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ABSTRACT

An enhanced biological phosphorus removal (EBPR) process operated at a relatively high temperature,
28 °C, removed 85% carbon and 99% phosphorus from wastewater over a period of two years. This study
investigated its microbial community through fluorescent in situ hybridization (FISH) and clone library
generation. Through FISH, considerably more Candidatus “Accumulibacter phosphatis” (Accumulibacter)-
polyphosphate accumulating organisms (PAOs) than Candidatus ‘Competibacter phosphatis’ (Com-
petibacter)-glycogen accumulating organisms were detected in the reactor, at 36 and 7% of total bacterial
population, respectively. A low ratio of Glycogen/Volatile Fatty Acid of 0.69 further indicated the
dominance of PAOs in the reactor. From clone library generated, 26 operational taxonomy units were
retrieved from the sludge and a diverse population was shown, comprising Proteobacteria (69.6%),
Actinobacteria (13.7%), Bacteroidetes (9.8%), Firmicutes (2.94%), Planctomycetes (1.96%), and Acid-
obacteria (1.47%). Accumulibacter are the only recognized PAOs revealed by the clone library. Both the
clone library and FISH results strongly suggest that Accumulibacter are the major PAOs responsible for

the phosphorus removal in this long-term EBPR at relatively high temperature.
© 2016 Chinese Institute of Environmental Engineering, Taiwan. Production and hosting by
Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Enhanced biological phosphorus removal (EBPR) process is an
activated sludge process tailored for phosphorus removal. This
process is based on the enrichment of polyphosphate accumulating
organisms (PAOs) in the activated sludge community [1]. Till date,
Candidatus “Accumulibacter phosphatis”, hereafter abbreviated as
Accumulibacter, are the best known PAOs present in EBPR process.
These organisms are able to store phosphate as intracellular poly-
phosphate via alternating anaerobic-aerobic conditions. Carbon
sources, particularly volatile fatty acids (VFAs) are taken up by PAOs
anaerobically and stored as polyhydroxyalkanoates (PHAs) using
energy generated mostly from hydrolysis of polyphosphate and
partly from degradation of glycogen. In the subsequent aerobic
condition, a greater amount of phosphorus is taken up to replenish
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polyphosphate reserve and accompanied by intracellular organic
matter degradation for biomass growth. Phosphorus removal is
achieved via removal of PAO biomass from the waste activated
sludge.

As in the case of many biological wastewater treatment pro-
cesses, microbial activity in EBPR process is affected by climates,
particularly temperature. Temperature appears to be one of the key
factors influencing the PAOs-GAOs (glycogen accumulating organ-
isms) competition in the EBPR process [2—4]. Like PAOs, GAOs take
up VFAs anaerobically without performing anaerobic phosphorus
release or aerobic phosphorus uptake. When GAOs are present in
significant numbers, they will compete with PAOs for carbon
sources, which in turn limit the potential of PAOs for aerobic
phosphorus uptake [4]. A group of GAOs named Candidatus ‘Com-
petibacter phosphatis’, hereafter named Competibacter, has been
commonly found in laboratory- and full-scale EBPR processes [5].

Successful EBPR operation has been observed at very low tem-
peratures, as low as 5 °C [6], though a higher sludge age was
necessary due to the decrease in process kinetics at low tempera-
tures. Low temperatures in the range of 10—20 °C, have been found
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to favor the growth of PAOs and thus improve EBPR performance
[2,7]. Lopez-Vazquez [8] claimed that at 10 °C, the anaerobic
metabolism of GAOs, in particular the anaerobic glycogen hydro-
lysis, was inhibited and limiting the substrate uptake rate, thus, the
growth of GAOs. At higher temperatures (> 20 °C), caused by sea-
sonal variations [9,10] or geographical location [11] deterioration of
EBPR capacity was observed. It is hypothesized that PAOs are less
competitive than GAOs at higher temperatures. At the laboratory
scale, researchers have studied the temperature effects on EBPR
and the PAOs-GAOs competition [2,3,7,8,12]. In general, these re-
ports agree that at temperatures higher than 20 °C, the EPBR ac-
tivity tends to deteriorate and GAOs become dominant. These
experimental evidences indicate that the operation of EBPR process
in tropical climates could be challenging.

Nevertheless, there have been successful cases of EBPR process
operated at 30 °C by Freitas et al. [13] with short sequencing batch
reactor (SBR) cycle, and Winkler et al. [ 14] through selective sludge
removal in a segregated aerobic granular biomass system. In our
previous study on the long term performance evaluation of a lab
scale EBPR process at 28 °C, stable phosphorus removal efficiency of
99% was observed over a period of two years [15]. From these
studies, doubts are casted over the predominance of GAOs in high-
temperature EBPR systems. Curiosity of the microbial population
present that contributes to EBPR is also raised. Although much
knowledge of EBPR microbiology has been accumulated over the
years, microbial study of high-temperature EBPR system still lack-
ing. Following the success in operating a lab-scale EBPR reactor at
28 °C [15], we further examine the microbial community involved.
Firstly, the most recognized Accumulibacter-PAOs and
Competibacter-GAOs were examined through fluorescent in situ
hybridization (FISH). Secondly, a clone library was generated to
assess the microbial community structure of the aforementioned
28 °C EBPR reactor. This work aimed to shed some lights on the
bacterial groups that drive the high-temperature EBPR.

2. Materials and methods
2.1. Long term EBPR reactor operation at 28 °C

The EBPR process was operated over a two-year period in a SBR
at 28 °C using synthetic wastewater, with solids retention time
(SRT) and hydraulic retention time (HRT) set at 10 d and 10 h
respectively, as detailed in Ong et al. [15]. The key features were
that acetate, yeast extract and peptone were the main carbon
sources, constitute to 50 mg C L' in the feed. The carbon to
phosphorus ratio (C:P) was 3:1.

Under steady state conditions, the process removed over 85% of
total organic carbon and 99% phosphate, with phosphorus con-
centration in the effluent below 1.0 mg L. Fig. 1 illustrates the
biochemical transformations of a SBR cycle at 28 °C during the two-
year operation. Sludge sample was collected from the reactor dur-
ing steady state for the subsequent chemical and microbial analysis.

2.2. Microbial characterisation with fluorescent in situ
hybridization (FISH)

Sludge samples were collected periodically and fixed in 4%
paraformaldehyde. FISH was performed according to [16] to study
the relative abundance of PAOs and GAOs in the microbial com-
munity. FISH samples were observed using a fluorescence micro-
scope (Model DM 2500, Leica, German) and images were captured
with a cooled charged-coupled device camera (Model DFC 310 FX,
Leica, German). The oligonucleotide probes used in this study
included 5’ FITC labeled EUBmix (i.e., EUB338, EUB338-II, EUB338-
Il) that targets most of the bacteria, 5’ Cy3 labeled PAOmix (i.e.,
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Fig. 1. Typical cyclic concentration profiles of phosphorus, TOC and acetate; and
intracellular carbohydrate and PHB in a SBR cycle of day 700 during steady state of
reactor operation.

PAO462, PAO651, PAO846) that targets most of the PAOs members
in Accumulibacter [17] and 5’ Cy3 labeled GB probe that targets
most of the GAO members in Competibacter [17,18]. A minimum of
20 microscopic fields were captured randomly for each sample.
FISH quantification of the PAOs and GAOs was done by image
analysis software VideoTesT- Morphology 5.1. The relative abun-
dance of PAOs or GAOs was determined respectively as the ratio of
the mean image areas with a positive signal for PAOmix or GB to the
area with a positive signal for EUBmix.

2.3. Microbial characterization through DNA extraction and
polymerase chain reaction (PCR) amplification

The sludge was extracted for total genomic DNA using ZR Soil
Microbe DNA Micro Preps (Zymo Research, USA) according to the
manufacturer's instructions. The DNA template was subjected to
PCR by using bacterium specific 11f (5’-GTTTGATCCTGGCTCAG-3’)
and 1512r (5’-GGYTACCTTGTTACGACTT- 3’) primers. The PCR
mixture contained 4 puL of DNA template, 3 pL of each primer
(10 uM), 37.5 puL GoTaq® Green Master Mix 2X (Promega, USA), and
27.5 L of sterile ultra pure water. PCR amplification was carried out
in a thermocycler (MyCycler, Biorad, USA) with an initial denatur-
ation step at 94 °C for 3 min, followed by 35 cycles of denaturation
at 94 °C for 30 s, annealing at 55 °C for 30 s, and elongation at 72 °C
for 1 min, followed by a final extension at 72 °C for 15 min. The PCR
products were then purified by Wizard® SV Gel and PCR Clean-Up
System (Promega, USA).
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2.4. Microbial characterization through 16S rRNA gene clone library
construction

Cloning of the purified PCR product was conducted using pGEM-
T easy vector system (Promega, USA) and JM 109 Competent Cells
(Promega, USA). After blue white screening, a total of 80 colonies
were retrieved and sequenced.

2.5. Microbial characterization through DNA sequencing and
phylogenetic analysis

Sequencing of the 16S rRNA genes of the clones was carried out
by Protech Technology Enterprise Co. (Taiwan) using ABI 3730DNA
analyzer (USA). The 16S rRNA sequences found in the sludge were
compared with sequences in GenBank database using the BLAST
software (www.ncbi.nih.nlm.gov). The closest sequences were
aligned with and a phylogenetic tree was constructed by the
neighbor-joining method using MEGA 5 [19].

3. Results and discussion

3.1. The abundance of Accumulibacter-PAOs and Competibacter-
GAOs

Based on the FISH results, the number of Accumulibacter-PAOs
contributed to 32 + 4% of the total bacterial population while
Competibacter-GAOs contributed 7 + 5%, as shown in Fig. 2.
Throughout the two-year reactor operation, the ratio of
Accumulibacter-PAOs population to Competibacter-GAOs popula-
tion was relatively constant at around five.

We cross-checked the results of the FISH technique by noting
that a main metabolic difference between PAOs and GAOs is in their
primary energy source for anaerobic carbon uptake. While PAOs
obtain energy from the hydrolysis of polyphosphate, GAOs use
glycogen as their sole energy source. Thus, in a GAOs-enriched
system, larger amount of glycogen is consumed anaerobically. By
calculating the ratio of glycogen degradation to VFA uptake during
the anaerobic phase (hereafter abbreviated as Gly/VFA), the relative
activity of PAOs and GAOs can be estimated. In this study, the Gly/
VFA ratio was 0.69, close to the Gly/VFA ratio reported in a few
efficient EBPR systems (Table 1). This Gly/VFA ratio was also much
lower than 1.12 reported in a GAOs-enriched system [24]. Thus, in
addition to the higher abundance of Accumulibacter-PAOs shown
by FISH, the low Gly/VFA ratio further supports that our EBPR
reactor is a PAOs enriched system.

The success of maintaining a stable population of
Accumulibacter-PAOs in a relatively high-temperature EBPR pro-
cess for a long-term indicates the feasibility of the biological

phosphorus removal technology in warm temperature regions.
Freitas et al. [13] and Winkler et al. [ 14] also shed some light on high
temperature EBPR. Freitas et al. [13] found that through short 36-
min SBR cycle, with 20 min of anaerobic phase and 10 min of aer-
obic phase, the sludge became more robust and ready to cope with
typical disturbances, such as shock load, and PAOs-GAOs compe-
tition. As for Winkler et al. [14], selective removal of GAOs domi-
nated at the top of the sludge bed had proven to be influential to the
PAOs-GAOs competition in forming a desired microbial population
for EBPR. Their approaches offer possibility to engineer the
competition between PAOs and GAOs. The encouraging EBPR per-
formance obtained by us and others [13,14] strongly suggests that
the enrichment of PAOs at high temperature is possible with certain
operating strategy and conditions. On the other hand, Cao [12]
reported a poorly performed EBPR process operated at 30 °C,
with 22% of GAOs and Accumulibacter-population fluctuated be-
tween 7 and 30% in the total bacterial population and the phos-
phorus concentration at the end of aerobic condition was in the
range of 3.0—6.5 mg L~. Although Accumulibacter-PAOs were
present in Cao's [12] system, they did not seem to contribute much
to phosphorus removal. A few other studies also reported that EBPR
performance deteriorates at temperatures above 20 °C, hypothe-
sized to result from a shift in the community from PAOs to GAOs
[2,3,7]. The reasons for the different EBPR performance in the past
studies are not clear yet. It could be due to the seed sludge used
which maybe geographically specific, or differences in wastewater
composition, operational conditions and so forth. Thus more
intensive effort is needed to identify a suitable operation strategy
for EBPR at high temperatures.

3.2. The EBPR microbial population from 16S rRNA gene retrieval
and phylogenetic analysis

In order to have more detailed taxonomic information on the
microbial community involved in our high temperature EBPR
process, a clone library of the EBPR sludge was constructed. A total
of 80 clones were selected. The partial 16S rRNA sequence of
600—800 bps was identified for each clone. These partial 16S rRNA
sequences were grouped into 26 OTUs (operational taxonomy
units). The phylogenetic analysis categorized the sequenced clones
into 7 groups. The numerically largest bacterial group is the Pro-
teobacteria, accounting for 69.6%, including «-proteobacteria
(13.8%), B-proteobacteria (43.6%), y-proteobacteria (12.3%), fol-
lowed by Actinobacteria (13.7%), Bacteroidetes (9.8%), Firmicutes
(2.94%), Planctomycetes (1.96%), Acidobacteria (1.47%). At the level
of class, B-proteobacteria was the dominant group in the EBPR
sludge, which was in accordance with previous studies [25]. Table 2
summarizes the clone number of each OTU, the closest sequence

Fig. 2. Overlay FISH images of sludge sample from day 700 of reactor operation showing (a) the PAOs (orange cell clusters) hybridized with both FITC-labelled EUBmix probe (green)
and Cy3-labelled PAOmix probe (red); (b) the GAOs (orange cell clusters) hybridized with both FITC-labelled EUBmix probe (green) and Cy3-labelled GB probe (red) (Scale

bar = 10 um).
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Table 1

The ratio of anaerobic glycogen degradation to VFA (Gly/VFA) uptake of a few EBPR systems.

Studies Carbon source Gly/VFA Temperature (°C)
Smolders et al. [20] Acetate model 0.50 20
This study Acetate (80% of the total carbon source) 0.69 28
Hesselmann et al. [21] Acetate 0.60 20
Filipe et al. [22] Acetate 0.53 22
Lu et al. [23] Acetate 0.46 2024
“Gly/VFA expressed in C-mol C-mol~".
Table 2
Affiliations of OTUs in the EBPR sludge.
Affiliation Closest sequences in GenBank Similarity (%) OTU No. of clones
a-Proteobacteria Rhodobacter sp. 98 SBR1-2_9 3
Methylocystis sp. 100 SBR1-2_40 2
Brevundimonas diminuta 97 SBR1-2_86 4
Mesorhizobium plurifarium 98 SBR1-2_74 2
B-Proteobacteria Thauera sp. 99 SBR1-2_13 2
Nitrosomonas sp. 98 SBR1-2_34 4
Comamonadaceae sp. 98 SBR1-2_47 3
Uncultured Canditatus Accumulibater phosphatis SBRA220 99 SBR1-2_27 8
Uncultured Accumulibacter clone LPU28 98 SBR1-2_110 7
Uncultured bacterium clone LBP60 95 SBR1-2_1 2
Uncultured bacterium PHOS-HE 23 94 SBR1-2_91 3
Uncultured bacterium MO 111_27 99 SBR1-2_22 5
y-Proteobacteria Uncultured gammaproteobacterium AY172151 97 SBR1-2_11 2
Uncultured gammaproteobacterium AY172170 99 SBR1-2_76 2
Uncultured bacterium PHOS-HE54 99 SBR1-2_61 2
Uncultured bacterium clone A_SBR_64 94 SBR1-2_6 3
Actinobacteria Uncultured Actinobacteria bacterium 99 SBR1-2_15 5
Uncultured Candidatus Microthrix calida strain TNO2-4 94 SBR1-2_105 6
Bacteroidetes Runellazeae sp. 99 SBR1-2_10 3
Uncultured Flavobacterium clone HP1A39 95 SBR1-2_25 1
Uncultured Flexibacteriaceae bacterium 98 SBR1-2_71 2
Uncultured Bacteroidaceae bacterium 97 SBR1-2_83 2
Uncultured Sphingobacteriaceae bacteriu, 96 SBR1-2_53 2
Firmicutes Bacillus sp. 98 SBR1-2_5 1
Planctomycetes Planctomyces sp. Schlesner 664 929 SBR1-2_52 1
Acidobacteria Uncultured Acidobacteria bacterium 96 SBR1-2_90 1

found in the NCBI database, and their similarity. The phylogenetic
affiliation of the sequences was also analyzed using the neighbor-
joining method. Fig. 3 illustrates the phylogenetic tree of the 26
OTUs.

The phylum Proteobacteria encompassed 56 clones forming 18
OTUs. Among the 8 OTUs in the B-proteobacteria, clones SBR1-2_13
and SBR1-2_34 had cultured species Thauera sp. and Nitrosomonas
sp., respectively. Clones SBR1-2_47 and SBR1-2_94 had Comamo-
nadaceae sp. as the closest relatives, which is strictly aerobic, non
fermentative, capable of accumulating PHB [26] and commonly
found in activated sludge and biofilm reactors. The remaining -
proteobacteria affiliated clones were related to sequences of un-
cultured bacteria represented by SBR1-2_27 and SBR1-2_110,
showing > 97.0% similarity with Accumulibacter. We observed a
lower abundance of Accumulibacter, 18.7%, by 16S rRNA analysis
compared with 32% determined by FISH. This observation reflects
the known quantitative bias of clone library and is in accordance
with observations in other studies [17].

Four OTUs were found in Gammaproteobacteria. Two of them,
viz. SBR1-2_11 and SBR1-2_76, were related to Competibacter-
GAOs from the GB lineage. The presence of Competibacter-GAOs
in the reactor was also detected through FISH analysis. This corre-
lates well with the earlier claim that the existence of Competibacter
is common in lab-scale EBPR process fed with acetate [5,24,27].
Meanwhile, the SBR1-2_61 is closely affiliated with an uncultured
bacterium PHOS-HE54 from an aerobic phosphate removal
ecosystem [28] and with several uncultured species in the EBPR

systems [5,29]. Among the Alphaproteobacteria, four OTUs were
identified. Two had Rhodobacter sp. and Methylocystis sp. (86.4 and
94.5% similarity, respectively) as their closest relatives. As for the
remaining two o-proteobacteria affiliated clones, SBR1-2_86 is
closely related to Brevundimonas diminuta of little know charac-
teristics, whereas, SBR1-2_74 is closely related to Mesorhizobium
plurifarium, a common soil bacterium capable of forming nodules at
the root and stem of plants.

Several reports claiming that members of Actinobacteria
accounted for a large proportion of the microbial population in the
EBPR process. Although clones of the Actinobacteria were detected,
they made up only about 14% of the total clones. Both the OTUs
identified do not belong to the putative actinobacterial PAO
commonly reported [30]. In the phylum Bacteroidetes, one of the
OTUs has the cultured bacterium Runellazeae as its closest relative
with 91.6% similarity; others were related to uncultured environ-
mental clones. Other OTUs clustered to sequences in the families
Flavobacteriaceae, Flexibacteriaceae, Bacteroidaceae and Sphingo-
bacteriaceae. The three phyla Firmicutes, Planctomycetes, and
Acidobacteria were represented respectively by only one clone
namely SBR1-2_5, SBR1-2_52, and SBR1-2_90.

From the clone library, it appears that the only recognized and
relatively abundant PAOs exist in our 28 °C EBPR process is
Accumulibacter-related. Accumulibacter-PAOs also observed
contributing about 36% of total bacteria population according to
FISH. Thus, the presence and contribution of Accumulibacter to-
wards the phosphorus removal in the reactor is undeniable. Since
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genotypic differences within the Accumulibacter lineage are always
reported in recent studies using the gene encoding polyphosphate
formation, ppk1 [31—33], it is of great interest to further investigate
the subpopulation (or clade) of Accumulibacter which contributed
to this high-temperature EBPR in the future study. It is also
necessary to monitor Accumulibacter clade dynamics over time in
order to infer and elucidate their effects on the EBPR performance.

4. Conclusions

This work showed the PAOs population and behavior out-
competed GAOs by showing good EBPR capacity at 28 °C, a rela-
tively high temperature for EBPR operation. The PAOs to GAOs
population balance achieved in this study could have created se-
lection properties to abate the competition between PAOs and
GAOs. Accumulibater related PAO could be the only PAO contrib-
uted to the 99% of phosphorus removal. Fine scale study of Accu-
mulibacter population could further provide more insights into the
operational success of this high temperature EBPR process.
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