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Abstract

By applying the continuation theorem of coincidence degree theory, we establish the exist
2π -periodic solutions for a class of nonlinearnth order differential equations with delays.
 2005 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper, we study the existence of 2π -periodic solutions of the nonlinearnth order
delay differential equation

x(n) +
n−1∑
j=2

ajx
(j) +

m∑
i=1

hi(x)|x′|2βi + f1(x)|x′|2 + f2
(
x(t − δ)

)
x′(t − δ)

+ g
(
t, x

(
t − τ(t)

)) = e(t), (1.1)
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solu-

mong

e, for
l cases.

q. (1.1)
ces, it
sively

). In
some
wherehi (i = 1,2, . . . ,m), f1, f2, τ, e :R → R andg :R × R → R are continuous func
tions,τ(t) ande(t) are 2π -periodic with respect tot , g is 2π -periodic in the first variable
δ, βi (i = 1,2, . . . ,m) andaj (j = 2,3, . . . , n − 1) are constants, andβi � 0.

During the past twenty years, there has been a great amount of work in periodic
tions for the high-order Duffing equation

x(2k) +
k−1∑
j=1

ajx
(2j) + (−1)(k+1)g(t, x) = 0, (1.2)

or

x(2k+1) +
k−1∑
j=1

ajx
(2j+1) + g(t, x) = 0. (1.3)

Many of these results can be found in [1,3,4,9–11,13] and references cited therein. A
the known results, we find that the assumption

(H̃0) g(t, x) is continuous and there are positive constantsm0 andM0 such that

m0 �
∣∣gx(t, x)

∣∣ � M0 for all (t, x), (1.4)

is employed, and it plays an important role in the proofs of these known results (se
example, [1,3,4,9–11]). It is easy to see that (1.1) includes (1.2) and (1.3) as specia
Moreover, whenn = 2, hi(x) = 0 (i = 1,2, . . . ,m), δ = 0, f1(x) ≡ 0, f2(x) = f (x) and
g(t, x(t − τ(t))) = g(x(t − τ(t))), Eq. (1.1) reduces to

x′′ + f (x)x′ + g
(
x
(
t − τ(t)

)) = e(t) (1.5)

which has been known as the delayed Liénard equation. Therefore, we consider E
as a high-order delayed Liénard equation. Arising from problems in applied scien
is well known that the existence of periodic solutions of Eq. (1.5) has been exten
studied over the past fifty years (see, for example, [2,6,15–18]). However, whenn � 2,
δ �= 0, τ(t) �≡ 0, g(t, x) �= g(x), hi(x) �≡ 0 (i = 1,2, . . . ,m), andf1(x) �≡ 0, the study of
Eq. (1.1) is rare.

Thus, it is worth while to study the existence of the periodic solutions of Eq. (1.1
this paper, using the continuation theorem of coincidence degree theory, we will give
results on the existence of the 2π -periodic solution to Eq. (1.1) when condition(H̃0) is
avoided.

If n is even, letn = 2k, then Eq. (1.1) becomes

x(2k) +
2k−1∑
j=2

ajx
(j) +

m∑
i=1

hi(x)|x′|2βi + f1(x)|x′|2 + f2
(
x(t − δ)

)
x′(t − δ)

+ g
(
t, x

(
t − τ(t)

)) = e(t), (1.6)

If n is odd, letn = 2k + 1, then Eq. (1.1) becomes
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x(2k+1) +
2k∑

j=2

ajx
(j) +

m∑
i=1

hi(x)|x′|2βi + f1(x)|x′|2 + f2
(
x(t − δ)

)
x′(t − δ)

+ g
(
t, x

(
t − τ(t)

)) = e(t). (1.7)

For ease of exposition, throughout this paper we will adopt the following notations:

|x|p =
( 2π∫

0

∣∣x(t)
∣∣p dt

)1/p

, |x|∞ = max
t∈[0,2π]

∣∣x(t)
∣∣, a+ = max{0, a},

‖x‖ =
n−1∑
j=0

|x(j)|∞, x(0) = x, f ′
1(x) = df1(x)

dx
,

h′
i (x) = dhi(x)

dx
(i = 1,2, . . . ,m),

A1 = 1− a+
2(k−1) − |a2(k−2)| − a+

2(k−3) − · · · − |a4| − a+
2 ,

A2 = 1− a+
2(k−1)

− |a2(k−2)| − a+
2(k−3)

− · · · − a+
4 − |a2|,

A3 = a2k − a+
2(k−1) − |a2(k−2)| − a+

2(k−3) − · · · − |a4| − a+
2 ,

Ā3 = 1− a+
2k−1 − |a2k−3| − a+

2k−5 − · · · − |a5| − a+
3 ,

A4 = a2k − a+
2(k−1)

− |a2(k−2)| − a+
2(k−3)

− · · · − a+
4 − |a2|,

Ā4 = 1− a+
2k−1 − |a2k−3| − a+

2k−5 − · · · − a+
5 − |a3|.

It is convenient to introduce the following assumptions:

(H0) There exists a constantB such that(−1)kxhi(x) � B, i = 1,2, . . . ,m.
(H1) There exists a constantL such thatL � 0, and(−1)kxf1(x) � −L for all x ∈ R.
(H2)

∫ 2π

0 e(t) dt = 0.
(H3) f ′

1(x), h′
i (x) ∈ C(R,R), (−1)kh′

i (x) � 0 (i = 1,2, . . . ,m) and(−1)kf ′
1(x) � 0 for

all x ∈ R.
(H4) There exists a constantd1 > 0 such that(−1)kxg(t, x) > 0, (−1)kxhi(x) � 0 (i =

1,2, . . . ,m) and(−1)kxf1(x) � 0 for all t ∈ R, |x| � d1.
(H5) There exists a constantd2 > 0 such that(−1)kxg(t, x) < 0, (−1)kxhi(x) � 0 (i =

1,2, . . . ,m) and(−1)kxf1(x) � 0 for all t ∈ R, |x| � d2.
(H6) There exist constantsb andA such that

lim sup
|x|→+∞

∣∣x−1g(t, x)
∣∣ = b <

A − L

4π
.

(H7) There exist constantsb andA such that

lim sup
|x|→+∞

∣∣x−1g(t, x)
∣∣ = b <

A − L

4
.
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2. Several lemmas

Let us introduce the auxiliary equation

x(n) + λ

[
n−1∑
j=2

ajx
(j) +

m∑
i=1

hi(x)|x′|2βi + f1(x)|x′|2 + f2
(
x(t − δ)

)
x′(t − δ)

+ g
(
t, x

(
t − τ(t)

))] = λe(t), λ ∈ (0,1). (2.1)λ

Let

X = {
x | x ∈ Cn−1(R,R), x(t + 2π) = x(t), for all t ∈ R

}
and

Y = {
x | x ∈ C(R,R), x(t + 2π) = x(t), for all t ∈ R

}
be two Banach spaces with the norm

‖x‖X = ‖x‖ =
n−1∑
j=0

|x(j)|∞ and ‖x‖Y = |x|∞ = max
t∈[0,2π]

∣∣x(t)
∣∣.

Define a linear operatorL :D(L) ⊂ X → Y by setting

D(L) = {
x | x ∈ X, x(n) ∈ C(R,R)

}
and forx ∈ D(L),

Lx = x(n). (2.2)

We also define a nonlinear operatorN :X → Y by setting

Nx = −λ

[
n−1∑
j=2

ajx
(j) +

m∑
i=1

hi(x)|x′|2βi + f1(x)|x′|2 + f2
(
x
(
t − δ

))
x′(t − δ)

+ g
(
t, x

(
t − τ(t)

))] + λe(t). (2.2)′

It is easy to see that

KerL = R and ImL =
{

x | x ∈ Y,

2π∫
0

x(s) ds = 0

}
.

Thus the operatorL is a Fredholm operator with index zero.
Define the continuous projectorsP :X → KerL andQ :Y → Y/ ImL by setting

Px(t) = 1

2π

2π∫
x(s) ds
0
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d

and

Qx(t) = 1

2π

2π∫
0

x(s) ds.

Hence, ImP = KerL and KerQ = ImL. Denoting byL−1
P : ImL → D(L) ∩ KerP the

inverse ofL|D(L)∩KerP , one can observe thatL−1
P is a compact operator. Therefore,N is

L-compact onΩ̄ , whereΩ is an open bounded subset ofX.
In view of (2.2) and(2.2)′, the operator equation

Lx = λNx, λ ∈ (0,1),

is equivalent to the auxiliary equation(2.1)λ.
For convenience of use, we introduce the continuation theorem [5] as follows.

Lemma 2.1. Let X and Y be two Banach spaces. Suppose thatL :D(L) ⊂ X → Y is a
Fredholm operator with index zero, andN : Ω̄ → Y is L-compact onΩ̄ , whereΩ is an
open bounded subset ofX. Moreover, assume that the following conditions are satisfie:

(1) Lx �= λNx, ∀x∂Ω ∩ D(L), λ ∈ (0,1);
(2) Nx /∈ ImL, ∀x∂Ω ∩ KerL;
(3) The Brower degree

deg{QN,Ω ∩ KerL,0} �= 0.

Then equationLx = Nx has a solution onΩ̄ ∩ D(L).

The following lemmas will be useful to prove our main results in Section 3.

Lemma 2.2. If x ∈ C2(R,R), x(t + 2π) = x(t), then∣∣x′(t)
∣∣2
2 �

∣∣x′′(t)
∣∣2
2. (2.3)

Lemma 2.2 is known as Wirtinger inequality, for the proof of which, see [16,17].

Lemma 2.3. Let (H4) (or (H5)) hold. Ifx(t) is a2π -periodic solution of(2.1)λ, then there
exists a constantd = max{d1, d2} such that

|x|∞ � d + √
2π |x′|2. (2.4)

Proof. Let x(t) be a 2π -periodic solution of Eq.(2.1)λ. Integrating(2.1)λ from 0 to 2π ,
we see that

2π∫ [
m∑

i=1

hi(x)|x′|2βi + f1(x)|x′|2 + g
(
t, x

(
t − τ(t)

))]
dt =

2π∫
e(t) dt = 0. (2.5)
0 0
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ing

s

see

,

Thus, there exists aξ ∈ [0,2π] such that

m∑
i=1

hi

(
x(ξ)

)∣∣x′(ξ)
∣∣2βi + f1

(
x(ξ)

)∣∣x′(ξ)
∣∣2 + g

(
ξ, x

(
ξ − τ(ξ)

)) = 0.

If |x(ξ)| � d = max{d1, d2}, then, and using the Schwarz inequality and the follow
relation:

∣∣x(t)
∣∣ =

∣∣∣∣∣x(ξ) +
t∫

ξ

x′(s) ds

∣∣∣∣∣ � d +
2π∫
0

∣∣x′(s)
∣∣ds, t ∈ [0,2π], (2.6)

we have

|x|∞ = max
t∈[0,2π]

∣∣x(t)
∣∣ � d + √

2π |x′|2, (2.7)

which implies that (2.4) is satisfied.
Let |x(ξ)| > d = max{d1, d2}. In view of (H4) and(H5), we shall consider two case

as follows.
Case(i). If (H4) holds, then, using(2.5) and(H4), we obtain

x(ξ) > d1, x
(
ξ − τ(ξ)

)
� d1, (2.8)

or

x(ξ) < −d1, x
(
ξ − τ(ξ)

)
� −d1. (2.9)

Sincex(t) is a continuous function onR, it follows that there exists a constantξ0 ∈ R such
that ∣∣x(ξ0)

∣∣ � d1 � d.

Let ξ0 = 2mπ + ξ̄ , whereξ̄ ∈ [0,2π] andm is an integer. Then,∣∣x(ξ̄ )
∣∣ = ∣∣x(ξ0)

∣∣ � d1 � d,

which, together with(2.6) and(2.7), implies that (2.4) is true.
Case(ii). If (H5) holds, then by a similar argument as in the proof of case (i), we

that (2.4) holds true. This completes the proof of Lemma 2.3.�
Lemma 2.4. Let(H4) (or (H5)) hold, ifx(t) is a2π -periodic solution of(2.1)λ, then, there
exists a constantd = max{d1, d2} such that

|x|2 � 2|x′|2 + √
2π d. (2.10)

Proof. Let x(t) be a 2π -periodic solution of Eq.(2.1)λ. From the proof of Lemma 2.3
one can observe that there exists a constantt0 ∈ [0,2π] such that∣∣x(t0)

∣∣ � d.

Let
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l-

of all
y(t) =
{

x(t + t0 − 2π) − x(t0), 2π − t0 � t � 2π,

x(t + t0) − x(t0), 0� t < 2π − t0.

Theny(0) = y(2π) = 0 andy′(t) = x′(t + t0), which, together with the following inequa
ity (see [7, Theorem 225]):

|y|2 � 2|y′|2 = 2
∣∣x′(t + t0)

∣∣
2 = 2|x′|2,

imply that

|x|22 =
2π∫

t0

∣∣x(t)
∣∣2 dt +

t0∫
0

∣∣x(t)
∣∣2 dt

=
2π−t0∫
0

∣∣x(t − t0)
∣∣2 dt +

2π∫
2π−t0

∣∣x(t + t0 − 2π)
∣∣2 dt

= ∣∣y(t) + x(t0)
∣∣2
2 �

(|y|2 + ∣∣x(t0)
∣∣
2

)2 � 4|y′|22 + 4
√

2π d|y′|2 + 2πd2

= 4|x′|22 + 4
√

2π d|x′|2 + 2πd2 = (
2|x′|2 + √

2π d
)2

.

This completes the proof of Lemma 2.4.�

3. Main results

Theorem 3.1. Let(H0)–(H3), (H6) and(H4) (or (H5)) hold. Assume thatk is even,βi < 1
(i = 1,2, . . . ,m) andA = A1. Then Eq.(1.6)has at least one2π -periodic solution.

Proof. We shall seek to apply Lemma 2.1. To do this, it suffices to prove that the set
possible 2π -periodic solutions of Eq.(2.1)λ are bounded.

Let x(t) be a 2π -periodic solution of Eq.(2.1)λ. Multiplying x(t) and Eq.(2.1)λ and
integrating from 0 to 2π , we have

2π∫
0

|x(k)|2 dt + λ

2π∫
0

[−a2(k−1)|x(k−1)|2 + a2(k−2)|x(k−2)|2 + · · ·
+ a4|x′′|2 − a2|x′|2 + xf1(x)|x′|2]dt

= −λ

2π∫
0

m∑
i=1

xhi(x)|x′|2βi dt − λ

2π∫
0

g
(
t, x

(
t − τ(t)

))
x dt + λ

2π∫
0

e(t)x dt. (3.1)

From(H6), for ε = 1
2[A1−L

4π
− b], there exists a constantN1 > d such that∣∣g(

t, x
(
t − τ(t)

))∣∣ < (b + ε)
∣∣x(

t − τ(t)
)∣∣ � (b + ε)|x|∞

for all t ∈ R,
∣∣x(

t − τ(t)
)∣∣ > N1. (3.2)

Set
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E1 = {
t | t ∈ [0,2π], ∣∣x(

t − τ(t)
)∣∣ � N1

}
,

E2 = {
t | t ∈ [0,2π], ∣∣x(

t − τ(t)
)∣∣ > N1

}
,

and

B1 = sup
{∣∣g(t, x)

∣∣: t ∈ R, |x| � N1
}
.

Then{∫
E2

∣∣g(
t, x

(
t − τ(t)

))∣∣2 dt

}1/2

�
√

2π(b + ε)|x|∞

�
√

2π(b + ε)
(
d + √

2π |x′|2
)
. (3.3)

From(H1), (2.4), (2.10), (3.1) and the Schwarz inequality, we have

(A1 − L)|x′|22 � (A1 − L)|x(k)|22
� |x(k)|22 − a+

2(k−1)
|x(k−1)|22 − |a2(k−2)||x(k−2)|22 − · · · − |a4||x′′|22

− a+
2 |x′|22 −

2π∫
0

L|x′|2 dt

�
2π∫
0

|x(k)|2 dt + λ

2π∫
0

[−a2(k−1)|x(k−1)|2 + a2(k−2)|x(k−2)|2 + · · ·
+ a4|x′′|2 − a2|x′|2 + xf1(x)|x′|2]dt

= −λ

2π∫
0

m∑
i=1

xhi(x)|x′|2βi dt − λ

2π∫
0

g
(
t, x

(
t − τ(t)

))
x dt

+ λ

2π∫
0

e(t)x dt

� |B|
m∑

i=1

2π∫
0

|x′|2βi dt + |e|1|x|∞ +
∫
E1

∣∣g(
t, x(t − τ(t))

)∣∣ · |x|dt

+
∫
E2

∣∣g(
t, x

(
t − τ(t)

))∣∣ · |x|dt

� |B|
m∑

i=1

2π∫
0

|x′|2βi dt + |e|1d + [
B1 + (b + ε)d

]
2πd

+ [|e|1 + 2B1 + 2(b + ε)(π + 1)d
]√

2π |x′|2
+ 4π(b + ε)|x′|2. (3.4)
2
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n-
Combining this and the following inequality:(
1

2π

2π∫
0

|x′|r dt

)1/r

�
(

1

2π

2π∫
0

|x′|2 dt

)1/2

for 0 � r � 2, (3.5)

we have

(A1 − L)|x′|22 � |B|
m∑

i=1

2π∫
0

|x′|2βi dt + |e|1|x|∞ +
∫
E1

∣∣g(
t, x

(
t − τ(t)

))∣∣ · |x|dt

+
∫
E2

∣∣g(
t, x

(
t − τ(t)

))∣∣ · |x|dt

� |B|
m∑

i=1

[(
1

2π

)βi−1

|x′|2βi

2

]
+ |e|1d + [

B1 + (b + ε)d
]
2πd

+ [|e|1 + 2B1 + 2(b + ε)(π + 1)d
]√

2π |x′|2
+ 4π(b + ε)|x′|22. (3.6)

In view of (H6) andβi < 1 (i = 1,2, . . . ,m), (3.6) implies that there exist positive co
stantsC1 andC2 such that

|x|∞ < C1 and |x′|2 < C2. (3.7)

To estimatex′(t), multiplying −x′′(t) and Eq.(2.1)λ and integrating from 0 to 2π ,
together with(H3), (2.3) and Schwarz inequality, we have

A1|x′′|22 � A1|x(k+1)|22

�
2π∫
0

|x(k+1)|2 dt + λ

2π∫
0

[−a2(k−1)|x(k)|2 + a2(k−2)|x(k−1)|2 + · · ·
+ a4|x(3)|2 − a2|x′′|2]dt

+ λ

2π∫
0

[
n∑

i=1

1

2βi + 1
h′

i (x)|x′|2βi+2

]
dt + λ

3

2π∫
0

f ′
1(x)|x′|4 dt

= −λ

2π∫
0

e(t)x′′ dt + λ

2π∫
0

g
(
t, x

(
t − τ(t)

))
x′′ dt

+ λ

2π∫
0

f2
(
x
(
t − δ

))
x′(t − δ)x′′ dt

�
(|e|2 + √

2π C3
)|x′′|2 + C̄3|x′|2 · |x′′|2

�
(|e|2 + √

2π C3 + C̄3C2
)|x′′|2, (3.8)
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whereC3 = maxt∈R, |x|�C1 |g(t, x)| andC̄3 = max|x|�C1 |f2(x)|. Thus,

|x′′|2 � 1

A1

(|e|2 + √
2π C3 + C̄3C2

) := C4. (3.9)

Sincex(t) is 2π -periodic, there exists aT0 ∈ (0,2π) such thatx′(T0) = 0. Therefore,

∣∣x′(t)
∣∣ =

∣∣∣∣∣
t∫

T0

x′′(s) ds

∣∣∣∣∣ �
√

2π ·
( 2π∫

0

∣∣x′′(s)
∣∣2 ds

)1/2

�
√

2π C4 := C5. (3.10)

Now, we shall estimatex(j) (j = 2, . . . ,2k − 1), multiplying x(2k) and Eq.(2.1)λ and
integrating from 0 to 2π , we have

A1|x(2k)|22 = A1

2π∫
0

|x(2k)|2 dt

�
2π∫
0

|x(2k)|2 dt + λ

2π∫
0

[−a+
2(k−1)

|x(2k−1)|2 − |a2(k−2)||x(2k−2)|2 − · · ·
− a4|x(k+2)|2 − a+

2 |x(k+1)|2]dt

�
2π∫
0

|x(2k)|2 dt + λ

2π∫
0

(
2k−1∑
j=2

ajx
(j)

)
x(2k) dt

= λ

2π∫
0

[
e(t) −

m∑
i=1

hi(x)|x′|2βi − f1(x)|x′|2 − f2
(
x(t − δ)

)
x′(t − δ)

− g
(
t, x

(
t − τ(t)

))]
x(2k) dt

�
√

2π
(|e|∞ + D1 + D2 + D3

)|x(2k)|2,
where

D1 = max

{
m∑

i=1

∣∣hi(x)
∣∣|x′|2βi + ∣∣f1(x)

∣∣|x′|2: |x| � C1, |x′| � C5

}
,

D2 = max
{∣∣f2(x)x′∣∣: |x| � C1, |x′| � C5

}
,

and

D3 = max
{∣∣g(t, x)

∣∣: t ∈ R, |x| � C1
}
.

Thus, we obtain

|x(2k)|2 � 1

A1

√
2π

(|e|∞ + D1 + D2 + D3
) := C6. (3.11)

Consequently,
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(1)
|x(2k−1)| � √
2π C6

and ∣∣x(j)(t)
∣∣ �

√
2π C6(

√
2π )(2k−1−j), t ∈ R, j = 2,3, . . . ,2k − 1. (3.12)

Therefore, for all possible 2π -periodic solutionsx(t) of (2.1)λ, there exists a constantM1
such that

‖x‖ =
2k−1∑
j=0

|x(j)|∞ < M1, (3.13)

with M1 > 0 independent ofλ.
If x ∈ Ω1 = {x | x ∈ KerL ∩ X andNx ∈ ImL}, then there exists a constantM2 such

that

x(t) ≡ M2 and

2π∫
0

[
g(t,M2) − e(t)

]
dt =

2π∫
0

g(t,M2) dt = 0. (3.14)

Thus,∣∣x(t)
∣∣ ≡ |M2| < d for all x(t) ∈ Ω1. (3.15)

Let M = M1 + d . Set

Ω =
{

x | x ∈ X, ‖x‖ =
2k−1∑
j=0

|x(j)|∞ < M

}
.

SinceN is L-compact onΩ̄ , it is easy to see from (3.14) and (3.15) that the conditions
and (2) in Lemma 2.1 hold.

Furthermore, define the continuous functionsΨ1(x,µ) andΨ2(x,µ) by setting

Ψ1(x,µ) = −(1− µ)x − µ · 1

2π

2π∫
0

[
g(t, x) − e(t)

]
dt, µ ∈ [0,1],

Ψ2(x,µ) = (1− µ)x − µ · 1

2π

2π∫
0

[
g(t, x) − e(t)

]
dt, µ ∈ [0,1].

If (H4) holds, then

xΨ1(x,µ) �= 0 for all x ∈ ∂Ω ∩ KerL.

Hence, using the homotopy invariance theorem, we have

deg{QN,Ω ∩ KerL,0} = deg

{
− 1

2π

2π∫
0

[
g(t, x) − e(t)

]
dt,Ω ∩ KerL,0

}
= deg{−x,Ω ∩ KerL,0} �= 0.
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3.1 is
If (H5) holds, then

xΨ2(x,µ) �= 0 for all x ∈ ∂Ω ∩ KerL.

Hence, using the homotopy invariance theorem, we obtain

deg{QN,Ω ∩ KerL,0} = deg

{
− 1

T

T∫
0

[
g(t, x) − e(t)

]
dt,Ω ∩ KerL,0

}
= deg{x,Ω ∩ KerL,0} �= 0.

In view of all the above discussions, we conclude from Lemma 2.1 that Theorem
proved. �
Theorem 3.2. Let(H0)–(H3), (H7) and(H4) (or (H5)) hold. Assume thatk is even,βi < 1
(i = 1,2, . . . ,m), τ(t) ≡ τ is a constant, andA = A1. Then Eq.(1.6)has at least one2π -
periodic solution.

Proof. Let x(t) be a 2π -periodic solution of Eq.(2.1)λ. From(H7), for ε = 1
2[A1−L

4 − b],
there exists a constantN1 > d such that∣∣g(

t, x(t − τ)
)∣∣ < (b + ε)

∣∣x(t − τ)
∣∣ for all t ∈ R,

∣∣x(t − τ)
∣∣ > N1. (3.16)

This, together with the definitions ofB1, E1 andE2, implies that{∫
E2

∣∣g(
t, x(t − τ)

)∣∣2 dt

}1/2

� (b + ε)
∣∣x(t − τ)

∣∣
2 = (b + ε)|x|2. (3.17)

In view of (3.4), (3.16) and (3.17), we obtain

(A1 − L)|x′|22 � (A1 − L)|x(k)|22

� |B|
m∑

i=1

2π∫
0

|x′|2βi dt + |e|1|x|∞ +
∫
E1

∣∣g(
t, x(t − τ)

)∣∣ · |x|dt

+
∫
E2

∣∣g(
t, x(t − τ)

)∣∣ · |x|dt

� |B|
m∑

i=1

[(
1

2π

)βi−1

|x′|2βi

2

]
+ |e|1d + [

B1 + (b + ε)d
]
2πd

+ [|e|1 + 2B1 + 4(b + ε)d
]√

2π |x′|2 + 4(b + ε)|x′|22. (3.18)

Combining(H7), (3.18) implies that (3.7) holds.
Now the proof proceeds in the same way as in Theorem 3.1.�

Theorem 3.3. Let (H2), (H3) and (H4) (or (H5)) hold. Supposek is even, andA = A1.
Moreover, assume that one of the following conditions holds:
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of
(H̃6) There exist constantsF2, b andA such that

F2 = sup
x∈R

∣∣f2(x)
∣∣ and lim sup

|x|+∞
∣∣x−1g(t, x)

∣∣ = b <
A − F2

2π
.

(H̃7) τ (t) ≡ τ is a constant, and there exist constantsF2, b andA such that

F2 = sup
x∈R

∣∣f2(x)
∣∣ and lim sup

|x|+∞
∣∣x−1g(t, x)

∣∣ = b <
A − F2

2
.

Then Eq.(1.6)has at least one2π -periodic solution.

Proof. Let x(t) be a 2π -periodic solution of Eq.(2.1)λ. Multiplying −x′′(t) and
Eq. (2.1)λ and integrating from 0 to 2π , we can show that (3.7) holds true. In view
(H̃6) and(H̃7), we shall consider two cases as follows.

Case(i). If (H̃6) holds, then from(H3), (2.3) and the Schwarz inequality, we have

A1|x′′|22 � A1|x(k+1)|22

�
2π∫
0

|x(k+1)|2 dt + λ

2π∫
0

[−a2(k−1)|x(k)|2 + a2(k−2)|x(k−1)|2 + · · ·
+ a4|x(3)|2 − a2|x′′|2]dt

+ λ

2π∫
0

[
n∑

i=1

1

2βi + 1
h′

i (x)|x′|2βi+2

]
dt + λ

3

2π∫
0

f ′
1(x)|x′|4 dt

= −λ

2π∫
0

e(t)x′′ dt + λ

2π∫
0

g
(
t, x

(
t − τ(t)

))
x′′ dt

+ λ

2π∫
0

f2
(
x(t − δ)

)
x′(t − δ)x′′ dt

�
2π∫
0

∣∣f2
(
x(t − δ)

)∣∣ · ∣∣x′(t − δ)
∣∣ · |x′′|dt +

2π∫
0

∣∣g(
t, x

(
t − τ(t)

))∣∣ · |x′′|dt

+
2π∫
0

∣∣e(t)∣∣ · |x′′|dt. (3.19)

For ε = 1
2[A1−F2

2 − b], from (H̃6), there exists a constant̄N1 (N̄1 > d) such that∣∣g(
t, x

(
t − τ(t)

))∣∣ < (b + ε)
∣∣x(

t − τ(t)
)∣∣

for all t ∈ R,
∣∣x(

t − τ(t)
)∣∣ > N̄1. (3.20)

Set
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r, we

true.

e

g

Ẽ1 = {
t | t ∈ [0,2π], ∣∣x(

t − τ(t)
)∣∣ � N̄1

}
,

Ẽ2 = {
t | t ∈ [0,2π], ∣∣x(

t − τ(t)
)∣∣ > N̄1

}
,

and

B2 = sup
{∣∣g(t, x)

∣∣: t ∈ R, |x| � N̄1
}
.

In view of (3.3), (2.10), (3.19), (3.20) and the inequalities of Schwarz and Wirtinge
obtain

A1|x′′|22 �
2π∫
0

∣∣f2
(
x(t − δ)

)∣∣ · ∣∣x′(t − δ)
∣∣ · |x′′|dt +

∫
Ẽ1

∣∣g(
t, x

(
t − τ(t)

))∣∣ · |x′′|dt

+
∫
Ẽ2

∣∣g(
t, x

(
t − τ(t)

))∣∣|x′′|dt +
2π∫
0

∣∣e(t)∣∣ · |x′′|dt

� |e|2|x′′|2 + F2|x′|2|x′′|2 + B2
√

2π |x′′|2
+ (b + ε)

(
d + √

2π |x′|2
)√

2π |x′′|2
�

[
F2 + 2π(b + ε)

]|x′′|22 + [|e|2 + (
B2 + (b + ε)d

)√
2π

]|x′′|2, (3.21)

which, together with(H̃6), implies that there exist positive constantsD1 andD2 such that

|x′′|2 < D1 (3.22)

and

|x′|2 < D2, |x|∞ < D2. (3.23)

Thus, (3.7) holds.
Case(ii). If (H̃7) holds, using a similar fashion, we can show that (3.7) also holds

Now the proof proceeds in the same way as in Theorem 3.1.�
Similarly to the proofs of Theorems 3.1–3.3, one can prove the following results.

Theorem 3.4. Suppose that(H0)–(H3), and(H4) (or (H5)) hold. Assume that one of th
following conditions holds:

(1) (H6) is true,k is odd,βi < 1 (i = 1,2, . . . ,m) andA = A2.
(2) (H7) is true,k is odd,τ(t) ≡ τ is a constant,βi < 1 (i = 1,2, . . . ,m) andA = A2.

Then Eq.(1.6)has at least one2π -periodic solution.

Theorem 3.5. Let (H2), (H3), and(H4) (or (H5)) hold. Assume that one of the followin
conditions holds:
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.

-

f of
tisfied.

g

(1) (H̃6) is true,k is odd, andA = A2.
(2) (H̃7) is true,k is odd,τ(t) ≡ τ is a constant, andA = A2.

Then Eq.(1.6)has at least one2π -periodic solution.

We are now in a position to establish the existence of 2π -periodic solutions of Eq. (1.7)

Theorem 3.6. Let(H0)–(H3), (H6) and(H4) (or (H5)) hold. Assume thatk is even,βi < 1
(i = 1,2, . . . ,m), A = A3 and Ā3 > 0. Then Eq.(1.7) has at least one2π -periodic solu-
tion.

Proof. Let x(t) be a 2π -periodic solution of Eq.(2.1)λ. Similarly to the proof of Theo
rem 3.1, first multiplyingx(j)(t) (j = 0,2,2k + 1) and Eq. (2.1)λ and integrating from 0
to 2π , together with(H0)–(H3) and(H ∗

4 ) and (or(H ∗
5 )), we have

∥∥x(t)
∥∥ =

2k∑
j=0

|x(j)|∞ � M1

with M1 independent ofλ. Therefore, using a similar argument to the one of the proo
Theorem 3.1, we can show that all of the conditions needed in Lemma 2.1 are sa
Thus, Eq. (1.7) has at least one 2π -periodic solution. �

A similar argument leads to

Theorem 3.7. Let (H0)–(H3), (H7) and (H4) (or (H5)) hold. Assume thatk is even,
τ(t) ≡ τ is a constant,βi < 1 (i = 1,2, . . . ,m), A = A3 and Ā3 > 0. Then Eq.(1.7)
has at least one2π -periodic solution.

Theorem 3.8. Let (H2), (H3), and(H4) (or (H5)) hold. Assume that one of the followin
conditions holds:

(1) Let (H0), (H1) and(H6) hold,k is odd,βi < 1 (i = 1,2, . . . ,m), A4 > 0 andĀ4 > 0.
(2) Let (H0), (H1) and (H7) hold, k is odd, τ(t) ≡ τ is a constant,βi < 1 (i =

1,2, . . . ,m), A4 > 0 andĀ4 > 0.
(3) Let (H̃6) hold,k is even,A = A3 andĀ3 > 0.
(4) Let (H̃7) hold,k is even,τ(t) ≡ τ is a constant,A = A3 andĀ3 > 0.
(5) Let (H̃6) hold,k is odd,A4 > 0 andĀ4 > 0.
(6) Let (H̃7) hold,k is odd,τ(t) ≡ τ is a constant,A4 > 0 andĀ4 > 0.

Then Eq.(1.7)has at least one2π -periodic solution.

4. Examples and remarks

Example 4.1. Let f1(x) = 1− x, f2(x) = 1
2 sinx, g(t, x(t − τ(t))) = −x1/3(t − 30)esint ,

ande(t) = 2 cost . Then, the following delayed Liénard equation:
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ua-
ed
exis-

.

satis-

l
re
also

ing the

eorem,

emic

Math.,
x′′ + f1(x)|x′|2 + f2(x)x′ + g
(
t, x

(
t − τ(t)

)) = e(t) (4.1)

has at least one 2π -periodic solution.

Proof. For Eq. (4.1), we havef1(x) = 1 − x, f2(x) = 1
2 sinx, g = −x1/3(t − 30)esint ,

xf1(x) < 1
4 and e(t) = 2 cost . It is obvious that the assumptions(H2)–(H4) and (H̃6)

hold. Hence, by Theorem 3.5, Eq. (4.1) has at least one 2π -periodic solution. �
Remark 4.1. In view of T.A. Burton [2], we can see that Eq. (4.1) is a Liénard-type eq
tion with delayτ(t) = 30. Sincef1(x) �≡ 0 and|gx(t, x)| is unbounded, the results obtain
in [1–4,6,8–18] are invalid for Eq. (4.1). On the other hand, to our best knowledge,
tence of 2π -periodic solutions of (1.1) withn = 2, f1(x) �≡ 0 andg(t, x) �= g(x) has not
been studied in previous works. Hence, the results of this paper are essentially new

Example 4.2. The equation

x(8) + 10x(7) − 20x(6) + 1

2
x(4) − 10x(2) + (x − 4)|x′|8/5 + 1

4
(x − 2)|x′|2

+ x3(t − 1)x′(t − 1) + 1

17
x(t − 12)e−sin2 t = sint (4.2)

has at least one 2π -periodic solution.

Proof. It is straightforward to check that all assumptions needed in Theorem 3.1 are
fied. Therefore, Eq. (4.2) has at least one 2π -periodic solution. �
Remark 4.2. As in [1–4,9–11], the papers [13,14] study thenth order ordinary differentia
equation only with one nonlinear termg(t, x). Therefore, all the results in [1–4,6,8] a
invalid for Eq. (4.2). Moreover it is easy to find that all the results obtained in [9–18]
fail for Eq. (4.2).
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