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Abstract

It is known that Garside groups are strongly translation discrete. In this paper, we show that the translation numbers in a Garside
group are rational with uniformly bounded denominators and can be computed in finite time. As an application, we give solutions
to some group-theoretic problems.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The notion of translation numbers was first introduced by Gersten and Short [16]. For a finitely generated group G
and a finite set X of semigroup generators for G, the translation number with respect to X of a non-torsion element
g ∈ G is defined by

tG,X (g) = lim
n→∞

|gn
|X

n
,

where | · |X denotes the shortest word length in the alphabet X . If there is no confusion about the group G, we simply
write tX (g) instead of tG,X (g). When A is a set of group generators, |g|A and tA(g) indicate |g|A∪A−1 and tA∪A−1(g),
respectively.

The notion of translation numbers is quite a useful one since it has both algebraic and geometric aspects.
Kapovich [18] and Conner [9] suggested the following notions: a finitely generated group G is said to be

(1) translation separable (or translation proper) if for some (and hence for any) finite set X of semigroup generators
for G the translation numbers of non-torsion elements are strictly positive;
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(2) translation discrete if it is translation separable and for some (and hence for any) finite set X of semigroup
generators for G the set tX (G) has 0 as an isolated point;

(3) strongly translation discrete if it is translation separable and for some (and hence for any) finite set X of semigroup
generators for G and for any real number r the number of conjugacy classes [g] = {h−1gh : h ∈ G} with
tX (g) 6 r is finite. (The translation number is constant on each conjugacy class [16].)

There are several results on translation numbers in geometric and combinatorial groups. Biautomatic groups are
translation separable [16]. C(4)-T(4)-P, C(3)-T(6)-P and C(6)-P small cancelation groups are strongly translation
discrete [18]. Word hyperbolic groups are strongly translation discrete, and moreover, the translation numbers in a
word hyperbolic group are rational with uniformly bounded denominators [17,2,27].

This paper discusses the translation numbers in Garside groups. The class of Garside groups, first introduced by
Dehornoy and Paris [12], provides a lattice-theoretic generalization of braid groups and Artin groups of finite type.
Bestvina [3] showed that Artin groups of finite type are translation discrete. Charney, Meier and Whittlesey [8] showed
that Garside groups with tame Garside element are translation discrete. Recently, Lee [22] showed that Garside groups
are strongly translation discrete without any assumption.

The goal of this paper is to establish the following result which asserts that, as in word hyperbolic groups, the
translation numbers in each Garside group are rational with uniformly bounded denominators. (See the next section
for the definitions of ∆, D and ‖ · ‖.)

Main Theorem (Theorem 4.2(i)). Let G be a Garside group with Garside element ∆ and the setD of simple elements.
For every element g of G, the translation number tD(g) is rational of the form p/q for some integers p, q such that
1 6 q 6 ‖∆‖

2.

For elements of Garside groups, there are integer-valued invariants, inf and sup, that directly come from the
definition of Garside groups. Because |g|D is either − inf(g), sup(g) or sup(g) − inf(g), it is natural to consider
the following limits:

tinf(g) = lim
n→∞

inf(gn)

n
and tsup(g) = lim

n→∞

sup(gn)

n
.

Then the translation number tD(g) is either −tinf(g), tsup(g) or tsup(g)− tinf(g). Like translation numbers, tinf and tsup
are conjugacy invariants. Exploiting the theory of conjugacy classes in Garside groups, we study the properties of tinf
and tsup, and then prove our Main Theorem.

In addition, we consider the quotient group G∆ = G/〈∆m0〉 of a Garside group G, where 〈∆m0〉 is a subgroup
of the center of G. We show that the group G∆ is strongly translation discrete and the translation numbers in it are
rational with uniformly bounded denominators.

As an application, we show that the power (conjugacy) problem and the proper power (conjugacy) problem are
solvable in Garside groups and the generalized power (conjugacy) problem is solvable in braid groups and Artin
groups of type B.

2. Garside groups

We briefly review the definition of Garside groups, and some results necessary for this work.
See [14,6,28,13,5,12,24,11,15,21] for details.

2.1. Garside monoids and groups

Let M be a monoid. Let atoms be the elements a ∈ M \ {1} such that a = bc implies either b = 1 or c = 1. Let
‖a‖ be the supremum of the lengths of all expressions of a in terms of atoms. The monoid M is said to be atomic if it
is generated by its atoms and ‖a‖ < ∞ for any a ∈ M . In an atomic monoid M , there are partial orders 6L and 6R :
a 6L b if ac = b for some c ∈ M ; a 6R b if ca = b for some c ∈ M .

Definition 2.1. An atomic monoid M is called a Garside monoid if

(i) M is finitely generated;
(ii) M is left and right cancelative;
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(iii) (M,6L) and (M,6R) are lattices;
(iv) there exists an element ∆, called a Garside element, satisfying the following: (a) for each a ∈ M , a 6L ∆ if and

only if a 6R ∆; (b) the set {a ∈ M : a 6L ∆} generates M .

An element a of M is called a simple element if a 6L ∆. Let D denote the set of all simple elements. Let ∧L and
∨L denote the gcd and lcm with respect to 6L .

Garside monoids satisfy Ore’s conditions, and thus embed in their groups of fractions. A Garside group is defined
as the group of fractions of a Garside monoid. When M is a Garside monoid and G the group of fractions of M ,
we identify the elements of M and their images in G and call them positive elements of G. M is called the positive
monoid of G, often denoted G+.

Let τ : G → G be the inner automorphism of G defined by τ(g) = ∆−1g∆. It is known that τ(G+) = G+, that is,
the positive monoid is invariant under the conjugation by ∆.

The partial orders 6L and 6R , and thus the lattice structures in the positive monoid G+ can be extended to the
Garside group G as follows: g 6L h (respectively, g 6R h) for g, h ∈ G if gc = h (respectively, cg = h) for some
c ∈ G+.

For g ∈ G, there are integers r 6 s such that ∆r 6L g 6L ∆s . Hence, the invariants inf(g) = max{r ∈ Z :

∆r 6L g}, sup(g) = min{s ∈ Z : g 6L ∆s
} and len(g) = sup(g) − inf(g) are well defined. For g ∈ G, there is a

unique expression

g = ∆r s1 · · · sk,

called the normal form of g, where s1, . . . , sk ∈ D \ {1,∆} and (si si+1 · · · sk)∧L ∆ = si for i = 1, . . . , k. In this
case, inf(g) = r and sup(g) = r + k.

For g ∈ G, we denote its conjugacy class {h−1gh : h ∈ G} by [g]. Define infs(g) = max{inf(h) : h ∈ [g]} and
sups(g) = min{sup(h) : h ∈ [g]}. The super summit set [g]

S and the stable super summit set [g]
St are subsets of the

conjugacy class of g defined as follows:

[g]
S

= {h ∈ [g] : inf(h) = infs(g) and sup(h) = sups(g)};

[g]
St

= {h ∈ [g]
S

: hk
∈ [gk

]
S for all positive integers k}.

Both of these sets are finite and nonempty [13,21,4].
In the rest of the paper, if it is not specified, G is assumed to be a Garside group, whose positive monoid is G+,

with Garside element ∆ and the set D of simple elements, where ‖∆‖ is simply written as N .

2.2. Some results

For a ∈ G+, define Lmax(a) by Lmax(a) = ∆∧L a.

Lemma 2.2. For a, b ∈ G+ and 1 6L s 6L ∆,

(i) Lmax(ab) = Lmax(aLmax(b));
(ii) Lmax(τ (a)) = τ(Lmax(a));

(iii) s 6L Lmax(sa).

Lemma 2.3. For g, h ∈ G,

(i) inf(gh) > inf(g)+ inf(h);
(ii) inf(g)− len(h) 6 inf(h−1gh) 6 inf(g)+ len(h).

Proof. (i) Let g = ∆ua and h = ∆vb, where u = inf(g), v = sup(h) and a, b ∈ G+. Since gh = ∆ua∆vb =

∆u+vτ v(a)b, we have ∆u+v 6L gh, and hence inf(gh) > u + v = inf(g)+ inf(h).
(ii) Let h = ∆us1 · · · sk be the normal form of h, and let g1 = ∆−u g∆u . Since inf(τ (x)) = inf(x) for any x ∈ G,

inf(g1) = inf(τ u(g)) = inf(g). (1)

If len(h) = k = 0, then we are done by (1).
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Hence, we may assume len(h) = k > 1. Observe that, for any g2 ∈ G and s ∈ D \ {1,∆},

inf(s−1g2s) > inf(s−1)+ inf(g2)+ inf(s) = inf(g2)− 1;

inf(g2) = inf(s(s−1g2s)s−1) > inf(s)+ inf(s−1g2s)+ inf(s−1)

= inf(s−1g2s)− 1,

whence inf(g2)− 1 6 inf(s−1g2s) 6 inf(g2)+ 1. Therefore,

inf(g1)− k 6 inf(s−1
k · · · s−1

1 g1s1 · · · sk) 6 inf(g1)+ k. (2)

From (1) and (2), we obtain the desired result. �

Proposition 2.4 (Theorem 6.1 of [22];Lemma 3.5 and Proposition 3.6 of [21]). For g ∈ G and n,m > 1,

(i) n infs(g) 6 infs(gn) 6 n infs(g)+ n − 1;
(ii) n sups(g)− (n − 1) 6 sups(g

n) 6 n sups(g);
(iii) infs(gm)+ infs(gn) 6 infs(gm+n) 6 infs(gm)+ infs(gn)+ 1.

3. Properties of tinf, tsup and tlen

Definition 3.1. For an element g of a Garside group G, define

tinf(g) = lim sup
n→∞

inf(gn)

n
; tsup(g) = lim inf

n→∞

sup(gn)

n
; tlen(g) = tsup(g)− tinf(g).

Since inf(g) 6 inf(gn)/n 6 sup(gn)/n 6 sup(g) for all n > 1, both tinf(g) and tsup(g) are finite-valued. In
fact, we shall see in Lemmas 3.2 and 3.3 that tinf(g) = limn→∞ inf(gn)/n and tsup(g) = limn→∞ sup(gn)/n, hence
tlen(g) = limn→∞ len(gn)/n.

Note that, for all g ∈ G, sup(g) = − inf(g−1), whence tsup(g) = −tinf(g−1). Therefore, we may focus only on tinf
in order to know about tinf, tsup and tlen.

We first explore elementary properties of tinf.

Lemma 3.2. Let g, h ∈ G.

(i) tinf(h−1gh) = tinf(g).
(ii) tinf(g) = limn→∞ inf(gn)/n.

(iii) infs(g) 6 tinf(g) 6 infs(g)+ 1.
(iv) For all n > 1, tinf(gn) = ntinf(g).

Proof. (i) By Lemma 2.3(ii), inf(gn) − len(h) 6 inf(h−1gnh) 6 inf(gn) + len(h). Dividing by n and then taking
upper limits, we get tinf(g) = tinf(h−1gh).

In view of (i), we may assume that g belongs to its stable super summit set, and hence

infs(gk) = inf(gk) for all k > 1. (3)

(ii) From (3) and Proposition 2.4(iii), inf(gm)+ inf(gn) 6 inf(gm+n) 6 inf(gm)+ inf(gn)+1 for all m, n > 1. It is
well known that if am+n 6 am + an for all m, n > 0, where an > 0 for all n, then limn→∞(an/n) exists [1, pp. 189].
The result follows when an = inf(gn)− n inf(g)+ 1.

(iii) From (3) and Proposition 2.4(i), infs(g) 6 inf(gn)/n < infs(g)+ 1 for all n > 1.
(iv) tinf(gn) = limk→∞ n(inf(gkn)/kn) = ntinf(g). �

In an analogous way, we have the following properties for tsup.

Lemma 3.3. Let g, h ∈ G.

(i) tsup(h−1gh) = tsup(g).
(ii) tsup(g) = limn→∞ sup(gn)/n.
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(iii) sups(g)− 1 6 tsup(g) 6 sups(g).
(iv) For all n > 1, tsup(gn) = ntsup(g).

The bounds of tinf(g) and tsup(g) in Lemma 3.2(iii) and Lemma 3.3(iii) are not sharp. Those bounds are improved
in [20]. Corollary 3.5 in [20] shows that infs(g) 6 tinf(g) 6 infs(g)+ 1 − 1/N and sups(g)− 1 + 1/N 6 tsup(g) 6
sups(g). Example 3.6 in [20] shows that these bounds are optimal.

Definition 3.4. An element g of a Garside group is said to be

(i) inf-straight if inf(g) = tinf(g);
(ii) sup-straight if sup(g) = tsup(g).

The following proposition provides conditions equivalent to inf-straightness. The implication from (ii) to (iii) is
benefited from discussions with Ki Hyoung Ko.

Proposition 3.5. For every g ∈ G, the following conditions are equivalent.

(i) g is inf-straight.
(ii) inf(gN ) = N inf(g).

(iii) inf(gk) = k inf(g) for all k > 1.

Proof. (i) ⇒ (ii) By Lemma 3.2 and the definition of infs ,

N inf(g) = Ntinf(g) = tinf(gN ) > infs(gN ) > inf(gN ) > N inf(g).

(ii) ⇒ (iii) If len(g) = 0, the result is trivial. So, we may assume len(g) > 1.
Let inf(g) = r . Notice that gk∆−kr is a positive element for k > 1, since inf(gk) > k inf(g) = kr . For k > 1, let

sk = Lmax(gk∆−kr ) and ak = s−1
k gk∆−kr , hence

gk
= skak∆kr and sk = Lmax(skak).

Since inf(gk) = inf(skak) + kr = inf(skak) + k inf(g) and sk = Lmax(skak), inf(gk) = k inf(g) if and only if
inf(skak) = 0 or, equivalently, if sk 6= ∆. Therefore, it suffices to show that sk 6= ∆ for all k > 1. Let ψ = τ−r .
(Then, ∆r h = ψ(h)∆r for all h ∈ G.)

First, we claim that for k > 1,

sk+1 = Lmax(s1a1ψ(sk)), (4)

sk+1 = Lmax(skakψ
k(s1)). (5)

Observe that for all k > 1,

sk+1ak+1∆(k+1)r
= gk+1

= g · gk
= (s1a1∆r )(skak∆kr ) = s1a1ψ(skak)∆(k+1)r .

Therefore,

sk+1ak+1 = s1a1ψ(skak) = s1a1ψ(sk)ψ(ak).

Since sk = Lmax(skak), we have ψ(sk) = Lmax(ψ(sk)ψ(ak)) by Lemma 2.2(ii). Therefore,

sk+1 = Lmax(sk+1ak+1)

= Lmax(s1a1ψ(sk)ψ(ak))

= Lmax(s1a1Lmax(ψ(sk)ψ(ak))) (by Lemma 2.2(i))
= Lmax(s1a1ψ(sk)).

Hence, Eq. (4) is proved. Applying the same argument to gk+1
= gk

· g, we obtain Eq. (5).
By Eq. (5) and Lemma 2.2(iii), we have sk 6L sk+1 for all k > 1. Moreover, we know that s1 6= 1 because

len(g) > 1. Therefore the sequence s1, s2, . . . satisfies

1 6= s1 6L s2 6L · · · 6L sN 6L · · · 6L ∆. (6)
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Since inf(gN ) = r N by the hypothesis, we have sN 6= ∆, hence ‖sN ‖ is strictly less than N = ‖∆‖. It follows that

1 6 ‖s1‖ 6 ‖s2‖ 6 · · · 6 ‖sN−1‖ 6 ‖sN ‖ 6 N − 1.

By the pigeonhole principle, there exists m ∈ {1, . . . , N − 1} such that ‖sm‖ = ‖sm+1‖, hence sm = sm+1.
Now, we claim that for each j > 1,

sm = sm+ j . (7)

Using induction, it suffices to show that if sk = sk+1 for some k > 1, then sk+1 = sk+2. Suppose sk = sk+1. By
Eq. (4),

sk+1 = Lmax(s1a1ψ(sk)) = Lmax(s1a1ψ(sk+1)) = sk+2.

Therefore, Eq. (7) is proved.
Since sN 6= ∆, one has sk 6= ∆ for k 6 N by Eq. (6). In particular, sm 6= ∆ because m < N . By Eq. (7), we can

conclude that sk 6= ∆ for all k > m. Therefore, sk 6= ∆ for all k > 1 and we are done.
(iii) ⇒ (i) It is obvious by the definition of tinf. �

In an analogous way, we have conditions equivalent to sup-straightness.

Proposition 3.6. For every g ∈ G, the following conditions are equivalent.

(i) g is sup-straight.
(ii) sup(gN ) = N sup(g).

(iii) sup(gk) = k sup(g) for all k > 1.

Using Proposition 3.5(ii), it is easy to decide whether or not a given element is inf-straight. We remark that the
value N in that statement is the smallest one playing such a role. We illustrate this with an example.

Example 3.7. For N > M > 2, let

G = 〈x, y | x N
= yM

〉.

It is a Garside group with Garside element ∆ = x N
= yM [12, Example 4], and ‖∆‖ = N . Note that

inf(xk) = bk/Nc. Hence, inf(xk) = 0 = k inf(x) for all 1 6 k 6 N −1 but x is not inf-straight because tinf(x) = 1/N
is not equal to inf(x) = 0.

Lemma 3.8. If g ∈ G is inf-straight, then gn is also inf-straight and infs(gn) = n inf(g) for all n > 1.

Proof. Let g ∈ G be inf-straight, and let n > 1. By Lemma 3.2 and Proposition 3.5,

tinf(gn) = ntinf(g) = n inf(g) = inf(gn) 6 infs(gn) 6 tinf(gn).

In particular, infs(gn) = n inf(g). Since tinf(gn) = inf(gn), gn is inf-straight. �

Lemma 3.9. If g ∈ G is sup-straight, then gn is also sup-straight and sups(g
n) = n sup(g) for all positive integers n.

The stable super summit set is nonempty [21]. Using this fact together with the properties of inf-straight elements
and sup-straight elements, we characterize conjugacy classes of inf-straight elements and sup-straight elements.

Corollary 3.10. For every g ∈ G, the following conditions are equivalent.

(i) g is conjugate to an inf-straight element.
(ii) infs(g) = tinf(g).

(iii) infs(gN ) = N infs(g).
(iv) infs(gk) = k infs(g) for all k > 1.
(v) For all h ∈ [g]

S , h is inf-straight.
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Proof. (i) ⇒ (ii) Suppose that h ∈ [g] is inf-straight. By Lemmas 3.2 and 3.8,

tinf(g) = tinf(h) = inf(h) = infs(h) = infs(g).

(ii) ⇔ (iii) ⇔ (iv) Because infs and tinf are conjugacy invariants, we may assume that g belongs to its stable super
summit set. Then infs(gk) = inf(gk) for all k > 1, hence the statements (ii), (iii) and (iv) are exactly the same as those
in Proposition 3.5.

(iv) ⇒ (v) Let h ∈ [g]
S . For all k > 1,

k inf(h) 6 inf(hk) 6 infs(gk) = k infs(g) = k inf(h).

Therefore inf(hk) = k inf(h) for all k > 1, hence h is inf-straight by Proposition 3.5.
(v) ⇒ (i) It is obvious. �

Corollary 3.11. For every g ∈ G, the following conditions are equivalent.

(i) g is conjugate to a sup-straight element.
(ii) sups(g) = tsup(g).

(iii) sups(g
N ) = N sups(g).

(iv) sups(g
k) = k sups(g) for all k > 1.

(v) For all h ∈ [g]
S , h is sup-straight.

For a real number x , let frac(x) denote the fractional part of x , that is, frac(x) = x − bxc.

Lemma 3.12. For every g ∈ G, frac (tinf(g)) 6∈ (0, 1/N ).

Proof. Assume that 0 < frac(tinf(g)) < 1/N for some g ∈ G. Since infs(g) 6 tinf(g) 6 infs(g) + 1 by Lemma 3.2
and infs(g) is integer-valued, we have

infs(g) < tinf(g) < infs(g)+
1
N
. (8)

Note that infs(gN ) > N infs(g) by Proposition 2.4(i). If infs(gN ) > N infs(g)+ 1, then by Lemma 3.2

tinf(g) =
tinf(gN )

N
>

infs(gN )

N
>

N infs(g)+ 1
N

= infs(g)+
1
N
,

which contradicts (8). Therefore infs(gN ) = N infs(g) and it follows by Corollary 3.10 that tinf(g) = infs(g). This
contradicts (8). �

We are now ready to show the main result of this section.

Theorem 3.13. Let G be a Garside group with Garside element ∆, and let N = ‖∆‖.

(i) For every element g of G, tinf(g) and tsup(g) are rational of the form p/q for some integers p, q such that
1 6 q 6 N.

(ii) For every element g of G, tlen(g) is rational of the form p/q for some integers p, q such that 1 6 q 6 N 2.
(iii) There is a finite-time algorithm that, given an element g of G, computes tinf(g), tsup(g) and tlen(g).

Proof. (i) Put tinf(g) = x . Assume that x is irrational. Then, the set {frac(kx) : k > 1} is a dense subset of the
unit interval [0, 1]. Therefore there exists k > 1 such that 0 < frac(kx) < 1/N . Since kx = ktinf(g) = tinf(gk), it
contradicts Lemma 3.12. Consequently, x is rational.

If x = 0, we are done. Thus, we may assume x 6= 0. Let x = p/q for relatively prime integers p, q with q > 1.
Assume q > N . There exist integers k > 1 and m such that kp = mq + 1. Hence, tinf(gk) = ktinf(g) = kp/q =

m + 1/q ∈ (m,m + 1/N ), which contradicts Lemma 3.12. Consequently, 1 6 q 6 N .
The assertion for tsup(g) in the statement is true because tsup(g) = −tinf(g−1).
(ii) follows from (i) because tlen(g) = tsup(g)− tinf(g).
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(iii) If N = 1, then G is the infinite cyclic group generated by ∆, and thus tinf(g) = inf(g) for all g ∈ G. So, we
may assume N > 2. To compute tinf(g), we will make an approximation of tinf(g) using infs(gn)/n for sufficiently
large n (in fact, n = N 2 is enough), and then determine tinf(g) exactly by using (i).

Let T be the set of all rational numbers whose denominators are less than or equal to N , that is, T = {p/q : p, q ∈

Z, 1 6 q 6 N }. Then tinf(g) ∈ T by (i). Note that in any closed interval [α, α + ε] on the real line with length
ε 6 1/N 2, there is at most one element of T .

Choose any n > N 2. Applying Lemma 3.2(iii) to gn , we know infs(gn) 6 tinf(gn) 6 infs(gn) + 1. Since
tinf(gn) = ntinf(g) by Lemma 3.2 (iv),

infs(gn)

n
6 tinf(g) 6

infs(gn)

n
+

1
n
. (9)

Therefore, tinf(g) belongs to the closed interval [infs(gn)/n, infs(gn)/n + 1/n]. Since the length of this interval
is 6 1/N 2, tinf(g) is the unique element of T in this interval, and hence it can be found in finite time. Because
tsup(g) = −tinf(g−1) and tlen(g) = tsup(g)− tinf(g) for all g ∈ G, there is a finite-time algorithm for tinf(·), tsup(·) and
tlen(·). �

We close this section with examples concerning the upper bounds of the denominators of tinf, tsup and tlen given in
Theorem 3.13. Recall the Garside group

G = 〈x, y | x N
= yM

〉 (N > M > 2)

considered in Example 3.7. For k > 1, inf(xk) = bk/Nc and sup(xk) = dk/Ne, whence tinf(x) = tsup(x) = 1/N .
Therefore, the upper bound N of the denominators of tinf and tsup is optimal.

The following example shows that the upper bound N 2 of the denominator of tlen(g) is asymptotically tight. That
is, the optimal upper bound of the denominator equals Θ(N 2).

Example 3.14. Consider the group

G = H × H, where H = 〈x, y | x p
= yq

〉 with q = p + 1 > 3.

As in Example 3.7, H is a Garside group with Garside element ∆H = x p
= yq . Because G is a cartesian product of

H , it is a Garside group with Garside element ∆ = (∆H ,∆H ) by [22, Theorem 4.1]. It is clear that N = ‖∆‖ = 2q .
Let g = (x, y) ∈ G. For all n > 1, gn

= (xn, yn), so by [22, Lemma 4.4]

inf(gn) = min{inf(xn), inf(yn)} = min{bn/pc, bn/qc} = bn/qc;

sup(gn) = max{sup(xn), sup(yn)} = max{dn/pe, dn/qe} = dn/pe.

Therefore,

tinf(g) =
1
q
, tsup(g) =

1
p

and tlen(g) =
1
p

−
1
q

=
q − p

pq
=

1
N
2 (

N
2 − 1)

.

Since N is even, the denominator of tlen(g) is N
2 (

N
2 − 1) = Θ(N 2).

4. Translation numbers

It is well known (see [7] for example) that, for an element g ∈ G, the shortest word length |g|D can be expressed
in terms of inf(g) or sup(g) as follows: (i) if inf(g) > 0, then |g|D = sup(g); (ii) if sup(g) 6 0, then |g|D = − inf(g);
(iii) if inf(g) < 0 < sup(g), then |g|D = sup(g)− inf(g) = len(g).

Lemma 4.1. Let G be a Garside group with the set D of simple elements. Let g ∈ G.

(i) If infs(g) > 0, then tD(g) = tsup(g).
(ii) If sups(g) 6 0, then tD(g) = −tinf(g).

(iii) If infs(g) < 0 < sups(g), then tD(g) = tlen(g).
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Proof. Note that infs , sups , tD, tinf, tsup and tlen are all conjugacy invariants. Hence, we may assume g ∈ [g]
St , that

is, infs(gn) = inf(gn) and sups(g
n) = sup(gn) for all n > 1.

If infs(g) > 0, then inf(gn) > n inf(g) > 0 for all n > 1, whence |gn
|D = sup(gn). Consequently, tD(g) = tsup(g).

If sups(g) 6 0, then sup(gn) 6 n sup(g) 6 0 for all n > 1, whence |gn
|D = − inf(gn). Consequently,

tD(g) = −tinf(g).
If infs(g) < 0 < sups(g), then inf(gn) 6 n inf(g)+ (n − 1) < 0 < n sup(g)− (n − 1) 6 sup(gn) for all n > 1 by

Proposition 2.4, whence |gn
|D = len(gn). Consequently, tD(g) = tlen(g).

Theorem 4.2. Let G be a Garside group with Garside element ∆ and the set D of simple elements. Let N = ‖∆‖.

(i) The translation numbers in G are rational of the form p/q for some integers p, q such that 1 6 q 6 N 2.
(ii) If g is a non-identity element of G, then tD(g) > 1/N.

(iii) There is a finite-time algorithm that, given an element of G, computes its translation number.

Proof. (i) and (iii) immediately follow from Theorem 3.13 and Lemma 4.1. Let us prove (ii).
Let g be a non-identity element of G. Because Garside groups are torsion-free [10] and strongly translation discrete

(and hence translation separable) [22], tD(g) > 0.
If infs(g) > 0, then tD(g) = tsup(g) > 1/N by Lemma 4.1 and Theorem 3.13.
If sups(g) 6 0, then tD(g) = −tinf(g) = |tinf(g)| > 1/N by Lemma 4.1 and Theorem 3.13.
If infs(g) < 0 < sups(g), then infs(gn) < 0 < sups(g

n) for all n > 1 by Proposition 2.4, whence
tinf(g) 6 0 6 tsup(g). Therefore, tD(g) = tsup(g) − tinf(g) = |tsup(g)| + |tinf(g)| by Lemma 4.1. Since tD(g) > 0,
either |tsup(g)| or |tinf(g)| is greater than or equal to 1/N by Theorem 3.13. Consequently, tD(g) > 1/N . �

In the rest of this section, we study the translation numbers in the quotient group G∆ = G/〈∆m0〉, where G is a
Garside group and m0 is the smallest power of ∆ such that ∆m0 is central in G. In some cases, this quotient group is
more natural and convenient to deal with. If G is the n-string braid group and ∆ is the usual Garside element, then G∆

is the mapping class group of the n-punctured disk. Both Bestvina [3] and Charney, Meier and Whittlesey [8] studied
the cocompact action of this quotient group, rather than the Garside group itself, on a finite-dimensional complex
constructed using the normal form.

For an element g of a Garside group G, let ḡ denote the image of g under the canonical epimorphism G → G∆.
Let D̄ = {s̄ : s ∈ D} and let tD̄(ḡ) denote the translation number of ḡ ∈ G∆ with respect to D̄.

Lemma 4.3. For every g ∈ G, tD̄(ḡ) = tlen(g).

Proof. It is easy to see that for any h ∈ G, len(h) 6 |h̄|D̄ < len(h) + m0. Substituting gn for h, we obtain
len(gn) 6 |(ḡ)n|D̄ < len(gn)+ m0, from which the assertion in the statement follows. �

Lemma 4.4. For every g ∈ G, lens(g)− 2 6 tlen(g) 6 lens(g).

Proof. It immediately follows from Lemmas 3.2(iii) and 3.3(iii). �

Theorem 4.5. Let G be a Garside group with Garside element ∆. Then G∆ is strongly translation discrete. Moreover,
the translation numbers in G∆ are rational of the form p/q for some integers p, q such that 1 6 q 6 N 2, where
N = ‖∆‖.

Proof. The translation numbers in G∆ are rational of the form as in the statement by Lemma 4.3 and Theorem 3.13(ii).
We first show that G∆ is translation separable. Suppose that tD̄(ḡ) = tlen(g) = 0 for g ∈ G. (We shall see

that ḡ has finite order.) Because both the translation numbers and the orders of elements are conjugacy invariants in
G∆, we may assume that g belongs to its stable super summit set. That is, for all n > 1, inf(gn) = infs(gn) and
sup(gn) = sups(g

n), whence len(gn) = lens(gn). By Lemmas 4.4, 3.3(iv) and 3.2(iv),

len(gn) 6 tlen(gn)+ 2 = ntlen(g)+ 2 = 2 for all n > 1.

Since len(g−n) = len(gn) 6 2 for all n > 1,

{ḡn
: n ∈ Z} ⊂ {h̄ : 0 6 inf(h) < m0, len(h) 6 2}.
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Because the right hand side is a finite set, the cyclic group generated by ḡ is a finite subgroup of G∆. Hence, ḡ has
finite order in G∆.

Now we show that G∆ is strongly translation discrete. For a real number r , let

Ar = {ḡ ∈ G∆ : tD̄(ḡ) 6 r};

Cr = {h ∈ G : 0 6 inf(h) < m0, len(h) 6 r + 2}.

Because G∆ is translation separable, it suffices to show that for any real number r , there are only finitely many
conjugacy classes in Ar . Because Cr is a finite set, it suffices to show that for each ḡ ∈ Ar , there exists h ∈ Cr such
that h̄ is conjugate to ḡ in G∆.

Let ḡ ∈ Ar for g ∈ G. By Lemmas 4.4 and 4.3

lens(g) 6 tlen(g)+ 2 = tD̄(ḡ)+ 2 6 r + 2.

Choose any element h0 in the super summit set of g. Let k be such that 0 6 inf(h0) − km0 < m0, and then let
h = ∆−km0 h0. Since

0 6 inf(h) (= inf(h0)− km0) < m0 and len(h) (= len(h0) = lens(g)) 6 r + 2,

h ∈ Cr . By the construction, h̄ is conjugate to ḡ. �

We remark that, for Theorem 4.2, the upper bound N 2 on the denominators of translation numbers is asymptotically
tight, and the lower bound 1/N on the translation numbers of non-identity elements is optimal. For Theorem 4.2(ii),
recall the Garside group G and the element x given in Example 3.7. In this case, tD(x) = tsup(x) = 1/N . For
Theorem 4.2(i), recall the Garside group G given in Example 3.14. Let g = (x−1, y). Then tD(g) = tlen(g) =

(p+q)/(pq). Since p+q and pq are relatively prime, the denominator of tD(g) is equal to pq = (N/2)(N/2−1) =

Θ(N 2). This example also shows the asymptotic tightness of the upper bound N 2 given in Theorem 4.5.

5. Some group-theoretic problems

In this section, we apply our results on the translation numbers to solve some group-theoretic problems in Garside
groups. Lipschutz and Miller III [23] considered the following fundamental problems in groups.

• The order problem: given g ∈ G, find n > 1 such that gn
= 1.

• The root problem: given g ∈ G and n > 1, find h ∈ G such that hn
= g.

• The power problem: given g, h ∈ G, find n ∈ Z such that hn
= g.

• The proper power problem: given g ∈ G, find h ∈ G and n > 2 such that hn
= g.

• The generalized power problem: given g, h ∈ G, find n,m ∈ Z \ {0} such that gn
= hm .

• The intersection problem for cyclic subgroups: given g, h ∈ G, find n,m ∈ Z such that gn
= hm

6= 1.

Because Garside groups are torsion-free [10] and have solvable word problem, the order problem is trivial and the
intersection problem for cyclic subgroups is equivalent to the generalized power problem.

In addition to the above problems, we consider their conjugacy versions.

• The root conjugacy problem: given g ∈ G and n > 1, find h ∈ G such that hn is conjugate to g.
• The power conjugacy problem: given g, h ∈ G, find n ∈ Z such that hn is conjugate to g.
• The proper power conjugacy problem: given g ∈ G, find h ∈ G and n > 2 such that hn is conjugate to g.
• The generalized power conjugacy problem: given g, h ∈ G, find n,m ∈ Z \ {0} such that gn is conjugate to hm .

Because the conjugacy problem is solvable in Garside groups, the root problem is equivalent to the root conjugacy
problem. That is, the root problem for (g, n) is solvable if and only if so is the root conjugacy problem for (g, n).
Moreover, it is easy to draw a solution to one problem from a solution to the other problem. (For example, if hn is
conjugate to g, then we can find x ∈ G such that x−1hn x = (x−1hx)n = g, hence x−1hx is a solution to the root
problem for (g, n).) Similarly, the proper power problem is equivalent to its conjugacy version.

The root problem is solvable in braid groups by Styšhnev [26] and in Garside groups by Sibert [25] (under a mild
assumption) and by Lee [22] (without any assumption). Therefore, the root conjugacy problem is also solvable in
Garside groups.
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We now apply our results on translation numbers to solve the power, proper power and generalized power problems
in Garside groups together with their conjugacy versions.

It is easy to see that for elements g and h of a Garside group,
(i) tD(g) = tD(g−1);

(ii) tD(gn) = |n|tD(g) for n ∈ Z;
(iii) If h 6= 1 (hence tD(h) 6= 0 because Garside groups are torsion-free and translation separable) and hn is conjugate

to g for some n ∈ Z, then |n| = tD(g)/tD(h).

Theorem 5.1. The power problem and the power conjugacy problem are solvable in Garside groups.

Proof. It is a direct consequence of Theorem 4.2. We prove only for the power conjugacy problem. The power problem
can be solved in almost the same way.

Let G be a Garside group. Suppose we are given g, h ∈ G and want to find n ∈ Z such that hn is conjugate to
g. We may assume that g, h 6= 1, otherwise the problem is trivial. Let m = tD(g)/tD(h), which can be computed in
finite time by Theorem 4.2(iii). Then, hn is conjugate to g for some n ∈ Z \ {0} if and only if m is a positive integer
and hm is conjugate to either g or g−1. �

Theorem 5.2. The proper power problem and the proper power conjugacy problem are solvable in Garside groups.

Proof. It is a direct consequence of the fact that Garside groups are translation discrete and have solvable root problem.
Because the two problems are equivalent in Garside groups as we observed before, we prove only for the proper power
conjugacy problem.

Let G be a Garside group. Suppose we are given g ∈ G and want to find h ∈ G and n > 2 such that hn is
conjugate to g. We may assume that g 6= 1, otherwise the problem is trivial. If such h and n exist, then h 6= 1 and
so n = tD(g)/tD(h) 6 NtD(g) by Theorem 4.2(ii). Therefore, solving the proper power conjugacy problem for g
can be reduced to solving the root conjugacy problems for g and n with 2 6 n 6 NtD(g). Since the root conjugacy
problem is solvable in G, the proper power conjugacy problem is solvable in G. �

We say that a group G has the unique root property if for every g ∈ G and n > 1, there exists a unique n-th root of
g, that is, if gn

= hn for g, h ∈ G and n > 1, then g = h.

Theorem 5.3. If a Garside group G has a finite-index subgroup G0 that has the unique root property, then the
generalized power problem and the generalized power conjugacy problem are solvable in G.

Proof. Let r be a positive integer such that gr
∈ G0 for all g ∈ G. (It suffices to take r = [G : G0]!, where [G : G0]

denotes the index of G0 in G.) Suppose that we are given two elements g, h ∈ G \ {1}. (If either g or h is equal to 1,
the problem is trivial.) We want to know whether or not gn is equal/conjugate to hm for some non-zero integers n,m.
By Theorem 4.2, both tD(g) and tD(h) are positive rational numbers, whence we can find positive integers p, q such
that ptD(g) = qtD(h) in finite time.

Claim. (i) gn
= hm for some n,m ∈ Z \ {0} if and only if g pr is equal to either hqr or h−qr .

(ii) gn is conjugate to hm for some n,m ∈ Z \ {0} if and only if g pr is conjugate to either hqr or h−qr .

Proof of Claim. (i) If g pr is equal to hqr or h−qr , we may take (pr, qr) or (pr,−qr) as (n,m).
Conversely, suppose gn

= hm for some n,m ∈ Z \ {0}. Recall that p, q and r are positive integers such that
ptD(g) = qtD(h) and gr , hr

∈ G0. Since (gn)pqr
= (hm)pqr , we have

(g pr )|qn|
= (hqr )|pm| or (g pr )|qn|

= (h−qr )|pm|
; (10)

|qn|tD(g pr ) = |pm|tD(hqr ). (11)

Because tD(g pr ) = prtD(g) = qrtD(h) = tD(hqr ) and this is strictly positive, |qn| = |pm| follows from (11). In
addition, g pr and h±qr in (10) belong to G0 which has the unique root property. Consequently, g pr is equal to either
hqr or h−qr .
(ii) If g pr is conjugate to hqr or h−qr , we may take (pr, qr) or (pr,−qr) as (n,m).
Conversely, suppose gn is conjugate to hm for some n,m ∈ Z \ {0}. Then gn

= x−1hm x = (x−1hx)m for some
x ∈ G. By (i), g pr is equal to either (x−1hx)qr

= x−1hqr x or (x−1hx)−qr
= x−1h−qr x . Consequently, g pr is

conjugate to either hqr or h−qr .
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The generalized power problem and the generalized power conjugacy problem for (g, h) is solvable by the above
claim, because we can find p, q in a finite number of steps and the word problem and the conjugacy problem are
solvable in Garside groups. �

Observe that pure braid groups have the unique root property: they are biorderable by Kim and Rolfsen [19] and
biorderable groups have the unique root property. It is well known that each of the braid groups (a.k.a. Artin groups
of type A) and Artin groups of type B contains a pure braid group as a finite-index subgroup.

Corollary 5.4. The generalized power problem and the generalized power conjugacy problem are solvable in braid
groups and Artin groups of type B.
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