AMP andGTP/GMP ratios could supply the

higher energetic needs of anabolic biosynthesis, mitosis, and

migration during tissue repair or could promote growth-signaling

pathways like mTOR, all of which are enhanced by Lin28a. It is

interesting to note that prior studies have linked the PPARs

(peroxisome proliferator-activated receptors)—master regula-

tors of mitochondrial biogenesis and oxidative metabolism—to
etabolic enzymes.

ontrol, let-7 LNA antimiR, or let-7a duplex.

tabolic enzymes.



Figure 7. Lin28 Promotes Tissue Repair In Vivo by Enhancing Bioenergetic Metabolism
(A) Hair regrowth of dorsal skin in p42 iLin28a Tg mice and WT littermates at the time of shaving and 3 weeks after local topical treatment with 3BP or Anti-A,

dissolved in 1g/l dox in DMSO (Ctrl). Mice were then taken off all treatment for 1 week.

(B) Pinnal wound size after 10 days of local topical treatment with Anti-A, dissolved in 1g/l dox in DMSO (Ctrl) on both iLin28a Tg and WT littermate ear holes.

(C) Pinnal wound size after 10 days of local topical treatment with the antioxidant N-acetyl-cysteine (NAC) dissolved in 1g/l dox in DMSO (Ctrl),\ on both iLin28a Tg

and WT littermate ear holes.

(D) Pinnal wound size after 10 days of local topical treatment with the glycolysis inhibitors 3BP or 2-deoxy-D-glucose (2DG) dissolved in 1g/l dox in DMSO (Ctrl) on

both iLin28a Tg and WT littermate ear holes.

(legend continued on next page)
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tissue repair in the mammalian skin, liver, muscles, and cornea

(Michalik et al., 2001; Anderson et al., 2002; Angione et al.,

2011; Nakamura et al., 2012). ATP-powered ion gradients and

ROS have also been found to be critical in other regenerative

animal models, such as Xenopus tail and planarian regeneration

(Adams et al., 2007; Beane et al., 2011; Love et al., 2013).

Clinically, the utility of topical oxygen for chronic wound therapy

(Schreml et al., 2010) might also be partially related to the

metabolic mechanisms that we have identified for Lin28a. Our

findings support the novel use for Lin28a and the enhancement

of oxidative metabolism for treating injuries and diseases

resulting from tissue damage and degeneration.

EXPERIMENTAL PROCEDURES

Mice

All animal procedures were based on animal care guidelines approved by the

Institutional Animal Care and Use Committee.

Digit Amputation

Neonatal mice were cryoanesthetized before the forelimb and hindlimb central

digits 2, 3, and 4 and were amputated at the distal interphalangeal joint using a

#11 scalpel under a dissectionmicroscope. In all animals, right limb digits were

left unamputated as controls. Digit regrowth was measured as percent of the

uninjured digit length. In adults,micewere anesthetizedwith ketamine/xylazine

before 400 mm of hindlimb digits 2 and 4 were amputated using a #11 scalpel.

Digit 3 was left unamputated as a control. X-ray imaging was performed using

the MX-20 Specimen Radiograph System (Faxitron, Tucson, AZ).

Ear Hole Punch Assay

A 2 mm diameter hole (large) was punched in the center of each outer ear

(pinna) by using a clinical biopsy punch (Roboz, Gaithersburg, MD). For

profiling experiments, the entire pinna was punched throughout with 1 mm

diameter holes (small) to maximize the amount of pinnal tissue undergoing

tissue repair.

Quantitative RT-PCR, Western Blot, and Immunohistochemistry

All assessments of mRNA levels were performed by qRT-PCR using com-

mercial primers (OriGene), and all assessments of protein levels were

performed by western immunoblotting with anti-Lin28a, anti-tubulin (Cell

Signaling), anti-Ndufb8, anti-Pdha1, anti-Pfkp, anti-Sdha (Abcam), anti-

Idh3b, or anti-Ndufb3 (Santa Cruz). For immunohistochemistry, sections

were incubated with anti-Lin28a (Cell Signaling), anti-Lin28b (Cell Signaling),

anti-Ki-67 (Dako), anti-phospho-H3 (Ser10), or anti-BrdU (Cell Signaling) and

were visualized using the VECTASTAIN Elite ABC System (Vector Labs).

RNA Immunoprecipitation

Cells and tissues were lysed in M2 buffer with RNase inhibitor and were then

incubated with anti-FLAG M2 affinity gel beads (Sigma Aldrich), according to

the manufacturer’s instructions, to pull down FLAG-tagged Lin28a. After four

washes with M2 buffer, RNA bound to the M2 affinity gel beads was isolated

using Trizol (Invitrogen).

Metabolomics and Seahorse Analyzer

Metabolomics analysis was performed as previously described (Shyh-Chang

et al., 2013a). Seahorse data analysis was performed as previously described

(Wu et al., 2007).
(E) Metabolomic profiling on WT ears 1 and 7 days after daily 3BP treatment. Sho

AMP, ATP/ADP, and GTP/GMP (n = 4).

(F) Fraction of the Krebs cycle intermediates isocitrate, succinate, and malate, lab

after continuous incubation in 3BP for 3 days (n = 3).

(G) Maximal O2 consumption rate in WT MEFs after continuous incubation in 3B

Data are represented as mean ± SEM. *p < 0.05; **p < 0.01.
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Drug Treatments

For the pinnal repair experiments, 25 ul of 5 mM 2-deoxy-D-glucose, 100 uM

3-bromopyruvate, 500 nM antimycin-A, or 10 mM N-acetyl-cysteine was

applied topically on each ear three times a week, with 1 g/l dox dissolved in

DMSO as the vehicle control. LNA antimiRs (Exiqon, Denmark) were injected

subcutaneously once weekly as previously described (Frost and Olson 2011)

or were applied topically with 25 ug LNA per ear using jetPEI according to

manufacturer’s instructions (Polyplus, France).

Histology

Tissue samples were fixed in 10% buffered formalin or Bouin’s solution and

were embedded in paraffin.

Statistical Analysis

Data are presented asmean± SEM, andStudent’s t test (two-tailed distribution,

two-sample unequal variance) was used to calculate p values. Statistical signif-

icance is displayed as p < 0.05 (one asterisk) or p < 0.01 (two asterisks) unless

specified otherwise. The tests were performed using Microsoft Excel.
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