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SUMMARY

Compensatory proliferation triggered by hepatocyte
loss is required for liver regeneration and mainte-
nance but also promotes development of hepa-
tocellular carcinoma (HCC). Despite extensive in-
vestigation, the cells responsible for hepatocyte
restoration or HCC development remain poorly char-
acterized. We used genetic lineage tracing to iden-
tify cells responsible for hepatocyte replenishment
following chronic liver injury and queried their roles
in three distinct HCCmodels. We found that a pre-ex-
isting population of periportal hepatocytes, located in
the portal triads of healthy livers and expressing low
amounts of Sox9 and other bile-duct-enriched genes,
undergo extensive proliferation and replenish liver
mass after chronic hepatocyte-depleting injuries.
Despite their high regenerative potential, these so-
called hybrid hepatocytes do not give rise to HCC in
chronically injured livers and thus represent a unique
way to restore tissue function and avoid tumorigen-
esis. This specialized set of pre-existingdifferentiated
cells may be highly suitable for cell-based therapy of
chronic hepatocyte-depleting disorders.

INTRODUCTION

Adultmammalian tissues rely on diversemechanisms tomaintain

function and mass. Dedicated stem cell compartments that sus-

tain normal turnover exist in highly proliferative tissues, such as

skin and intestine (Blanpain and Fuchs, 2014). However, in quies-

cent tissues, such as liver or pancreas, the existence of stemcells
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and specialized niches is debatable. Furthermore, following

toxic injuries, to which these tissues are highly susceptible,

regenerative strategies and restorative mechanisms were pro-

posed to include activation of dormant stem cells, transdifferen-

tiation, metaplasia, or compensatory proliferation of mature cells

(Cheung and Rando, 2013; Slack, 2007). Although liver paren-

chymal cells turn over slowly, the liver displays high regenerative

capacity, capable of restoring 70% tissue losswithin a fewweeks

(Michalopoulos, 2007). Given its many vital functions, especially

the detoxification of harmful chemicals, the ability of liver tomain-

tain constantmass is critical for organismal survival. Duringmod-

erate and acute injuries, differentiated hepatocytes re-enter the

cell cycle, proliferate, and replenish the lost tissue, but bipotential

hepatobilliary progenitors (aka oval cells) were proposed as the

main source of new hepatocytes and ductal cells under condi-

tions that interfere with hepatocyte proliferation. Such oval cells

residing in a specialized niche at the junction of bile canaliculi

and ducts, the canal of Hering, were postulated to serve as facul-

tative stem cells (Miyajima et al., 2014). Yet, lineage-tracing

experiments demonstrated that oval cells contribute minimally

to hepatocyte restoration (Español-Suñer et al., 2012; Malato

et al., 2011; Rodrigo-Torres et al., 2014; Schaub et al., 2014; Tar-

low et al., 2014a; Yanger et al., 2014), implying that mature hepa-

tocytes are responsible for tissue restitution, although it was

shown that ductal Lgr5+ stem cells can give rise to hepatocytes

after in vitro propagation (Huch et al., 2013, 2015).

Compensatory proliferation has a key role in liver carcinogen-

esis (Karin, 2006; Kuraishy et al., 2011). Genetic manipulations

that enhance hepatocyte death, such as ablation of Ikkb (Maeda

et al., 2005), Ikkg/Nemo (Luedde et al., 2007), or p38a (Hui et al.,

2007; Sakurai et al., 2008), potentiate HCC development through

compensatory hepatocyte proliferation. The same mechanism

promotes tumorigenesis in chronic liver diseases, such as

non-alcoholic steatohepatitis (NASH), that progress to HCC
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(Nakagawa et al., 2014b). For most cancer types, the cell of

origin remains unknown, fostering intense debates about

whether cancer arises from adult stem cells, transient-amplifying

cells, or terminally differentiated cells that dedifferentiate. The

lifetime risk of most cancers, including HCC, was proposed to

correlate with the cumulative number of cell divisions in the cor-

responding stem cell compartment (Tomasetti and Vogelstein,

2015). It was further proposed that 2/3 of cancer risk is explain-

able by genetic errors that accumulate during the division of

adult stem cells. Given the strong link between tissue injury,

inflammation, and cancer (Kuraishy et al., 2011), one can assume

that also in liver, the cells with the highest replicative potential are

the ones that give rise to HCC. Indeed, oval cells were suggested

as likely HCC progenitors (Sell and Leffert, 2008), and we identi-

fied HCC progenitor cells (HcPC) induced by diethylnitrosamine

(DEN) that resemble oval cells in their transcriptomic profile (He

et al., 2013). However, because DEN has to undergo metabolic

activation by CYP2E1, which is expressed only in fully differenti-

ated zone 3 hepatocytes (Kang et al., 2007), we suggested that

HcPC are not derived from oval cells (He et al., 2013). Nonethe-

less, oval cells that expand in NASH (Richardson et al., 2007) are

still thought of as likely HCC progenitors.

Unresectable HCC and end-stage liver diseases can only be

treated by liver transplantation, but the availability of appropriate

donor tissue is limited, necessitating a search for alternatives.

One possibility is transplantation of adult liver stem cells, but

despite extensive research, the existence and identity of such

cells remains elusive (Miyajima et al., 2014). The safety of donor

cells is another issue, given the possible link to HCC develop-

ment. Notably, human ductal cells can be expanded and differ-

entiated in vitro to transplantable hepatocytes (Huch et al.,

2015; Schmelzer et al., 2007), but given the low efficiency of

this approach, additional solutions are needed.We nowdescribe

a distinct population of hepatocytes that exist at the periportal

region of the uninjured liver. Because these cells express several

bile-duct-enriched genes, including low amounts of Sox9, they

were named hybrid hepatocytes (HybHP). We show that HybHP

are highly efficient in repair of livers deficient in healthy hepato-

cytes, but despite their high regenerative capacity, they do not

give rise to HCC in three independent models. Thus, the cells

with the highest proliferative potential in a given tissue may not

necessarily be the ones that give rise to cancer.

RESULTS

Hybrid Periportal Hepatocytes with High Regenerative
Capacity
The portal area may be the organizing center for liver repair,

harboring putative stem cell niches (Kuwahara et al., 2008). We

examined the regenerative capacity of cells in this region using

transgenic mice expressing GFP from the Sox9 promoter, which

is primarily active in bile duct cells (BD) and bipotential hepato-

billiary progenitors. Immunofluorescence (IF) analysis indicated

that ductal CK19+ cells showed high GFP expression, but other

cells located in the limiting plate around the bile duct and the por-

tal vein (PV) expressed low amounts of GFP (Figures 1A–1C).

These cells were negative for the ductal marker CK19 (Figure 1B)

and positive for the hepatocyte marker HNF4a (Figure 1C), sug-
gesting that they are hepatocytes. These periportal hepatocytes

comprise 4.53% ± 0.24% of all hepatocytes (Figure 1A, based

on 7,390 GFP+ hepatocytes out of 163,292 hepatocytes, n =

3). GFP+ periportal hepatocytes are stable in both males and fe-

males throughout their lifetimes (Figure S1A).

To examine the regenerative and differentiative capacity of

GFP+ periportal hepatocytes and determine whether they differ

from Sox9-GFP-negative hepatocytes, we used a Sox9-CreERT

transgenic line suitable for labeling low SOX9-expressing cells

(see Experimental Procedures). In such Sox9-CreERT;R26RYFP

mice, some ductal cells (CK19+ HNF4a�) were YFP labeled

without tamoxifen administration (Figure 1D), suggesting leaky

CreERT nuclear translocation. However, almost no hepatocytes

(CK19� HNF4a+) expressed YFP without tamoxifen (Figure 1D;

1,427 CK19+/YFP+ out of 1,434 YFP+ cells, n = 2). YFP+ CK19�

HNF4a+ periportal hepatocytes appeared after a single 5 mg/kg

tamoxifen dose at postnatal day 10 (P10) (Figure 1E), but more

cells were found after administration of 100 mg/kg tamoxifen,

which labeled 2.3% ± 0.15% of total hepatocytes with YFP, at

an estimated efficiency of 51.4% (Figure 1F; 4,968 YFP+ hepato-

cytes out of 217,975 hepatocytes, n = 3), mirroring what was

observed with the Sox9-GFP transgene (Figures 1A–1C) and

inconsistent with the SOX9 expression pattern of wild-type (WT)

mice given high tamoxifen doses (Carpentier et al., 2011). YFP+

periportal hepatocytes remained stable for at least 9months (Fig-

ure S1B). Ductal cell labeling efficiency after a single 100 mg/kg

tamoxifen injection at P10 was 95.4% (Figure 1F; 5,321/5,577

cells, n = 3). Based on their elevated basalSox9 promoter activity

and expression of other ductal markers (see below), we named

these cells HybHP. The exact location of HybHPwithin the portal

tract (PT), relative to the canals of Hering, was determined by

CLARITY analysis (Chung et al., 2013). Because endogenous

Sox9-GFP and R26RYFP fluorescent signals were too dim, we

chose R26tdTomato due to its brightness (Figure S1C). Clarified

livers from tamoxifen-treated Sox9-CreERT;R26RtdTomato mice

were stained with CK19 antibody to delineate the ductal tree

and imaged. HybHP were found to wrap around the PV and con-

tact the intricate mesh formed by the bile ducts and their terminal

branches, which form the canals of Hering (Figures 1G and S1D

and Movies S1, S2, S3, and S5). Not all HybHP were attached

to BD cells (Figure 1H and Movie S4).

Next, we analyzed the behavior of YFP+ HybHP during the

regeneration period after different types of liver injury. We gave

mice CCl4 to induce pericentral damage (Wong et al., 1998). A

single CCl4 dose (acute—1 ml/gr) in Sox9-CreERT;R26RYFP mice

resulted in minor HybHP expansion after 4 weeks (Figure 2A;

10,654 HybHP out of 239,888 hepatocytes, to 8.6%, n = 3). How-

ever, repetitive administration of a lower CCl4 dose (chronic—

0.5 ml/gr), which gives rise to fibrosis (Wong et al., 1998) without

oval cell expansion (Español-Suñer et al., 2012; Grompe, 2014;

Rodrigo-Torres et al., 2014; Tarlow et al., 2014a; Yanger et al.,

2014), led to 34.5% ± 2.2% of all hepatocytes being derived

from YFP+ HybHP, with most cells extending along hepatic

cords from the periportal region to the CV (Figure 2B; 5,213

YFP+ out of 14,947 hepatocytes from 41 independent areas,

n = 2). Given the estimated labeling efficiency of 51.4%, HybHP

contributed to 67% of new hepatocytes. Littermates not

receiving CCl4 did not show HybHP expansion (Figure 2C).
Cell 162, 766–779, August 13, 2015 ª2015 Elsevier Inc. 767
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Figure 1. Hybrid Periportal Hepatocytes that Express Sox9-GFP and HNF4a

(A–C) Liver sections from 3-month-old Sox9-GFPmales were analyzed by immunofluorescence (IF) microscopy. (A) A portion of a whole slide scan showing GFP+

cells around portal areas. Asterisks—central veins. Scale bar, 1 mm. (B and C) Liver sections from above mice were stained with DAPI, GFP, CK19, and HNF4a

antibodies and imaged. Ductal cells (CK19+, HNF4a�; arrows) show a strong GFP signal. A weaker GFP signal is exhibited by a few periportal CK19�, HNF4a+

hepatocytes (arrowheads).

(D) Liver sections from 3-month-old Sox9-CreERT;R26RYFPmice were examined for YFP and CK19 expression and counterstained with DAPI. A few ductal CK19+

cells express YFP spontaneously without tamoxifen treatment (arrows).

(E) Liver sections of Sox9-CreERT;R26RYFP mice treated with tamoxifen (5 mg/kg) were analyzed as above. Ductal CK19+ cells (arrows) and a few periportal

hepatocytes (arrowheads) are YFP labeled.

(F) The same mice were given 100 mg/kg of tamoxifen and analyzed as above. CK19� hepatocytes (arrowheads) are YFP labeled. Ductal CK19+, YFP+ cells

(arrows) are shown. Bracketed scale bar, 20 mm; open scale bar, 50 mm.

(G) Three-dimensional reconstruction of dTomato fluorescence in a clarified liver from a tamoxifen-treatedSox9-CreERT;R26RtdTomatomouse (red channel). Ductal

cells were stained for CK19 (green channel). Scale bar, 500 mm.

(H) Three-dimensional reconstruction of a PT from (G), in which HybHP that either contact duct cells or are located R one cell diameter away are shown. Scale

bar, 50 mm.

See also Figure S1 and Movies S1, S2, S3, S4, and S5.
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Figure 2. HybHP Make Major Contribution to Parenchymal Restoration after Chronic Hepatocyte Damage

(A) Acute CCl4 administration to Sox9-CreERT;R26RYFP mice previously injected with tamoxifen (100 mg/kg). Livers were analyzed as in Figure 1.

(B) Tamoxifen (100 mg/kg)-injected Sox9-CreERT;R26RYFPmice (8 weeks old) received two weekly CCl4 injections for 6 weeks. Livers were excised and analyzed

as above.

(C) Same as in (B) but without CCl4 treatment.

(D) Sox9-CreERT;R26RYFP;MUP-uPA mice (9 weeks old) were analyzed. 99.9% YFP+-labeled (green) cells are ductal/oval CK19+ cells (red).

(E and F) Sox9-CreERT;R26RYFP;MUP-uPAmice were injected with 100 mg/kg tamoxifen at P10 and analyzed as above at 5 weeks (2 weeks after damage onset)

(E) or 12 weeks (F).

Arrows, ductal cells (CK19+, red). Scale bar, 50 mm. See also Figures S2 and S3.
Expanding YFP+ hepatocytes that reached the CV expressed

glutamine synthetase (GS), a marker of zone 3 hepatocytes, indi-

cating that HybHP produce fully differentiated and functional he-

patocytes, whose metabolic profiles match their locations along

the portal-central axis (Figure S2B).

We also used MUP-uPA transgenic mice, which undergo liver

damage due to ER stress induced by overexpression of uroki-

nase-type plasminogen activator (uPA) in hepatocytes (Naka-

gawa et al., 2014b; Weglarz et al., 2000). MUP-uPA mice first

display liver damage at 3 weeks of age; it peaks at 5 weeks

and dissipates by 13 weeks (Weglarz et al., 2000). Without

tamoxifen, 99.9% YFP+ cells remained CK19+ in 9-week-old

Sox9-CreERT;MUP-uPA;R26RYFP mice (Figure 2D; 4,838

CK19+/YFP+ cells out of 4,842 YFP+ cells, n = 3), suggesting

that neither ductal nor oval cells differentiated into hepatocytes.

However, after administration of 100 mg/kg tamoxifen at P10,
YFP+ HybHP made a substantial contribution to new hepato-

cytes, forming clones that expanded out of all portal areas, ac-

counting for 20% of hepatocytes at 5–6 weeks of age (Figures

2E and S2A). In mice analyzed 5–6 weeks later, some YFP+

clones disappeared and were replaced by ductular reactions,

but the surviving clones were large and contacted the corre-

sponding CV (Figures 2F and S2A). HybHP-derived clones

covered 49.6% of CV-PT areas in the corresponding portal lob-

ules (49.6% ± 4.5%, 21 independent portal lobules, n = 3) after

9 weeks, suggesting that HybHP can repopulate the entire pa-

renchyma inMUP-uPA mice. Newly labeled hepatocytes reach-

ing the CV expressed GS (Figure S2C).

We further examined the contribution of HybHP to newly pro-

duced hepatocytes with an independent genetic tool. We

reasoned that by labeling hepatocytes randomly, it should be

possible to compare the clonal behavior of HybHP to that of
Cell 162, 766–779, August 13, 2015 ª2015 Elsevier Inc. 769



parenchymal hepatocytes. The TTR-CreERT driver led to sparse

and random labeling of hepatocytes (Figures S3A and S3B). In

TTR-CreERT;R26RYFP;MUP-uPA mice treated with 100 mg/kg

tamoxifen at P10 and analyzed 4weeks later, some labeled hepa-

tocytes produced proliferative YFP+ clones, but most of the orig-

inal YFP+ hepatocytes were eliminated by ongoing liver damage

(Figures S3C and S3D). Nonetheless, surviving YFP+ hepatocytes

gave rise to expanding clones that originated from the PT, con-

firming that the distribution of damage-repairing cells is not

randomand is consistent withwhatwas seen above (Figure S3D).

When TTR-CreERT;R26RYFPmice were subjected to chronic CCl4
treatment, the observed pattern of expanding YFP+ clones was

also consistent with a PT origin (Figures S3E and S3F). The

absence of oval cell contribution to new hepatocytes in MUP-

uPA mice was confirmed using the CK19-CreERT driver, which

labels BD and oval cells (Figure S3G; 1,333 CK19+/YFP+ out of

1,333 YFP+ cells, n = 3). We also gave tamoxifen (100 mg/kg) to

Sox9-CreERT;R26RYFP mice and fed them with choline-deficient,

ethionine-supplemented (CDE) diet, which leads to extensive liver

damage with high mortality (Akhurst et al., 2001). In these mice,

most HybHP were probably killed, and vast oval cell expansion

was seen (FigureS3H), suggesting thatwhenHybHP are compro-

mised,oval cells takeoverbutdonotgive rise tonewhepatocytes.

Clonally Labeled HybHP Produce New Hepatocytes
and Transdifferentiate into Duct Cells
To further examine HybHP participation in regeneration after

chronic liver damage, we used a system in which only HybHP

are specifically and clonally labeled. We crossed Sox9-CreERT

and NZGmice, which contain a loxP-flanked STOP cassette up-

stream of a nuclear targeted LacZ marker as well as a down-

stream GFP marker whose expression is prevented by the Frt-

flanked LacZ cassette itself (Figure 3A). Tamoxifen administra-

tion to heterozygous mice labeled SOX9-expressing cells (duct

cells and HybHP) with nuclear LacZ, but not a single cell was

ever found GFP positive. (Figure 3B). To specifically label HybHP

we took advantage of the fact that adenovirus (Nakagawa et al.,

2014a) or AAV-TBG (Yanger et al., 2013) only target hepatocytes.

Infection of Sox9-CreERT;NZG mice, previously treated with

tamoxifen, with either adenoviruses or AAV expressing FLPo re-

combinase that excises the LacZ cassette resulted in GFP label-

ing of some HybHP (Figure 3C) that were CK19� (551 cells, n = 3)

andHNF4a+ (323 cells, n = 3), confirming labeling specificity (Fig-

ures 3D and 3E). Three weeks after viral infection and 5 weeks

after initial tamoxifen injection, different groups of mice were

allocated to determine the clonal behavior of HybHP after CCl4
treatment. Although no significant response was observed in

mice treated with an acute or a single CCl4 dose, in which mainly

single HybHP-derived hepatocytes were found, multicellular

clones expanding from the PT were observed after six CCl4 in-

jections. After six more injections, clones containing > 5 hepato-

cytes were readily detected, with several clones contacting the

corresponding CV with more than 20 cells (Figures 3F and 3G),

confirming what was observed with the single reporter system

and further establishing the role of HybHP in repopulating the

liver after chronic hepatocyte damage.

Biphenotypic hepatocytes, also known as ductular hepato-

cytes, which express ductal markers and give rise to ductal
770 Cell 162, 766–779, August 13, 2015 ª2015 Elsevier Inc.
cells, were reported in cholestatic liver injury models (Tanimizu

et al., 2014; Tarlow et al., 2014b; Yanger et al., 2013). Hepato-

cyte-derived proliferative ducts (HepPD) can also be isolated

from 3,5-dicarbethoxy-1,4-dihydrocollidine (DDC) diet-fed

Fah�/� mice that were transplanted with normal hepatocytes

(Tarlow et al., 2014b). Given that HybHP are present in the un-

injured liver and express some bile duct genes, we postulated

that after cholestatic liver injury they may give rise to true

ductal cells. We tested this possibility with the NZG dual re-

combinase system that specifically labels HybHP, inducing

cholestatic injury with DDC-containing diet. After 6 weeks of

DDC feeding, most HybHP underwent pronounced morpholog-

ical changes, acquiring smaller cell and nuclear sizes and

strong expression of SOX9 and osteopontin (OPN), a ductal

marker (Figure 4). Ten percent of HybHP lost HNF4a expres-

sion, and 2.5% of these cells incorporated into bile ducts

and showed strong CK19 expression (Figure 4). These results

are consistent with conversion of pre-existing ductal cells into

oval cells during cholestatic injury but also suggest that a mi-

nor proportion of oval cells arise from trans-differentiating he-

patocytes, which most likely are identical to HybHP. Fittingly,

tamoxifen-treated Alb-CreERT2;R26RYFP mice consistently con-

tained YFP+ ductal cells in the absence of any damage (Fig-

ure S3I), suggesting that the hypothesis that DDC-induced

oval cells arise mainly from mature hepatocytes should be

re-evaluated.

HybHP Exhibit a Unique Transcriptome
We isolated HybHP, conventional hepatocytes (cHP), and BD by

sorting collagenase digests of tamoxifen-treated Sox9-CreERT;

R26RtdTomato livers (Figures 5A, S1C, andS4). YFPwasunsuitable

for these experiments because it did not distinguish labeled cells

from endogenous autofluorescent cells (Figure S4A). The three

populations were subjected to RNA-seq analysis, which indi-

cated that the HybHP transcriptome was similar to the cHP tran-

scriptome and that both cHP and HybHP differed extensively

from BD (Figure S5A). However, HybHP diverged from cHP by

490 genes, of which 233 were upregulated and 257 were down-

regulated (Figure 5B). Statistical analysis indicated that the

observed differences were not the result of biological or technical

noise and did not originate from amixture of BD + cHP (Figure S6

and Supplemental Experimental Procedures). The differentially

expressed genes were subdivided into four classes: (1) genes

that are upregulated in both HybHP and BD relative to cHP; (2)

genes whose expression is lower in HybHP than in cHP or BD;

(3) genes whose expression is higher in HybHP than in cHP or

BD; and (4) genes that are downregulated in both HybHP and

BD relative to cHP (Figure 5B). Classes 1 and 4 comprised 64%

of the differentially expressed genes and are shared with BD (Fig-

ure 5C). The probability of obtaining such results by mere chance

was negligible (p < 10�49), indicating that HybHP are distinct he-

patocytes with some BD characteristics. Inspection of lineage-

specific markers confirmed that HybHP express ductal markers,

includingSox9 andOpn, which are barely expressed by cHP (Fig-

ure 5D). Coincidentally, major hepatocyte fate determinants,

such as Hnf1a and Hnf4a, were equally expressed by HybHP

and cHP, but other BD markers such as Hnf1b and EpCam

were hardly upregulated (Figure 5D). Functional classification
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Figure 3. Clonal Labeling Confirms HybHP Role in Liver Injury Repair

(A) A scheme outlining clonal labeling of HybHP with dual recombinase NZG reporter.

(B) Sox9-CreERT;NZGmice (4–6 weeks old) were injected with 100 mg/kg of tamoxifen and 10 days later given 20 mg/kg tamoxifen. Ductal cells and HybHP were

positive for nuclear LacZ (arrows and arrowheads, respectively).

(C–E) Sox9-CreERT;NZG mice (4–6 weeks old) were first treated with tamoxifen as above and then given 109 or 5 3 1011 Adeno- or AAV-FLPo viral particles,

respectively. After 2 weeks, liver sections were imaged. Some HybHP were GFP+ and nuclear LacZ� (green arrows) (C). GFP+ HybHP were CK19� (D) and

HNF4a+ (E).

(F) Sox9-CreERT;NZGmice were given tamoxifen followed by AAV-FLPo and challengedwith either high CCl4 (acute) or 1, 6, or 12 low CCl4 doses (chronic). Livers

were excised and analyzed as in (D).

(G) Quantification of the cell number per clone in each experimental group. No treatment: 750 independent clones, n = 3; acute CCl4: 939 independent clones,

n = 3; 1 low dose: 469 independent clones, n = 3; 6 low doses, 626 independent clones, n = 3; 12 low doses: 756 independent clones, n = 4. ****p value < 0.0001

based on a one-way ANOVA with multiple comparisons. Scale bar, 50 mm. Mean and SD are shown. Asterisks: central veins. n.s.: not significant.
revealed that genes belonging to class 1, which are upregulated

in both HybHP andBD, aremostly involved in cell adhesion, inter-

actions with extracellular matrix (ECM), and processes related to

morphogenesis and tube formation (Figure S5B). The intimate

interaction between HybHP and BDmay require homotypic inter-

actions mediated by such molecules, which are expressed

at very low levels in cHP. IF analysis of Sox9-GFP liver sections
revealed that HybHP express low levels of SOX9 and OPN (Fig-

ure 5E). Similar signals were detected in liver sections from WT

mice (Figure S5C). Normal human liver contains periportal hepa-

tocytes that co-express HNF4a and HNF1b (Isse et al., 2013).

Importantly, hSOX9 and hOPNwere expressed by some peripor-

tal hepatocytes in human liver (Figure 5F), suggesting that the

human organ also contains HybHP.
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Figure 4. HybHP Can Generate Ductal Cells upon Cholestatic Injury

Sox9-CreERT;NZGmice were given tamoxifen and Adeno-FLPo as in Figure 3 and placed on DDC diet 3 weeks later. After 6 weeks on diet, the fate of HybHPwas

analyzed by co-staining for OPN, SOX9, HNF4a, and CK19. Arrows depict HybHP positive for ductal markers (SOX9, OPN, and CK19) or negative for HNF4a.

Arrowheads denote HybHP negative for ductal markers or positive for HNF4a. Graphs show percentages of GFP+ HybHP positive for CK19 (n = 1,260), SOX9

(n = 513), or OPN (n = 994) and negative for HNF4a (n = 676) in three independent mice. In non-treated mice (n = 3), no GFP+ HybHP that were positive for CK19

(n = 551) or SOX9 (n = 232) or negative for HNF4a (n = 323) were found. Only 0.72% of GFP+ HybHP were OPN positive (n = 556). Bracketed and open scale bars:

20 mm and 50 mm, respectively. Mean and SD are shown.
Class 4 genes, which are downregulated in both HybHP and

BD, are mainly involved in oxidative drug metabolism (Fig-

ure S5B). These genes are expressed at high levels in cHP,

and their downregulation may explain why HybHP are less sen-

sitive to damage caused by metabolic activation of toxic chem-

icals, such as CCl4, which is mainly metabolized by CYP2E in

zone 3 hepatocytes (Wong et al., 1998). Class 2 and 3 genes

are those with the lowest and highest expression in HybHP rela-

tive to the other populations, respectively. Class 3 genes did not

show enrichment for any particular functional category, suggest-
772 Cell 162, 766–779, August 13, 2015 ª2015 Elsevier Inc.
ing that these genes are involved in many diverse functions. IF

staining for the products of two such genes, Agxt2l1 and

Aqp4, revealed that they are expressed by zone 1 hepatocytes

(Figure S5D). Given that our analysis compared HybHP to bulk

hepatocytes depleted of HybHP, it is likely that genes that are

highly expressed by zone 1 hepatocytes would appear upregu-

lated in HybHP. Intriguingly, class 2 genes exhibited statistically

significant enrichment for processes related to innate and adap-

tive immunities (Figure S5B), suggesting that HybHP are less

likely to respond to damage-associated molecular patterns
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Figure 5. The HybHP Transcriptome Confirms Their Hybrid Character

(A) cHP, BD, and HybHP from a collagenase digest of a Sox9-CreERT;R26RtdTomato liver (mice were treated with 100 mg/kg of tamoxifen and 10 days later given

20 mg/kg tamoxifen) were FACS separated after excluding dead cells and doublets and gating based on size/granularity (FCS/SSC) and tdTomato expression.

(B) Total cellular RNA was extracted from the three populations (three independent isolations) and deep sequenced. Shown is a heatmap of genes that were

differentially expressed between HybHP and cHP.

(C) Proportions of genes from above that are differentially expressed between HybHP and cHP and that show the same expression trend in BD versus cHP or not.

(D) Normalized expression values (in reads per kilobase per million) of the indicated genes in HybHP, cHP, and BD. Mean and SD are shown.

(E) IF analysis using Tyramide Signal Amplification (TSA) of Sox9-GFP transgenic mouse liver sections stained for SOX9 and OPN. Arrows: HybHP with weak

SOX9 and OPN expression.

(F) Normal human liver sections stained for SOX9 and OPN.

Black arrows: periportal hepatocytes with weak expression of SOX9 or OPN. White arrows: ductal cells. Scale bars, 20 mm. See also Figures S4, S5, and S6.
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(DAMPs), pathogen-associated molecular patterns (PAMPs),

and other inflammatory stimuli that trigger the acute phase

response. Although some class 2 genes are also expressed in

Kupffer cells, the purity of cHP is very high (> 97%), and only a

small number of CD45+ cells was present in this population

(data not shown). Furthermore, some of these genes, for

instance Tlr5 and Tlr8, are not expressed in Kupffer cells (Lavin

et al., 2014). Altogether, these data suggest that the HybHP tran-

scriptome is a hybrid of the HP and BD transcriptomes with a few

immune response genes that are downregulated relative to cHP

(Figure S5E).

Transplanted HybHP Display High Regenerative
Capacity
The high regenerative potential and plasticity of HybHP make

them attractive candidates for liver disease cell therapy. We

examined this possibility using Fah�/� mice, which due to FAH

(fumarylacetoacetate hydrolase) deficiency undergo sponta-

neous liver damage upon withdrawal of NTBC (2-nitro-4-

trifluoromethylbenzoyl�1,3-cyclo-hexanedione) and, if left un-

treated, succumb to fatal liver failure within 1–2months (Grompe

et al., 1995). HybHP (tdTomato+) and cHP (tdTomato�) from
tamoxifen-treated Sox9-CreERT;R26RtdTomatomice and oval cells

(tdTomato+) from CDE diet-fed animals of the same genotype

were transplanted (45,000 sorted cells of each type) into spleens

of Fah�/�;Rag2�/�;Il2rg�/� recipient mice (Bissig et al., 2007),

which were subsequently withdrawn from NTBC for 3 weeks,

put on NTBC for 1 week, and kept 4 more weeks without

NTBC. Oval cells generated hardly any tdTomato+ clones, but

HybHP-transplanted mice showed numerous tdTomato+ clones

in all liver lobules covering a large part of the surface (Figure 6A).

Due to higher autofluorescence of cHP relative to the Fah�/�

background, we also detected clones derived from these cells.

Oval cells retained ductal morphology and did not express

FAH, but HybHP clones consisted of FAH+/tdTomato+ hepato-

cytes, and cHP-generated clones were FAH+/tdTomato� (Fig-

ure 6B). Clonal area measurements on the liver surface showed

that HybHP were superior to cHP, generating clones that were

two times larger (Figure 6C, upper graph). Measurement of

clonal areas in histological sections yielded similar results, with

HybHP-generated clones being 2.5-fold larger than cHP-gener-

ated clones (Figure 6C, lower graph). Of note, human cirrhotic

livers lose metabolic zonation resulting in diffuse GS expression

throughout the parenchyma (Fleming and Wanless, 2013). GS

staining of liver sections from HybHP-transplanted mice showed

that expanding clones exhibited normal zonation with few GS+

cells near the CV (Figure 6D). These results underscore the

higher repopulation potential of HybHP and indicate that HybHP

progeny acquire the correct metabolic profile according to their

location along the portal-central axis. To further assess the ther-

apeutic potential of HybHP, we followed another cohort of trans-

planted mice for a longer time. Due to the limited number of

HybHP that were available for these experiments, we only trans-

planted 14,000–50,000 cells, much less than the 500,000–

1,000,000 cells commonly used in such studies. At the end of

the study, we found that all HybHP-transplanted animals were

still alive, whereas 90% of control animals and more than 50%

of cHP-transplanted mice had died (Figure 6E).
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Neither HybHP nor Oval Cells Give Rise to HCC
In many experimental models of hepatic carcinogenesis, oval

cell responses precede the emergence of neoplasia, as

observed in humans where ductular reactions precede HCC

in cirrhotic livers (Roskams, 2006). Such observations were in-

terpreted to suggest that oval cells could initiate a large fraction

of liver cancers (Alison et al., 2009). Given the high proliferation

rate of HybHP during chronic liver injury, HybHP could serve as

an alternative origin for HCC. To examine this point, we traced

HybHP and oval cells in three independent mouse models of

HCC: DEN-induced HCC (Maeda et al., 2005), MUP-uPA

mice fed with high-fat diet (HFD) (Nakagawa et al., 2014b),

and the STAM model of diabetes-promoted HCC (Fujii et al.,

2013), using the Sox9-CreERT;R26RYFP reporter system.

Whereas DEN is metabolically activated in pericentral/zone 3

hepatocytes and does not induce oval cell expansion, con-

sumption of HFD, which induces liver damage and compensa-

tory proliferation in both MUP-uPA and STAM mice, gives rise

to substantial oval cell proliferation (Figure S7). Cell labeling in

all three cases was conducted prior to induction of any cellular

damage or carcinogenic insult using 100 mg/kg tamoxifen (Fig-

ure 7A), which labels HybHP and ductal cells with 51% and

95% efficiency, respectively. No YFP+ cells were detected in

well-developed tumor nodules and hyperproliferative lesions

(Figures 7B–7D, n = 106 HCC nodules from 9 DEN-treated

mice, n = 79 HCC nodules in 7 MUP-uPA + HFD mice, and

n = 62 HCC nodules in 5 STAM mice). These results and their

corresponding binomial distributions suggest that it is very un-

likely that HybHP or ductal cells are the preferred origins for

HCC in these models (p < 10 3 10�10). We determined the

95% credibility intervals (C.I.) (Beta [1,1] prior distribution) for

the expected percentage of HybHP- or ductal cell-derived tu-

mors that are compatible with our experimental data. For

HybHP, the obtained C.I. (DEN, 0%–5.3%; MUP-uPA + HFD,

0%–7.2%; and STAM, 0%–9%) suggest that even if HybHP

were a potential source for HCC, the majority of tumors (>

91%) did not originate from them. Due to the higher labeling ef-

ficiencies for duct cells, the obtained C.I. values (DEN, 0%–

2.8%; MUP-uPA + HFD, 0%–3.9%; and STAM, 0%–4.9%)

were even more definitive in ruling out ductal cells as the

HCC origin. These results strongly suggest that HCC in these

models is derived from differentiated hepatocytes.

DISCUSSION

Detoxification of noxious chemicals and toxic metabolites is an

important function of the vertebrate liver. Xenobiotic meta-

bolism, however, increases the propensity of the liver to un-

dergo toxic damage, which can result in rapid loss of tissue

mass, a potential handicap that is prevented by maintaining

high regenerative capacity. Our results indicate that the major

strategy for restoring liver mass and function after chronic he-

patocyte injury depends on the proliferation of HybHP, a

specialized type of hepatocyte that barely expresses drug-

metabolizing genes. This property and other metabolic features

protect HybHP from toxic injury and reduce the likelihood that

they will give rise to cancer, despite their high proliferative

potential.
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Figure 6. HybHP Exhibit Higher Repopulation Capacity than cHP or Oval Cells

(A) HybHP and cHPwere FACS sorted from Sox9-CreERT;R26RtdTomatomice (8–12 weeks old treated with 100 mg/kg of tamoxifen and 10 days later given 20 mg/

kg tamoxifen), and 45,000 cells were transplanted into Fah�/�;Rag2�/�;Il2rg�/�mice (n = 3 for cHP and n = 2 for HybHP). Oval cells (OC; 45,000) were obtained by

FACS sorting from a Sox9-CreERT;R26RtdTomato mouse fed with CDE diet for 3 weeks and transplanted into three Fah�/�;Rag2�/�;Il2rg�/� mice. Bright-field and

tdTomato images of the medial lobes of non-transplanted and transplanted livers 8 weeks after transplantation. Scale bars, 5 mm.

(B) Frozen sections of above livers were analyzed by direct fluorescence for tdTomato and IF for FAH expression.

(C) Upper graph: Surface clonal area quantification in three cHP- and twoHybHP-transplanted livers. OC cloneswere not quantified due to their small number and

size. **** = unpaired t test with Welch’s correction p < 0.0001. cHP clones, n = 500 and HybHP clones, n = 695. All measured clones with the mean and SD are

shown. Lower graph: areas of all clones in liver sections from (B). **** = unpaired t test withWelch’s correction p < 0.0001. cHP clones, n = 132 and HybHP clones,

n = 113. All measured clones with mean and SD are shown.

(D) Liver sections from HybHP-transplanted mice in (B) stained for GS. White arrow: tdTomato+ GS+ HybHP. Scale bar, 100 mm.

(E) Survival of an independent cohort of mice transplanted with HybHP (n = 4), cHP (n = 7), or non-transplanted controls (n = 9). p values were determined by log-

rank (Mantel-Cox) test. Black polygons over x axis represent periods while the animals were on NTBC during the on-off NTBC cycles.
HybHP as Distinct Hepatocyte Subpopulation
Hepatocyte diversity has been long appreciated, especially in

the context of metabolic zonation across the portal-central

axis (Jungermann and Katz, 1989). However, it has been difficult

to functionally examine different hepatocyte populations under

physiological conditions. Using the ductal transcription factor
Sox9 as amarker, we identified a subpopulation of periportal he-

patocytes located at the limiting plate, which express low

amounts of SOX9 and normal amounts of HNF4a. These cells

were named HybHP, based on their expression of hepatocyte-

specific genes along with a small number of signature genes of

BD. Many of these genes are functionally related to cell adhesion
Cell 162, 766–779, August 13, 2015 ª2015 Elsevier Inc. 775



Tumor 1 Tumor 2 Tumor 3

Tumor 1 Tumor 2 Tumor 3

A

B

Tumor 1 Tumor 2 Tumor 3

C

D

DEN

MUP-uPA + HFD

STAM 

P7 P14 9 months

Tam DEN

P7 P42 9 months

Tam HFD

P2 P24 5 months

STZ HFD

P14

Tam

D
A

PI
-Y

FP
-K

i6
7

D
A

PI
-Y

FP
- K

i6
7

D
A

PI
-Y

FP
- K

i6
7

Figure 7. Neither HybHP nor Oval Cells

Preferentially Give Rise to HCC

(A) Experimental design for HybHP and OC line-

age tracing in three different HCC models using

Sox9-CreERT;R26RYFP or Sox9-CreERT;R26-

RYFP;MUP-uPA mice.

(B–D) Ki67 IF and morphology were examined to

locate tumor nodules (delineated by a dashed line)

in whole slide scans. None of the tumor areas

contained YFP+ cancer cells. Three representative

examples are shown for each HCCmodel (A-DEN,

B-MUP-uPA + HFD, and C-STAM). Scale bars,

0.5 mm (C); 1 mm (B and D).

See also Figure S7.
and tubule formation, suggesting that HybHP and BD may orig-

inate from a common embryonic progenitor located at the ductal

plate (Carpentier et al., 2011). Such a progenitor may give rise to

mature BD and HybHP that remain connected via homotypic

interactions (Miyajima et al., 2014). This close proximity should

expose HybHP to factors, for instance Notch ligands, which

are expressed by ductal cells and allow HybHP to acquire a par-

tial ductal character. Importantly, many of the genes that are

underexpressed in HybHP relative to cHP are involved in drug

metabolism and immune responses, categories that represent

specialized functions of more differentiated hepatocytes that

allow them to detoxify xenobiotics and products of the gastroin-

testinal microbiome that reach the liver via the portal circulation.

Underexpression of such genes may make HybHP more resis-
776 Cell 162, 766–779, August 13, 2015 ª2015 Elsevier Inc.
tant to toxic insults and inflammatory

stress. At this point, however, we do not

knowwhether this specific transcriptomic

profile is hardwired or is modulated by the

specific location at which HybHP reside,

especially considering the fact that once

HybHP progeny approach the CV, they

upregulate certain metabolic genes. Cells

that resemble HybHP, based on weak

expression of SOX9 and OPN, are also

present in human liver, but their functional

characterization will require development

of improved isolation techniques.

HybHP—A New Framework for
Understanding Liver Regeneration
Liver regeneration has been extensively

studied in the context of partial hepa-

tectomy, in which all liver cells undergo

limited rounds of cell division to restore

organ mass. However, studies of injury-

induced regeneration gave rise to con-

flicting hypotheses, such as the stream-

ing liver (Fellous et al., 2009; Furuyama

et al., 2011), the liver stem cell (Dorrell

et al., 2011), and the highly controversial

oval cell concept (Miyajima et al., 2014).

Although recent studies show that oval

cells do not generate hepatocytes (Espa-
ñol-Suñer et al., 2012; Malato et al., 2011; Rodrigo-Torres et al.,

2014; Schaub et al., 2014; Tarlow et al., 2014a; Yanger et al.,

2014), cultured BD were found capable of giving rise to hepato-

cytes (Huch et al., 2013, 2015). The discovery of HybHP allows

us to propose an integrative model that reaffirms the funda-

mental role of the portal-central axis in liver physiology, with

the PT as the source of cells responsible for the majority of

parenchymal regeneration. Although acute insults are rapidly

resolved by surviving hepatocytes, we suggest that the repair

of chronic hepatocyte damage requires the proliferation of

HybHP. We postulate that HybHP are mainly activated under

conditions when the damaged parenchyma can be more

efficiently repopulated by hepatocytes that originate from the

limiting plate. When too many hepatocytes are continuously



destroyed and the highly complex network of hepatic sinusoids

and bile canaliculi is compromised, the most effective way to

properly repair such injuries is to induce the expansion of

hepatocytes that are already connected to BD, a task that can

be most easily fulfilled by HybHP. However, when liver damage

is extensive and sustained and HybHP are killed, they can no

longer contribute to the regenerative process. Under such con-

ditions, the oval cell response is activated, but oval cells are inca-

pable of differentiating into hepatocytes, and the logic underlying

their expansion remains obscure. One possible function for oval

cells could be restoration of the bile canaliculi network and liver

polarity. Supporting these lines, inking the ductal tree has al-

lowed visualization of its structure in different models of liver

injury with oval cell expansion (Kaneko et al., 2015). Such studies

show that oval cells are extensions of the pre-existing ductal

tree, further challenging the view that oval cells are progenitor

cells that seed the parenchyma to generate new hepatocytes.

HybHP and HCC
Our results suggest that despite their high regenerative and pro-

liferative potential, HybHP do not give rise to HCC in two models

in which HCC arises in a liver that is chronically damaged by

steatohepatitis. Likewise, HybHP do not give rise to HCC in a

liver that has been acutely challenged by DEN injection. Thus,

not all cells that undergomany rounds of division will accumulate

a sufficient number of mutations and give rise to cancer (Toma-

setti and Vogelstein, 2015). The inability of HybHP to give rise to

HCC in these models is unlikely to be due to intrinsic resistance

to oncogenic transformation, as most cells can be transformed

upon oncogene activation or loss of tumor suppressors. Most

likely, the metabolic properties of HybHP and their constellation

of signaling molecules make them unable to participate in HCC

initiation in the three models that were examined. In the case

of DEN, it is well established that metabolic activation of this

pro-carcinogen depends on CYP2E1, which is only expressed

in zone 3 hepatocytes (Kang et al., 2007). Zone 3 hepatocytes

are also the cells that are killed by DEN exposure due to gener-

ation of reactive oxygen species (ROS) during its metabolism

(Maeda et al., 2005). In the case of MUP-uPA and STAM mice,

HCC development depends on HFD consumption (Fujii et al.,

2013; Nakagawa et al., 2014b), which promotes de novo lipo-

genesis and ROS generation through fatty-acid oxidation (Naka-

gawa et al., 2014b), properties encoded by class 4 genes that are

highly expressed in fully differentiated hepatocytes. These find-

ings suggest that the mere number of cell divisions to which a

given cell type is subjected may not be the rate-limiting factor

in determining its oncogenic potential. In addition to high prolif-

erative potential, a cancer progenitor should possess unique

metabolic and signaling properties that are compatible with

oncogenic transformation.

HybHP as a Treatment for Chronic Liver Disease
Chronic liver disease remains the leading cause of liver trans-

plantation, a highly expensive procedure and a prominent cause

of morbidity and mortality. Cell transplantation has been pro-

posed as an alternative to liver transplantation, but the ideal

donor cell remains to be identified. Liver stem cells, cultured

ductal cells, and their derivatives were proposed (Huch et al.,
2013, 2015; Miyajima et al., 2014). Fetal liver progenitor cells

also hold promise for transplantation therapy, but concerns

were raised about their safety and methods of isolation (Kisse-

leva et al., 2010). Induced pluripotent stem cells (iPSC) can be

converted into hepatocytes, but the repopulation potential and

functional recovery of such cells are inferior to those of cHP

(Forbes et al., 2015). Furthermore, the tumorigenicity of hepato-

cytes derived from iPSC has not been ruled out. To the best of

our knowledge, HybHP exhibit the highest regenerative capac-

ity of all cells introduced into the Fah�/� mouse liver, and thus,

we suggest that HybHP are ideal candidates for liver disease

cell therapy. However, the future clinical use of HybHP will

depend on ease of isolation and the development of suitable

culture systems for continuous propagation and massive

expansion.

EXPERIMENTAL PROCEDURES

Mice

Mouse studies were performed in accordance with NIH guidelines for the use

and care of laboratory animals and approved by the UCSD Institutional Animal

Care and Use Committee, S00218. Tamoxifen (Sigma-Aldrich) was dissolved

in corn oil and subcutaneously (s.c.) injected to mice before the induction of

any damage or experimental intervention with a wash out period of at least

1 week.

Immunofluorescence Analysis

Mice were intra-cardially perfused with Zn-Formalin (Polysciences), and

excised livers further fixed overnight in Zn-Formalin. Livers were washed

with PBS and incubated for 2 hr with 100 mM Tris (pH 9.4), 10 mM DTT. Livers

were washed stepwise with PBS-15% and 30% sucrose at 4�C embedded in

Tissue Tek OCT compound (Sakura Finetek) and kept frozen. Tissue blocks

were cut with a cryostat to 8 mm sections. Slides were washed in PBS, and

antigen retrieval was performed with citrate (pH 6) buffer at 96�C for 1 hr. After

cooling and washing the slides with PBS, they were incubated with PBS-0.1%

Triton X-100 for 20 min. After extensive washing with PBS, the slides were

blocked with PBS-0.1% Tween-2% Donkey serum for 30 min. Antibodies

were diluted in the same blocking buffer and incubated at 4�Covernight. Slides

were washed three times with PBS-0.1% Tween and incubated with corre-

sponding secondary antibodies diluted in blocking solution for 2 hr, followed

by 33 PBS-0.1% Tween and 23 PBS washes. Slides were washed further

with deionized water and 70% ethanol prior to incubation with 0.1% Sudan

Black (Sigma) in 70% ethanol for 20–30 min. Extensive washing with PBS-

0.2% Tween was performed before incubating the slides with DAPI for nuclear

staining and mounting with Mowiol. Imaging was performed with a Zeiss Axi-

oimager2 and Hamamatsu Nanozoomer. Images were processed using Zeiss

ZEN and NDPview Hamamatsu software.

Liver Perfusion, Flow Cytometry, and Cell Sorting

For flow cytometry analysis, liver single cells were isolated by two-step colla-

genase digestion and differential centrifugation. Single-cell suspensions were

analyzed using HNF4a (Santa Cruz #sc-6556) and CK19 (TROMAIII Develop-

mental Studies Hybridoma Bank) antibodies. Donkey anti-goat alexa-647

and donkey anti-goat alexa-405 (Molecular Probes, Invitrogen) were used as

secondary antibodies. For intracellular staining, Transcription Factor Staining

Kit (BD Biosciences) was used. Fixable Viability Dye eFlour 780 Dye or eFlour

506 was used for exclusion of dead cells (eBioscience). Samples were

measured on a CyAn ADP flow cytometer (Beckman Coulter) and analyzed

with FlowJo.8 software (Tree Star) or a BD Influx for cell sorting.
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