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1. Introduction

It is the purpose of this paper to describe local parameters (maximal independent coordinates) for
the moduli space of SL(3,C)-representations of free groups of arbitrary rank. We begin by review-
ing a recent description of global coordinates of this moduli space (universal parameter space), and
then apply the method of [ATZ94] to prove that certain subsets of these coordinate functions admit
no (polynomial) relations. This establishes that these subsets are algebraically independent. They are
maximal with this property and at generic non-singular points provide local parameters that deter-
mine linearly independent tangent vectors.

Let Fr = 〈g1, . . . ,gr〉 be a rank r free group (non-abelian). Any homomorphism ρ : Fr →
SL(m,C) ⊂ GL(m,C) is a complex m-dimensional representation of Fr . We call the set Rr =
Hom(Fr,SL(m,C)) the SL(m,C)-representation variety of Fr . The evaluation map,

ρ �→ (
ρ(g1), . . . , ρ(gr)

)
,

gives a bijection between Rr and SL(m,C)×r . Since SL(m,C) is a smooth affine variety (irreducible,
non-singular, algebraic set), Rr is likewise a smooth affine variety.
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Let G = SL(m,C). The conjugation action of G on Rr is rational; that is, G × Rr → Rr is regular,
or the mapping is by polynomials in the matrix entries of G in the coordinates of Rr . In particular,
this action is either (g,ρ) �→ gρg−1 or

(
g,

(
ρ(g1), . . . , ρ(gr)

)) �→ (
gρ(g1)g−1, . . . , gρ(gr)g−1)

depending on whether we are working with Hom(Fr,G) or G×r , respectively. We often switch back
and forth as is convenient.

Let K be a compact Lie group. Then K is a real algebraic group which embeds in O(n,R) for
some n. Since K is algebraic there is an ideal I in the real coordinate ring R[O(n,R)] defining its
points. Let G be the complex zeros of I. Then G is a complex algebraic subgroup of O(n,C) (denoted
by KC and called the complexification of K ) with coordinate ring C[G] = R[K ] ⊗R C. Any complex
algebraic group G which arises in this fashion is called reductive. The “unitary trick” shows SL(m,C) is
reductive. We note that this definition, although not the most general, coincides with all more general
notions of reductivity when the algebraic group is complex. In particular, another equivalent definition
is that a complex algebraic group G is reductive if for every finite dimensional representation of G
all subrepresentations have invariant complements. The important observation is that such groups act
like and have the algebraic structure of compact groups. See [Sch01].

A theorem of Nagata [Nag64] says that if a reductive group acts on a finitely generated domain A,
the subdomain of invariants AG = {a ∈ A | g · a = a} is likewise finitely generated. This is one answer
to Hilbert’s fourteeth problem.

Since Rr is an affine variety, its coordinate ring C[Rr] is a finitely generated domain, and since G

acts on Rr it also acts on C[Rr] by (g, f (ρ)) �→ f (g−1ρg). Since SU(m)C = SL(m,C), G is reductive.
Thus C[Rr]G is a finitely generated domain, and consequently we define

Xr = Specmax

(
C[Rr]G

)
,

the set of maximal ideals, to be the G-character variety of Fr .
It can be shown that Xr is the categorical quotient Rr//G in the category of affine varieties (or

Hausdorff spaces or complex analytic varieties [Lun75,Lun76]). We recall the definition of a categorical
quotient to be concrete.

Definition 1. A categorical quotient of a variety Y with an algebraic group G acting rationally is an
object Y //G and a G-invariant morphism π : Y → Y //G such that the following commutative diagram
exists uniquely for all invariant morphisms f : Y → Z :

Y
π

f

Y //G

Z

It is a good categorical quotient if the following conditions also hold:

(i) for open subsets U ⊂ Y //G , C[U ] ≈ C[π−1(U )]G ;
(ii) π maps closed invariant sets to closed sets;

(iii) π separates closed invariant sets.

When G is reductive and Y is an affine variety, then Y → Specmax(C[Y ]G) is a good categorical
quotient. See [Dol03] for details.
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It is worth giving a more down to earth description of this quotient. There is a one-to-one corre-
spondence between the points of Xr and the orbits of completely reducible representations (represen-
tations that are sums of irreducibles); these are the points whose orbits are closed. Any representation
can be continuously and conjugate-invariantly deformed to one that is completely reducible, so the
points of Xr are unions of orbits of representations that are deformable in this way. Such a union
is called an extended orbit equivalence class. The character variety Xr may be accurately thought of
as either the usual orbit space of Rr with the non-completely reducible representations removed, or
as the usual orbit space with extended orbit equivalences. Either way, the resulting space is, or is
in one-to-one correspondence with, an affine algebraic set, irreducible and singular, that satisfies the
diagrammatic requirements needed to be a categorical quotient.

Any such reductive quotient has an affine lift (see [MFK94]). In otherwords, there is an affine space
A

N for some potentially large N where Rr ⊂ A
N and where the action of G extends. Then

Π : C
[
A

N] −→ C[Rr]

and more importantly

ΠG : C
[
A

N//G
] −→ C[Rr//G]

are surjective morphisms. We may take A
N in our case to be gl(m,C)×r and the action of G to be,

as it is on G×r , diagonal conjugation.
The coordinate ring of this affine space is

C
[
gl(m,C)×r] = C

[
xk

i j

∣∣ 1 � i, j � m, 1 � k � r
]
,

the complex polynomial ring in rm2 variables.
Let

Xk =

⎛
⎜⎜⎜⎝

xk
11 xk

12 · · · xk
1m

xk
21 xk

22 · · · xk
2m

...
...

. . .
...

xk
m1 xk

m2 · · · xk
mm

⎞
⎟⎟⎟⎠

be a generic matrix of size m × m.
In 1976 Procesi [Pro76] proves

Theorem 2 (1-st fundamental theorem of invariants of m × m matrices).

C
[
gl(m,C)×r//G

] = C
[
tr(Xi1 Xi2 · · ·Xil )

∣∣ 1 � l � d(m)
]
,

where d(m) is a fixed positive integer dependent only on m.

However, according to [For02] the above result had been discovered earlier in [Kir67].
The number d(m) is called the degree of nilpotency. The only values known are d(2) = 3, d(3) = 6

and d(4) = 10, but it is known that d(m) � m2 (see [Raz74]). Therefore, C[Rm//G] is generated by

Π(tr(Xi1 Xi2 · · ·Xil )) = tr(X̂i1 X̂i2 · · · X̂il ) where X̂k = (x̂k
i j) and x̂k

i j = Π(xk
i j) ∈ C[Rm].

In [Law08] minimal generators for C[SL(3,C)×r//SL(3,C)] are constructed, providing global coor-
dinates for its spectrum of maximal ideals. The main theorem from [Law08] is
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Theorem 3. C[SL(3,C)×r//SL(3,C)] is minimally generated by
(r

1

)
invariants of the form tr(X),

(r
1

)
invariants

of the form tr(X−1),
(r

2

)
invariants of the form tr(XY), 2

(r
2

)
invariants of the form tr(XY−1),

(r
2

)
invariants of the

form tr(X−1Y−1),
(r

2

)
invariants of the form tr(XYX−1Y−1), 2

(r
3

)
invariants of the form tr(XYZ), 6

(r
3

)
invari-

ants of the form tr(XYZ−1), 3
(r

3

)
invariants of the form tr(XYZY−1), 6

(r
3

)
invariants of the form tr(XY−1Z−1),

6
(r

3

)
invariants of the form tr(XYZ−1Y−1),

(r
3

)
invariants of the form tr(X−1Y−1Z−1), 5

(r
4

)
invariants of the

form tr(WXYZ), 20
(r

4

)
invariants of the form tr(WXYZ−1), 18

(r
4

)
invariants of the form tr(WXY−1Z−1), 8

(r
4

)
invariants of the form tr(WXYZY−1), 12

(r
5

)
invariants of the form tr(UVWXY), 35

(r
5

)
invariants of the form

tr(VWXYZ−1), and 15
(r

6

)
invariants of the form tr(UVWXYZ).

Counting the various generator types we conclude

Corollary 4. The number of minimal generators for C[SL(3,C)×r]SL(3,C) is

Nr = r

240

(
396 + 65r2 − 5r3 + 19r4 + 5r5),

and enumerating the set of generators from Theorem 3 by {t1, . . . , tNr } we have

TNr = (t1, . . . , tNr ) : Xr ↪→ C
Nr

is an affine embedding where Nr is minimal among all affine embeddings Xr → C
N .

2. Algebraic independence

Using methods from [ATZ94] (see also [Ter88]) we pick out maximal subsets of these minimal
generators that are algebraically independent.

Definition 5. Let k ⊂ K be fields and B ⊂ K be a set of elements. Then the set B is algebraically inde-
pendent over k if for any positive integer n, any non-zero polynomial f (x1, . . . , xn) with coefficients
in k, and any set of n distinct elements in B , denoted by b1, . . .bn , we have f (b1, . . . ,bn) 
= 0.

Any maximal set of algebraically independent elements has the same cardinality (the transcendence
degree) and such a maximal set is called a transcendence basis.

For an affine variety X over C, the dimension of X (called the Krull dimension) is equal to the
maximal number of independent rational functions on X ; that is, the transcendence degree of the
quotient field C(X) over C. In this case, it is also equal to the common length of all maximal chains
of prime ideals in the coordinate ring C[X], and also to the dimension of a tangent space at a smooth
point.

Suppose the transcendence basis { f1, . . . , fd} is in fact in the coordinate ring C[X] ⊂ C(X). In
general a set of functions whose differentials give a basis for the cotangent space at a point is called
a set of local parameters. In [Sha94] it is shown that local parameters {x1, . . . , xd} exist and that a set
of functions { f1, . . . , fd} in the local coordinate ring can be written in their terms. The Jacobian is the
determinant of the d×d matrix (∂ f i/∂x j). If the Jacobian is not identically zero on X , then at a generic
smooth point p (themselves generic in X ) the differentials d( f i − f i(p)) of these coordinate functions,
translated to p, give a basis for T ∗

p(X) and by duality for T p(X). Any such set will necessarily be
algebraically independent.

Since irreducible representations Fr → G are generic in Rr (for r � 2), it follows that generic orbits
have dimension equal to dimG = m2 − 1. Thus the Krull dimension of Xr is (m2 − 1)(r − 1), as long
as r � 2. It then follows that at a non-singular point [ρ] of Xr (these are exactly the irreducibles) we
wish to obtain (m2 − 1)(r − 1) generators of C[Xr] whose Jacobian is non-zero on Xr . This generically
provides (m2 − 1)(r − 1) linearly independent vectors in T [ρ](Xr) and establishes these invariants are
algebraically independent.
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For the remainder of this section let G = SL(3,C).
Our main theorem is

Theorem 6. Let A = {tr(X1), tr(X2), tr(X−1
1 ), tr(X−1

2 ), tr(X1X2), tr(X−1
1 X2), tr(X−1

2 X1), tr(X−1
1 X−1

2 )}, and

B = {tr(X3), tr(X−1
3 ), tr(X1X3), tr(X2X3), tr(X1X−1

3 ), . . . , tr(Xr), tr(X−1
r ), tr(X1Xr), tr(X2Xr), tr(X1X−1

r )}.
Then A ∪ B ∪ C are local parameters from the minimal generators from Theorem 3, where C is any one of :

{
tr

(
X−1

1 X−1
3

)
, tr

(
X−1

1 X3
)
, tr

(
X−1

2 X−1
3

)
, . . . , tr

(
X−1

1 X−1
r

)
, tr

(
X−1

1 Xr
)
, tr

(
X−1

2 X−1
r

)}
,{

tr
(
X−1

1 X−1
3

)
, tr

(
X−1

1 X3
)
, tr

(
X−1

2 X3
)
, . . . , tr

(
X−1

1 X−1
r

)
, tr

(
X−1

1 Xr
)
, tr

(
X−1

2 Xr
)}

,{
tr

(
X−1

1 X−1
3

)
, tr

(
X−1

1 X3
)
, tr

(
X2X−1

3

)
, . . . , tr

(
X−1

1 X−1
r

)
, tr

(
X−1

1 Xr
)
, tr

(
X2X−1

r

)}
,{

tr
(
X−1

1 X3
)
, tr

(
X−1

2 X3
)
, tr

(
X2X−1

3

)
, . . . , tr

(
X−1

1 Xr
)
, tr

(
X−1

2 Xr
)
, tr

(
X2X−1

r

)}
,{

tr
(
X−1

1 X−1
3

)
, tr

(
X2X−1

3

)
, tr

(
X−1

2 X−1
3

)
, . . . , tr

(
X−1

1 X−1
r

)
, tr

(
X2X−1

r

)
, tr

(
X−1

2 X−1
r

)}
.

In all cases these sets number the Krull dimension of Xr which is 8r − 8. Consequently, they are maximally
algebraically independent in C[Xr].

Proof. The outline of the proof is as follows. We will proceed by induction. For r = 1 the number of
minimal generators equals the dimension of X1 so there cannot be any relations at all, and for r = 2
Theorem 6 was shown earlier in [Law07]. For r � 3 we calculate the Jacobian matrix of the 8r − 8
trace functions is the statement of Theorem 6 in the following 8r − 8 independent variables:

(a) x1
11, x1

22 from X1,

(b) x2
11, x2

21, x2
13, x2

22, x2
23, x2

33 from X2,

(c) xk
11, xk

12, xk
13, xk

21, xk
22, xk

23, xk
32, xk

33 from Xk for 3 � k � r.

Call the set of matrix elements from the above list V . We then show the determinant of the Jacobian
is generically non-zero. This will establish independence.

We now proceed with the proof. First, we justify our choice of matrix elements V ⊂ {xk
i j} by show-

ing them to be independent. Generically, we can assume that X1 is diagonalizable and conjugate it
into diagonal form. Since its determinant is 1, we may write x1

33 = 1/(x1
22x1

11). Therefore, we need only
x1

11 and x1
22 from X1.

We may still conjugate by any matrix that preserves this normal form, such as by diagonal matri-
ces. Doing so we will show we can assume the conjugation orbit of X2 is independent of its lower
diagonal. The entry x2

31 is generically a function of the other matrix elements from X2 since we may
solve for it in the expression det(X2) = 1. In any event we can always choose either this entry or
an element other than the lower diagonal to solve the determinant. Now we are free to show that
the lower diagonal may be assumed to be parameters that vary only in the conjugation orbit. Indeed,
conjugate by

D =
⎛
⎝ s 0 0

0 x2
21 0

0 0
x2

21x2
32

t

⎞
⎠ .

This matrix has non-zero determinant in the free C
∗ parameters s and t as long as the lower diagonal

of X2 is non-zero (generically the case). Otherwise, the lower diagonal is fixed or we can slightly
change the matrix D to take advantage of one of the zeros on the lower diagonal (when there is only
one zero).
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Then

D−1X2D =

⎛
⎜⎜⎝

x2
11

x2
12x2

21
s

x2
13x2

21x2
32

st

s x2
22

x2
23x2

32
t

x2
31st

x2
21x2

32
t x2

33

⎞
⎟⎟⎠ .

As s and t vary, X1 is fixed (recall it is now diagonal) and the orbit of X2 is fixed.
Thus performing this change of variables shows that we may assume without loss of generality

that x1
11, x1

22, x2
i j (1 � i � j � 3) are independent variables for X2. Now for k � 3 we can likewise solve

det(Xk) = 1 for xk
31 (generically). We thus conclude that xk

i j , where 1 � i, j � 3 and (i, j) 
= (3,1) for
k � 3, provide the additional independent parameters for Xr when r � 3.

Heuristically, their independence follows since they total 8r − 8 = dimXr and the conjugation ac-
tion (generically having orbits of dimension 8) has been entirely accounted for (6 degrees of freedom
used on X1 and 2 degrees of freedom used on X2). A more precise way to say this is that the order
8r − 8 subset of polynomial indeterminates V ⊂ {xk

i j} ⊂ C[R] are independent in C[R], and so are

independent in C[X] = C[R]G as long as they (generically) distinguish orbits. Since we just (con-
structively) showed that this set does generically distinguish all orbits (their closures to be precise),
then we have shown independence. The set V is a set of parameters we can now work with.

We now say a word or two about the Jacobian matrix. The functions A ∪ B ∪ C are generically func-
tions of the variables V . Letting f1, . . . , f8r−8 be the trace functions from A ∪ B ∪ C and z1, . . . , z8r−8

be the variables V , the Jacobian is the (8r − 8) × (8r − 8) matrix of partial derivatives (
∂ f i
∂z j

). If there

is a dependence relation among the f i ’s then locally (that is on an open affine subset) the Jacobian
will have zero determinant since locally these functions cannot give a full dimensional tangent space.
So computing this determinant and finding it non-zero at a general point in a Zariski open set shows
the functions are algebraically independent.

We now proceed with the induction. The cases r = 1,2 are done. Suppose now that r0 � 3 and
that for all r < r0 the Jacobian is non-singular.

Putting the 8 trace functions which are in terms of Xr0 in the last 8 rows and the 8 variables xr0
i j

in the last 8 columns we get a block diagonal matrix
( M 0

P N

)
and so by induction M is non-singular.

The 8(r − 2) × 8 block of zeros arises since the first 8(r − 2) trace functions are constant with respect
to Xr0 and the last 8 columns come from differentiating with respect to the indeterminates xr0

i j . The
block form of the matrix implies that its determinant is the product of the determinant of M and
that of N . It remains to show that the last eight traces are independent in the variables from the last
matrix Xr ; that is, the 8 × 8 matrix N is non-singular (generically).

For all choices of C , using Mathematica (code is available upon request), we calculate this subdeter-
minant and evaluate at random unimodular matrices (those with determinant 1); finding it non-zero.
If there was a relation the determinant would be identically zero and so any non-zero evaluation
shows independence. We note that we only need to test the r = 3 case since all 8 × 8 lower right
blocks N are identical excepting labels. �
Remark 7. Using the same method as above it is not hard to prove that the natural affine lifts (replace
exponents of −1 with exponents of 2) of the generators in the main theorem with {tr(X3

1), . . . , tr(X3
r )}

added to the sets form a maximal algebraically independent set for gl(3,C)×r//G. For instance,

{
tr(X1), tr(X2), tr

(
X2

1

)
, tr

(
X2

2

)
, tr

(
X3

1

)
, tr

(
X3

2

)
, tr(X1X2), tr

(
X2

1X2
)
, tr

(
X2

2X1
)
,

tr
(
X2

1X2
2

)
, tr(X3), tr

(
X2

3

)
, tr

(
X3

3

)
, tr(X1X3), tr(X2X3), tr

(
X1X2

3

)
, tr

(
X2

1X2
3

)
,

tr
(
X2

1X3
)
, tr

(
X2

2X2
3

)
, . . . , tr(Xr), tr

(
X2

r

)
, tr

(
X3

r

)
, tr(X1Xr), tr(X2Xr), tr

(
X1X2

r

)
,

tr
(
X2

1X2
r

)
, tr

(
X2

1Xr
)
, tr

(
X2

2X2
r

)}
, are independent and maximal.



S. Lawton / Journal of Algebra 324 (2010) 1383–1391 1389
3. Pulling back parameters and the Magnus trace map

In this section, let Yr = gl(m,C)r//SL(m,C), Xr = SL(m,C)r//SL(m,C), and

ΠG : C[Yr] → C[Xr] ≈ C[Yr]/
(
det(X1) − 1, . . . ,det(Xr) − 1

)
be the projection discussed in the introduction.

A set of generators for C[Yr] or C[Xr] of the form {tr(Ai1 Ai2 · · · Ai j )} are called Procesi generators,
if additionally no generator has the form tr(W1XmW2) where at least one of the words Wi is not the
identity (for C[Xr] we additionally require this if both Wi = I). Using the characteristic polynomial∑

ck(X)Xn−k = 0 one can always arrange for any set of minimal generators of C[Yr] or C[Xr] to
be Procesi generators. We will call a maximal set of algebraically independent Procesi generators
Procesi parameters. Such a maximal set always has order equal to the Krull dimension of Yr or Xr ,
respectively.

In [Law08] we show that minimal Procesi generators of C[gl(m,C)×r//SL(m,C)] project by ΠG to
minimal generators of C[SL(m,C)×r//SL(m,C)]. One may show that a set of algebraically independent
Procesi generators of SL(2,C)×r//SL(2,C) pull back by ΠSL(2,C) to algebraically independent genera-
tors of gl(2,C)×r//SL(2,C), and the above work and remark from the last section shows the same is
true for SL(3,C).

We now prove

Theorem 8. Let B ⊂ C[Xr] be a set of Procesi parameters for Xr . Then there is a collection of elements B ⊂
Π−1

G
(B) so that {tr(Xm

1 ), . . . , tr(Xm
r )} ∪ B ⊂ C[Yr] is a set of Procesi parameters for Yr . Said shortly, π pulls

back Procesi parameters.

Proof. By assumption the parameters for Xr are given by traces of words in generic matrices where
all letters have positive exponents; that is in the form tr(Xi1 Xi2 · · ·Xil ), and the collection B does not
include any parameter of the form tr(Xm). Then these invariants extend to invariants of Yr ; that is, for
such generators, ΠG(tr(W)) = tr(W)|Xr . If there was a dependence relation among these extensions
to all of Yr , then restricting would provide a dependence relation on all of Xr , which cannot exist by
assumption. Thus B pulls back to an independent set B .

Let C[B] be the subring of C[Yr] generated by B . The collection {tr(Xm− j
k )} for 1 � j � m − 1

is included in B , since they must be included in any set of Procesi parameters for Xr ; the latter
following since the Procesi parameters for X1 are unique, and setting X2 = · · · = Xr = I recovers
C[X1] as a subring of C[Xr]. Note that they are independent since gl(m,C)//SL(m,C) = C

m . Suppose
C[B][tr(Xm

1 ), . . . , tr(Xm
r )] ⊂ C[Yr] is an algebraic extension of C[B]. Then locally, using the characteris-

tic polynomial, we can express the determinant in terms of the other coefficients of the characteristic
polynomial, which we know to be impossible generally, since the coefficients of the characteristic
polynomial are already independent. For example, by letting all elements Xi be the identity except for
one, say Xi0 , we would be able to locally ascertain det(Xi0 ) from tr(Xm−k

i0
) for 1 � k � m − 1; which

we cannot. Thus, it is a transcendental extention. Therefore, B ∪ {tr(Xm
1 ), . . . , tr(Xm

r )} are algebraically
independent and since they number (m2 − 1)(r − 1) + r = (r − 1)m2 + 1 = dimYr , they are a set of
parameters for Yr . �

We also take a moment to contrast the fact in [Law08] that Nr minimal generators provide an
affine embedding Xr ↪→ C

Nr , where Nr is minimal among all such embeddings.
Given a set of independent generators I of order |I| one can construct a morphism MagTrI : Xr →

C
|I| , called the Magnus trace map in [Flo06]. This map factors through the affine embedding Xr → C

Nr

with a projection when I is a subset (as it can always be taken to be) of a minimal set of generators
defining the embedding.

It is not hard to prove

Proposition 9. MagTrI is dominant and generically submersive.
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Proof. Since the algebraically independent generators induce an injection C[B] ↪→ C[Xr] we automat-
ically get dominance [Har77, p. 81], and then this immediately implies there exists an open dense set
U ⊂ Xr where MagTrI is a smooth submersion [Har77, p. 271]. �

Suppose I ⊂ {tr(Xi1 Xi2 · · ·Xil )} is taken to be a maximal. For SL(m,C) and r = 1 it is surjective
since it defines an isomorphism. Surprisingly, we also have an isomorphism for SL(2,C) and r = 2
(see [Gol08] for more about the Fricke–Klein–Vogt Theorem). For SL(3,C) and r = 2 and for SL(2,C)

and r = 3 it is a branched double cover. It is natural to conjecture that the map is surjective in general.
However, for G = SL(2,C), Florentino [Flo06] recently showed that it is not surjective for r � 4.

We conjecture the same is true for SL(m,C) and r � 2 for m � 3 excepting only (m, r) = (3,2). In
other words, we now make

Conjecture 10. Let I ⊂ {tr(Xi1 Xi2 · · ·Xil )} be a set of parameters for Xr . Then MagTrI is only surjective for
the cases (m, r) = (1, r), (m,1), (2,2), (2,3), (3,2).

Remark 11. Additionally, in [Flo06] it is shown that a representation ρ : π → SL(2,C) where π
is a finitely generated group with generators {g1, . . . , gr} is reducible if and only if all triples
(ρ(gi1 ),ρ(gi2 ),ρ(gi3)) are simultaneously reducible by conjugation. If we replace SL(2,C) by SL(m,C)

and i3 by id(m) where d(m) is the degree of nilpotency discussed in the introduction, then Florenti-
no’s statement remains valid. This follows since globally all invariants are tr(Xi1 Xi2 · · ·Xid(m)

), and the
points of Xr are distinguished by such traces. It is important to observe that it does not matter that
the points in Xr correspond to unions of orbits, since such a union contains either one and only one
orbit of an irreducible representation or it contain only reducible representations (in different orbits,
but all reducible).

4. Closing remarks

In this section we take the opportunity to briefly describe our general outlook on the project that
this paper, in part, contributes.

In [Law07] we showed the following theorem.

Theorem 12. Let X = SL(3,C)×2//SL(3,C). Then the following hold:

(i) C[X] is minimally generated by the nine affine coordinate functions

G = {
tr(X1), tr(X2), tr(X1X2), tr

(
X−1

1

)
, tr

(
X−1

2

)
, tr

(
X1X−1

2

)
,

tr
(
X2X−1

1

)
, tr

(
X−1

1 X−1
2

)
, tr

(
X1X2X−1

1 X−1
2

)}
.

(ii) The eight elements in G \ {tr(X1X2X−1
1 X−1

2 )} are a maximal algebraically independent subset and are
local parameters.

(iii) tr(X1X2X−1
1 X−1

2 ) satisfies a monic (degree 2) relation over the algebraically independent generators. It
generates the ideal.

(iv) Out(F2) acts on C[X] and has an order 8 subgroup which acts as a permutation group on the independent
generators; as such distinguishes them.

In [Law08] we generalize part (i) of this theorem to Xr by describing minimal generators for any
value of r. In this paper we generalize part (ii) of this theorem again to Xr for any value of r. We are
currently exploring a generalization of part (iv) to Xr . Generalizing part (iii) seems to be a very hard
problem.

Recently, exciting new results using methods similar to those in [AP89] were established in [BD07]
concerning the ideal of relations for generic 3 × 3 matrices. In particular, the minimal degree of
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generators of the ideal of relations was found to be 7 and the degree 7 relations were then classified
in general. Using this we can get like results for Xr , but this is just the beginning.

It would seem that either new ideas are needed to solve the relations problem in general, or a
massive computational project. On the other hand, to solve the problem in general, one would like
to know the minimal generators to work with (part (i) above and its generalization), the subsets of
generators that do not admit relations (part (ii) above and its generalization), and group actions which
can simplify the form of relations (part (iv) above and its generalization).
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