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Abstract

By applying the continuation theorem of coincidence degree theory, we establish the existence of
2 -periodic solutions for a class of nonlineah order differential equations with delays.
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1. Introduction

In this paper, we study the existence af-periodic solutions of the nonlineath order
delay differential equation

n—1 m
x® 43 " aix D+ il PP+ )11+ fa(xt — 8)x'(c - 8)
j=2 i=1

+g(t, x(t — 1)) =€), (1.2)
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whereh; (i=1,2,...,m), f1, f2,7,e:R — R andg: R x R — R are continuous func-
tions,z(¢) ande(t) are Zr-periodic with respect to, g is 27 -periodic in the first variable,
85,8 (=12...,m)anda; (j=23,...,n—1) are constants, ang > 0.

During the past twenty years, there has been a great amount of work in periodic solu-
tions for the high-order Duffing equation

k—1
2@ +3 " ax @D 4 (1) g1, x) =0, (1.2)
j=1
or

k—1
x @D L3 x @D gt x) =0, (1.3)
j=1

Many of these results can be found in [1,3,4,9-11,13] and references cited therein. Among
the known results, we find that the assumption

(170) g(t, x) is continuous and there are positive constangand Mg such that
mo < |gx(t, x)| < Mo forall (¢, x), (1.4)

is employed, and it plays an important role in the proofs of these known results (see, for
example, [1,3,4,9-11]). Itis easy to see that (1.1) includes (1.2) and (1.3) as special cases.
Moreover, whem =2, h;(x) =0(G =1,2,...,m),8 =0, fi(x) =0, fo(x) = f(x) and
gt,x(t—1t()))=gkx@—1())), Eq. (1.1) reduces to

x4 )X+ g(x(r —T(@)) =et) (1.5)

which has been known as the delayed Liénard equation. Therefore, we consider Eq. (1.1)
as a high-order delayed Liénard equation. Arising from problems in applied sciences, it
is well known that the existence of periodic solutions of Eqg. (1.5) has been extensively
studied over the past fifty years (see, for example, [2,6,15-18]). However, xvbeB,
8#£0,t(t)#£0,g(t,x)#Zgx),hi(x)£20@G =1,2,...,m), and f1(x) # 0, the study of

Eq. (1.1) israre.

Thus, it is worth while to study the existence of the periodic solutions of Eq. (1.1). In
this paper, using the continuation theorem of coincidence degree theory, we will give some
results on the existence of ther eriodic solution to Eq. (1.1) when conditiaitlp) is
avoided.

If nis even, lets = 2k, then Eq. (1.1) becomes

2k—1 m
x4 Z ajx + Zhi(X)IX’IZ’B" + AP+ fo(x(t —8))x'(r - 8)
j=2 i=1
+g(t, x(t — 1)) =€), (1.6)

If nisodd, let =2k + 1, then Eq. (1.1) becomes
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2k m

@D LN "D > " hi (011 + )12+ fo(x (e — 8)x'(c - 8)

j=2 i=1

+g(t. x(t — () =e).

(1.7)

For ease of exposition, throughout this paper we will adopt the following notations:

2 1/p
p
- olfar) = max |x(t
lx|p </|x( )| > %] o0 t€[0’2ﬂ|x()
0

n—1
; dfi(x)
0

el = 1xPleo, x@=x, fly==7",

j=0

dh;(x
h;(x)=‘—() (i=12,...,m),
dx

Ar=1—ay_y —laxg-2)| — azy_g — - — lasl — a3,
Ax=1- a{(k_l) — lazg—2)| — az}k_3) — - —ag —lazl,
Az=ay — a;(k—l) — laz@k—2)| — a;(k—3) — oo —|ag| — a;v
Az=1-a3_,—lax-3l—az_g— - —las| — a3,
Ag=ay — azr(k_l) — lazk—-2)| — a;(k_g) — - —agf —laz|,
Ag=1-a3_,—lax-3l—ay_g— - —as —|aa|.

It is convenient to introduce the following assumptions:

(Ho)
(H1)
(H2)
(H3)
(Hg)
(Hs)

(Hs)

(H7)

There exists a constadtsuch that—21)%xh; (x) > B,i=1,2,...,m.

. at=max0,a},

There exists a constatsuch thatl > 0, and(—1)*xf1(x) > —L for all x € R.

JZ e(t)dt =0.

f{(x), hi(x) € C(R,R), (=DFn}(x) >0 (i =1,2,...,m) and(—=D)¥ f](x) > O for

all x € R.

There exists a constadi > 0 such thai(—1)*xg(r, x) > 0, (=1)*xh;(x) >0 (i =

1,2,...,m)and(=1)*xfi(x) >0forallsr € R, |x| >d.

There exists a constad} > 0 such thai(—1)*xg(r, x) < 0, (=1 xh;(x) <0 (i =

1,2,....,m)and(=1)fxfi(x) <Oforallt € R, |x| > db>.
There exist constantsand A such that

—L

limsup|x~tg(r, x)| =b < A

|x[—+o00

There exist constantsand A such that

. . AL
limsup|x~*g(t, x)| =b < )
|x]—>400



B. Liu, L. Huang / J. Math. Anal. Appl. 313 (2006) 700-716 703

2. Several lemmas

Let us introduce the auxiliary equation
n—1 m
x™ 4 A[Za A D hi I P A+ fo(x (@ = 8)2' (1 — )
j=2 i=1

—I—g(t,x(t—r(t)))j| =2e(t), re(0,1). (2.1);

Let

X=|xlxeC"YR,R), x(t +21)=x(1), forall € R}
and

Y={x|xeC(R,R), x(t+2m)=x(t), forallr € R}

be two Banach spaces with the norm

n—1

Ixllx = lxll =Y 1xP  and [xlly = Ix|oo = max |x(t).
0 t€[0,27]
]:

Define a linear operatdt : D(L) C X — Y by setting

D(L)={x|xeX, x eC(R,R)}
and forx € D(L),

Lx =x™, (2.2)
We also define a nonlinear operatér. X — Y by setting

n—1 m
Nx = —A[Zajx(j) + Y hi@ PP @ P+ fa(x (= 8))x'(c - 8)

j=2 i=1
+g(t, x(t — t(t)))i| + re(?). 2.2y

It is easy to see that

2
KerL=R and ImL:{x|x€Y,/x(s)ds:0}.
0

Thus the operatak. is a Fredholm operator with index zero.
Define the continuous projectors: X — KerL andQ:Y — Y/Im L by setting

2

Px(t) = i/x(s)ds
21

0
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and
2
1
Ox(t) = —/x(s)ds.
2
0

Hence, ImP = KerL and KerQ = Im L. Denoting byL;l:ImL — D(L) NKerP the

inverse Olel)(é)mKerP, one can observe thm;1 is a compact operator. Thereforg,is
L-compact orf2, wheres2 is an open bounded subsetXf
In view of (2.2) and(2.2)’, the operator equation

Lx=ANx, xre(0,1),

is equivalent to the auxiliary equati@g.1),,.
For convenience of use, we introduce the continuation theorem [5] as follows.

Lemma 2.1. Let X and Y be two Banach spaces. Suppose thaD(L) C X — Y is a
Fredholm operator with index zero, ard: £2 — Y is L-compact ons2, wheres2 is an
open bounded subset &f Moreover, assume that the following conditions are satisfied

(1) Lx #ANx,Vx32N D(L), » € (0, 1);
(2) Nx¢ImL,Vxd2 NKerL;
(3) The Brower degree

dedON, 2NKerL,0} #£0.
Then equatiorLx = Nx has a solution o2 N D(L).
The following lemmas will be useful to prove our main results in Section 3.
Lemma2.2. If x € C3(R, R), x(t + 27) = x(1), then
)2 < <" )3 (2.3)
Lemma 2.2 is known as Wirtinger inequality, for the proof of which, see [16,17].

Lemma2.3. Let(Hy) (or (Hs)) hold. If x(¢) is a2 -periodic solution 0{2.1),, then there
exists a constant = maxd, d2} such that

[X]oo < d 4+ 27X |5. (2.4)

Proof. Let x(¢) be a Zr-periodic solution of Eq(2.1),. Integrating(2.1), from 0 to 2z,
we see that

2 2

/|:Zhi(x)|x’|2ﬂ" +f1(x)|x’|2+g(t,x(t—T(t))):| dt:/e(t)dt:O. (2.5)

0 i=1 0
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Thus, there existsa € [0, 2] such that

S hi(x@©) X+ AEE) G+ g x(E - 1®)) =0.

i=1
If |x(&)| < d=maxd,d>}, then, and using the Schwarz inequality and the following
relation:

t 2

lx()| = x(S)—i—/x/(s)ds <d+/|x’(s)|ds, t €[0, 2n], (2.6)
& 0
we have
IXloo = max |x(1)| <d++2r|x'|2, (2.7
te[0,27]

which implies that (2.4) is satisfied.

Let |x(&)| > d = maxda, d»}. In view of (Hs) and (Hs), we shall consider two cases
as follows.

Case(i). If (Hs) holds, then, using2.5) and(Hj3), we obtain

x(§) >di, x(E—1(®) <di, (2.8)
or
x(§) < —dy, x(§ —1(®) = —d1. (2.9)

Sincex (¢) is a continuous function oR, it follows that there exists a constate R such
that

|x(€0)| <d1<d.
Let & = 2mx + &, where& e [0, 27] andm is an integer. Then,

x| = |x¢0)| <d1<d,

which, together with2.6) and(2.7), implies that (2.4) is true.
Case(ii). If (Hs) holds, then by a similar argument as in the proof of case (i), we see
that (2.4) holds true. This completes the proof of Lemma 213.

Lemma2.4. Let(Hy) (or (Hs)) hold, if x(¢) is a2r-periodic solution 0f2.1), , then, there
exists a constant = maxd, d2} such that

X2 <2x'|2+ V27 d. (2.10)

Proof. Let x(¢) be a Zr-periodic solution of Eq(2.1),. From the proof of Lemma 2.3,
one can observe that there exists a constan{0, 277] such that

[x(t0)| < d.

Let
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") = x(t+1to—2m) —x(tg), 2w —tg<t<2m,
Y= x(t + t9) — x(tg), 0<t<2r — 1.

Theny(0) = y(27) = 0 andy’(¢) = x'(t + 1p), which, together with the following inequal-
ity (see [7, Theorem 225]):

1¥l2 < 21y'|2 = 2|x"(t + t0)|, = 2|x"|2,

imply that
2 to
|x|§=/|x(t)|2dr+/|x(t)|2dt
fo 0
21 —1g 2
- / x(t — 10)|*dt + / x(t + 10— 2m) [P di
0 21 —to

2 2
=|y(®) +x(t0)]5 < (Iyl2 + |x(t0)],)” < 4y'5+4v2r dy'|2 + 2nd?
= 4)x' 3+ 4V2r d|x' | + 27d? = (2124 V2 d)z.

This completes the proof of Lemma 2.40

3. Main results

Theorem 3.1. Let(Ho)—(H3), (Hg) and(Hy) (or (Hs)) hold. Assume thdtis evengs; < 1
i=12,...,m)andA = A1. Then Eq(1.6) has at least on@x -periodic solution.

Proof. We shall seek to apply Lemma 2.1. To do this, it suffices to prove that the set of all
possible 2z -periodic solutions of E¢(2.1), are bounded.

Let x(¢) be a Zr-periodic solution of Eq(2.1), . Multiplying x(¢) and Eq.(2.1), and
integrating from O to 2, we have

21 2
/ lx®2dr + )»/[—azac—l) VP g g Ix*2 P 4
0 0 +aalx"1? - aplx' P + xfr(0)|x')?] dt

2 m 2 2w
:—A[thi(x)lx’|2’3" dt—A/g(t,x(t—r(t)))xdt+k/e(t)xdt. (3.1)
o i=1 0 0

From (Hg), for e = 1[24-L — b), there exists a constany > d such that

g(t. x(1 =) < G +)|x(t — )| < B +8)lxlo
forallz e R, |x(t — t(1))| > N1. (3.2)
Set
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={r|re€l0,2n], |x(t —t(®))| < N1},
={t|te€l0,2n], |x(t —1(®))| > N1},
and
By=sup{|g(t,x)|: 1 € R, |x| < N1}.
Then

1/2
{/|g(z,x(z—r(z)))\2dt} <V2r (b + 8)x]o
E>

<V2r(b+e)(d+V2r|x|2). (3.3)
From (H1), (2.4), (2.10), (3.1) and the Schwarz inequality, we have

(A1 — L)X 3< (A1 — L)|x®)3
<

x®15 = azy ) xCVE — lagg o) |Ix 25— — Jaalx"|3
27
72
—a2 |x |2—/L|x| dt
0
2 2
< / Ix(k)lzdt+k/[—az(k—l)lx(kfl)lz+a2(k—2)|x(k72)|2+
0 +aglx”|? — azlx'|? + xfi(x)|x'?] dt
27 m 2
:—A/thi(x)lx’|2ﬂ" dt—k/g tox(t —t(0))xdt
0 i=1 0
2
k/e(t)xdt
0
|B|Z/|x 1260 dt + lelalx|oo + /|g (1. x(t —7@))| - Ix|dt
i=1
0

+/!g(r,x(r—r<r>))| el

|B|Z/|x 2P dt + le|ad + [B1+ (b + e)d|2nd
i=179

+[lel1 4+ 2B1+2(b + &) (r + Dd |V 2r|x'|2
+ 4 (b +e)|x'|3. (3.4)
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Combining this and the following inequality:

1 27 1/r 1 2r 1/2
(E[pc/vdt) < <E/|x/|2dt> for0<r <2, (3.5)
0 0

we have

(A1—L)|¥'I5 |B|Z/|x’|2ﬂfdt+|e|1|x|oo /lgtxr—rm))l |x| dt

110 Eq

+ [lelex(c = r@))] et

m 1\Fi1
< |B|Z|:<Z) WI;’S’} +lel1d + [B1+ (b + &)d|2rd
i=1

+ [lelr 4+ 2B1+2(b + &) (7 + Dd |V 2r|x'|2
+ 47 (b +¢)|x'|5. (3.6)

In view of (Hg) andp; <1 (i =12,...,m), (3.6) implies that there exist positive con-
stantsC; andC> such that

|*¥]leo < C1 and |x’|2 < Co. (3.7)

To estimatex’(r), multiplying —x”(¢) and Eqg.(2.1), and integrating from 0 to 2,
together with(H3), (2.3) and Schwarz inequality, we have

Alx"13 < A1|x‘k+1>|

21
< / lx &P 12 gy +?»/[—az(k—l)lx(k)lz+a2(k—2)|x(k_l)|2+"'
0

+aalx®? — ag|x"|?] di

21 2
+/\f[z 5 +1h,(x)|x |2ﬁz+z} dt + 2 /fl/(x)|x/|4dt
0

0
2

A/e(t)x’/dt+A/g(t,x(t —1(1))x"dt
0

+)\/f2 x(t —8))x'(t — 8)x" di

< (lel2 + V2 C3)Ix" 2+ Calx/|2 - |x"]2
< (lel2 4+ V2 C3+ C3C2)|x" |2, (3.8)
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whereCs = maxcg, |xj<c, (1, )| andC3 = max,|<c, | f2(x)|. Thus,
" 1 ~
Ix"]> < A—l(|e|2+x/27r C3+ C3C2) := Ca. (3.9)
Sincex (¢) is 2 -periodic, there exists % € (0, 2) such that’(Tp) = 0. Therefore,

/x”(s) ds

To

1/2
x| = <2m- (/|x”(s)| ds) <271 Cs:=Cs. (3.10)

Now, we shall estimate) (j =2, ..., 2k — 1), multiplying x% and Eq.(2.1);, and
integrating from 0 to 2, we have

2
A=Ay [ 1@ Pa

2n
< / @02 dr + 1 f —ay g X F VP —Jazp) ||k F PP -
0

a4|x(k+2)| +|x(k+l)|2] dt
2 2 2%—1
</|x<zk)|2dt+,\/< ) ajx(j)>x(2k)dt
0 \J=2

2
/ [e(r) — Zh @ — AP = fa(x (e = 8))x'(t = 8)

0 i=1

— g(t, x(t — r(t)))j|x(2k) dt

<27 (leloo + D1+ D2+ D3)1x®),

where

m
Dy=max{ Y [k (0)]1x' [P + | Ao |16 x| < Co, x| < Cs
i=1
Dz =max{| f2(0)x'[: x| < C1, x| < Cs},
and
Dz=max{|g(t,x)|: t € R, |x| < C1}.

Thus, we obtain

1
x5 < - V2r(leleo + D1+ D2+ Ds) :=Ce. (3.11)
1

Consequently,
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x@ D < V2r Co
and
x| < vVor Ce(vV2r )P 1D, reR, j=2,3,...,2% 1. (3.12)
Therefore, for all possibles2-periodic solutionsc (¢) of (2.1),, there exists a constamy
such that
%-1
bl =" 1x¥ oo < M1, (3.13)
j=0

with M1 > 0 independent of.
If x e 21={x|xeKerLNX andNx €ImL}, then there exists a constaifb such
that

27 2
x(t)=M> and /[g(t,Mz)—e(t)]dt:/g(t,Mz)dt:O. (3.14)
0 0
Thus,
x(1)| =|M2| <d forallx(r) € £21. (3.15)

LetM = My +d. Set

2k—1
Q= {x xeX. lxl=Y k¥ <M}.

Jj=0

SinceN is L-compact on, it is easy to see from (3.14) and (3.15) that the conditions (1)
and (2) in Lemma 2.1 hold.
Furthermore, define the continuous functia@ngx, 1) and¥,(x, 1) by setting

2
1
Vi, ) =—A—mwx—p- Zf[g(t,x)—e(t)]dt, nel0,1],
0

2
1
Yo(x, ) =1 —pwx —p- E/[g(t,x) —e(®)]dr, pel0,1].
0

If (Hy) holds, then

xWi(x,u)#0 forallx €ed2NKerL.

Hence, using the homotopy invariance theorem, we have

2
1
dedON, 2 NKerL,0} = deg{—z— /[g(t,x) —e(t)]dt, 2 NKerL,0
T
0

=ded—x, 2 NKerL,0}#0.
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If (Hs) holds, then
xWo(x,u)#0 forallx e a2 NKerL.

Hence, using the homotopy invariance theorem, we obtain

T
dedQON, 2 NKerL,0} = deg{—% /[g(t,x) —e(r)]dr, 2 NKerL, 0}
0

=dedx, 2 NKerL,0} #0.
In view of all the above discussions, we conclude from Lemma 2.1 that Theorem 3.1 is
proved. O

Theorem 3.2. Let (Hy)—(H3), (H7) and(Hy) (or (Hs)) hold. Assume thadtis evens; < 1
i=1,2,...,m), 7(t) =t is a constant, andi = A1. Then Eq(1.6) has at least on@x -
periodic solution.

Proof. Letx(r) be a 2r-periodic solution of Eq(2.1),. From(Hy), for e = 3[4 — p),
there exists a constaM; > d such that

|g(t,x(t—1:))| < (b—i—s)\x(t —r)| forallt € R,

x(t — r)| > Ni. (3.16)
This, together with the definitions df;, £1 and E», implies that

1/2
{/|g(l,x(l—r))|2dt} Sh+e)|xt—1)|,=0b+e)lx2 (3.17)
)

In view of (3.4), (3.16) and (3.17), we obtain

(A1 - L)IX'13 < (A1 — D)x®)3
21

m
< |B|Z/|x/|2ﬂf dr+|e|1|x|oo+/|g(t,x(t—r>)| x| dt
E;

i=1p

+/|g(t,x(t —1))| - |x|dt

Ez
m 1 pi—1 o8
< |B] Z[(E) |x/|2ﬂ’} + lelid 4+ [B1+ (b + €)d]2nd
i=1

+ [lelr 4+ 2B1+ 4(b + &)d |V 2 |x|2+ 4(b + &)|x'|3. (3.18)
Combining(H7), (3.18) implies that (3.7) holds.
Now the proof proceeds in the same way as in Theorem 311.

Theorem 3.3. Let (H2), (H3) and (Hy) (or (Hs)) hold. Supposé is even, andd = Aj.
Moreover, assume that one of the following conditions holds



712 B. Liu, L. Huang / J. Math. Anal. Appl. 313 (2006) 700716

(Hg) There exist constants,, » and A such that

Fp= sup|f2(x)| and limsuplx~2g(r,x)| =b < A-F2

XER |x]400 2

(177) 7(t) = 7 is a constant, and there exist constafls b and A such that

Fo= sup|f2(x)| and limsuplx2g(r,x)| =b < A —2F2.
|x]400

Then Eqg(1.6) has at least on@rx -periodic solution.

Proof. Let x(r) be a 2r-periodic solution of Eqg.(2.1),. Multiplying —x"(r) and
Eqg. (2.1), and integrating from 0 tos2, we can show that (3.7) holds true. In view of
(Hg) and(Hy), we shall consider two cases as follows.
Case(i). If (Hs) holds, then from(H3), (2.3) and the Schwarz inequality, we have
A1lx"|5 < A1|x<"+1>|
2

< / I *D 2+ [—az-1) Ix®12 4 app_p lx * V2 4

0 +agx®P? —az|x”|2]
/|: l
21

= /e(r)x”dt+k/g t,x(t —t(0))x" dt

0

L |2ﬂt+2} di+ % / A di

2
+ A / fa(x(t = 8)x'(t — 8)x" dt
0

2 2
<f|f2(x(z—5))| IR |x”|dt+/|g(t,x(t—r(t)))| - |x"|dt
0 0

2n
+/|e(t)| - |x”| dt. (3.19)
0
Fore = 1[415%2 — b], from (Hp), there exists a constait, (N1 > d) such that

lg(t.x(t —1(®))] < b+ &) |x(t — ()]
forallz e R, |x(t — t(1))| > N1. (3.20)
Set
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Ev={t|te[0,27], |x(t — ()| < M},

Ex={t|te[0,2x], |x(t — ()| > N},
and

By=supf|g(t,x)|: t € R, |x| < N1}.

In view of (3.3), (2.10), (3.19), (3.20) and the inequalities of Schwarz and Wirtinger, we
obtain

2n
A1|x”|§<f|f2(x(t—5))| DR |x”|dt+f|g(t,x(z—r(r)))| x| dt
0 E

1

2
+/|g(t,x(t—r(t)))||x”|dt+/|e(t)| x| dt
E» 0

< lel2lx"[2+ Folx'l2lx" |2 + Bov/2 |2
+ (b +e)(d + V2 |x'|2)V2r x|
<[F+2nb+o)]lx"15+[lela+ (B2 + (b +e)d)V2r |Ix"2,  (3.21)
which, together witk(I%), implies that there exist positive constaligs and D, such that
Ix"|2 < D1 (3.22)
and
|x"|2 < D2, |X[oo < Da2. (3.23)

Thus, (3.7) holds.
Case(ii). If (H7) holds, using a similar fashion, we can show that (3.7) also holds true.
Now the proof proceeds in the same way as in Theorem 311.

Similarly to the proofs of Theorems 3.1-3.3, one can prove the following results.

Theorem 3.4. Suppose thatHp)—(Hs3), and (Hy) (or (Hs)) hold. Assume that one of the
following conditions holds

(1) (Hg) istrue,kisodd,8; <1(i=12,...,m)andA = A,.
(2) (H7)istrue,kisodd,z(rf)=tisaconstantg; <1(i=12,...,m)andA = As.

Then Eqg(1.6) has at least on@x -periodic solution.

Theorem 3.5. Let (H2), (H3), and(Hy) (or (Hs)) hold. Assume that one of the following
conditions holds
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(1) (He) is true,k is odd, andA = Aj.
(2) (H7) istrue,k is odd,z(¢) =t is a constant, andi = A».

Then Eq(1.6) has at least oné@r -periodic solution.
We are now in a position to establish the existencemsp2riodic solutions of Eq. (1.7).

Theorem 3.6. Let (Hyp)—(H3), (He) and(Hy) (or (Hs)) hold. Assume thatis eveng; < 1
i=12...,m), A=Az and Az > 0. Then Eq(1.7) has at least on&r -periodic solu-
tion.

Proof. Let x(r) be a 2r-periodic solution of Eq(2.1);. Similarly to the proof of Theo-
rem 3.1, first multiplyingc ¥’ (r) (j =0, 2, 2k + 1) and Eq. (2.1) and integrating from 0
to 2, together with(Ho)—(H3) and(Hy;) and (or(Hg)), we have

2%k
[x@)] =) 1xP oo < M1
j=0
with M, independent of.. Therefore, using a similar argument to the one of the proof of
Theorem 3.1, we can show that all of the conditions needed in Lemma 2.1 are satisfied.
Thus, Eq. (1.7) has at least one-periodic solution. O

A similar argument leads to

Theorem 3.7. Let (Ho)—(H3), (H7) and (Ha) (or (Hs)) hold. Assume that is even,
tt)=tisaconstants; <1 (i =12,...,m), A= Az and A3 > 0. Then Eq.(1.7)
has at least on@x -periodic solution.

Theorem 3.8. Let (H2), (H3), and (Hy) (or (Hs)) hold. Assume that one of the following
conditions holds

(1) Let(Hop), (Hy) and(Hg) hold,kisodd,f; <1(i=1,2,...,m), A4>0andA4 > 0.

(2) Let (Hp), (H1) and (H7) hold, k is odd, t(t) = r is a constant,8; <1 (i =
1,2, s m), Ag >0 and A4 > 0.

(3) Let (Hg) hold, k is even,A = Az and Az > 0.

(4) Let (IZ7) hold, & is evenz (t) = t is a constantA = Az and A3 > 0.

(5) Let(Heg) hold, k is odd,A4 > 0and A4 > 0.

(6) Let (177) hold, & is odd,z () = t is a constantAs > 0and A4 > 0.

Then Eq(1.7) has at least on@r -periodic solution.

4. Examplesand remarks

Example4.1. Let fi(x) =1—x, fo(x) = %sinx, gt x(t — (1)) = _xl/3(t _ 30)65"”,
ande(tr) = 2 cosg. Then, the following delayed Liénard equation:
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X+ AP+ f0x + gt x(t—T(@)) =et) (4.1)
has at least oner2periodic solution.

Proof. For Eq. (4.1), we havefi(x) =1 — x, fo(x) = 3sinx, g = —x1/3(t — 30)eS™,
xf1(x) < % ande(t) = 2cog. It is obvious that the assumptiorniglz)—(H4) and (176)
hold. Hence, by Theorem 3.5, Eq. (4.1) has at least anp&iodic solution. O

Remark 4.1. In view of T.A. Burton [2], we can see that Eq. (4.1) is a Liénard-type equa-
tion with delayz (r) = 30. Sincefy(x) # 0 and|g, (¢, x)| is unbounded, the results obtained

in [1-4,6,8-18] are invalid for Eq. (4.1). On the other hand, to our best knowledge, exis-
tence of Zr-periodic solutions of (1.1) witlh = 2, f1(x) # 0 andg(z, x) # g(x) has not
been studied in previous works. Hence, the results of this paper are essentially new.

Example 4.2. The equation
1 1
x® 1@ —20x® 4 §x<4> —10x®@ 4 (x —H|x"1BP + G 2)|x'|2

1 ; .
+x3¢ -t -1 + 1—7x(t — 12)e‘s'”2f = sint 4.2)
has at least oner2periodic solution.

Proof. Itis straightforward to check that all assumptions needed in Theorem 3.1 are satis-
fied. Therefore, Eq. (4.2) has at least ome[eriodic solution. O

Remark 4.2. As in [1-4,9-11], the papers [13,14] study il order ordinary differential
equation only with one nonlinear tergtz, x). Therefore, all the results in [1-4,6,8] are
invalid for Eq. (4.2). Moreover it is easy to find that all the results obtained in [9-18] also
fail for Eq. (4.2).
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