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1. Introduction 

It has previously been shown that aminoacyl-tRNA 
synthetases may incorrectly aminoacylate several 
tRNA's [ 1 ]. In particular tRNA Met , the initiator 
tRNA in Escherichia coli,  may be charged with pheny- 
lalanine and valine with yeast phenylalanyl- and valyl- 
tRNA synthetases respectively [2]. It has further been 
demonstrated that phenylalanyl-tRNA Met and valyl- 
tRNA~ let formed can be enzymatically formylated in 
the presence ofE. coli  methionyl-tRNA formyltrans- 
ferase (EC 2.1.2.9) [3]. The question arises now whe- 
ther these formylated mischarged tRNAf Met species 
can initiate protein synthesis in the E. coli  system. It 
is shown in the work reported here that an initiation 
complex can be formed between the ribosome and the 
formylated phenylalanyl- and valyl-tRNA Met in the 
presence of poly AUG, poly UG and coliphage R17 
RNA, as well as with formyl-methionyl-tRNA Met . 

2. Materials 

Phenylalanyl- and valyl-tRNA Met have been pre- 
pared as described previously [2, 3]. tRNA Met from 
E. coli  K12MO (lot 15290) was a gift from the Oak 
Ridge National Laboratory. Samples ofE. col i  tRNA Met 
of baker's yeast tRNA Phe [4] and tRNA Val [5] 

were charged with their normal amino acids under 
usual aminoacylation conditions [ 1 ]. The different 
aminoacyl-tRNA's (1-5  mg)were separated from 
ATP and the aminoacylation medium by chroma- 
tography through small DEAE-cellulose columns 
(0.6 × 5 cm) equilibrated with sodium acetate buffer 
2 X 10-3M, pH 4.5. The columns were eluted step- 
wise with sodium acetate buffer containing 0.3 and 
1 M NaC1. 

The chemical formylation procedure [6, 7] of 
aminoacyl-tRNA's has been used instead of the en- 
zymatic one [3] because the former not only gives 
better yields but also makes possible the formylation 
of all aminoacyl-tRNA's tested. The formylation ob- 
tained ranged from 75 to 90% as judged from samples 
subjected to alkaline hydrolysis by NH4OH followed 
by paper electrophoresis at pH 3.5. 

Washed ribosomes were prepared as described pre- 
viously [8] except that 1.5 M NH4C1 buffer was used, 
instead of 1 M buffer, to wash the ribosomes; more- 
over these ribosomes were further washed with 1.5 M 
buffer on a Diaflo XM-100 membrane. Initiation 
factor IF 2 was prepared as described previously [8], 
IF 1 and IF 3 were separated on the same DEAE- 
Sephadex column as IF 2 and purified on carboxy- 
methyl-cellulose columns. IF 3 was further purified 
on a phospho-cellulose column [9]. These factors were 
a gift from T. Godefroy-Colburn and J. Dondon. 
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Table 1 
binding and puromycin reaction of formylated and non-formylated aminoacyl-tRNA Met Ribosomal 

poty AUG. 
species in presence of 

Initiation complex Puromycin reaction 

Initiation factors Initiation factors 
- -  4 -  - -  + 

Met.tRNA~.etra -GTP 2.06 1.01 1.23 0.89 
(34 pmoles) _ +GTP 1.80 1.38 1.07 1.24 
fMet-tRNA? et -GTP 0.77 3.04 0.79 4.00 
(29 pmoles) • +GTP 0.89 8.15 0.95 10.30 
Phe.tRNAMet -GTP 0.15 0.26 0.20 0.27 

(12 pmoles~,_~ +GTP 0.13 0.20 0.19 0.27 
fPhe-tRNA~ tet -GTP 0.37 0.49 0.78 1.22 
(22 pmoles) +GTP 0.39 2.50 0.75 5.20 

Val-tRNA~ let -GTP 4.42 0.93 0.37 0.54 
(33 pm oles)ta,~ +GTP 4.42 1.56 0.42 0.36 
IVAI-tRNA~ ~" -GTP 1.77 2.00 0.62 1.86 
(37 pmoles) +GTP 1.89 9.75 0.64 10.90 

The incubation mixture (50 ~1) contains: Tris-HC1 pH 7.5, 50mM; NH4C1, 80mM; magnesium acetate, 5 mM; O-mercaptoethanol, 
7mM; ribosomes, 1.72 uA26o; GTP, 1 mM; deacylated crude tRNA 1.6 uA26o; poly AUG (when indicated), 0.315 uA 26o; formy- 
lated aminoacyl-tRNA's as indicated in the table; IF 1, 0.33/ag; IF2, 0.6 t~g; IF a, 0.18 ~g. Incubation was at 37°C for 20 min. For 
aminoacyl-tRNA binding determination 3 ml of the following buffer was added to the incubation mixture: Tris-HC1 pH 7.5, 50 mM: 
NH4CI, 80 raM; magnesium acetate, 5 mM. The samples are then immediately filtered on a Millipore (HAWP 025000) filter. 
The filters are washed twice with 3 ml of the same buffer, dried and counted in an Intertechnique scintillation counter. For the 
puromycin reaction 100 tzl of a solution of the antibiotic (puromycin dihydrochloride, 0.7 mg/ml; Tris-HC1 pH 7.5 50 mM; 
NH4C1, 80 mM; magnesium acetate, 5 mM;/3-mercaptoethanol, 7 mM) was added to each sample after 20 min-incubation in the 
same conditions as in the binding determination. Incubation was continued for 5 min at 37°C and then the sample treated as al- 
r6ady published [ 13, 14] and counted in the same scintillation counter. Results are expressed in picomoles of (formyl)-aminoacyl- 

Met tRNAf bound to ribosomes or in picomoles of (formyl)-aminoacyl-puromyein. 

Poly UG and poly AUG were generously given by  M. 
N. Thang. 

RNA from phage R17 was prepared according to 
Gesteland and Boedtker  [10] except that  E. coli strain 
JC 1553 KLF 41 was used to grow the phage. The ori- 
gin o f  other products  used is as follows: total  tRNA 
from E. coli, Schwarz, USA; puromycin,  NBC, USA; 

14C-labelled amino acids, C.E.A., France. 

3. Results 

3.1 Binding reactions 

We first studied the binding to ribosomes of  the 
various species of  formylated and non-formylated ami- 
noacyl- tRNAf Met in the presence of  the synthetic poly- 

nucleotide poly AUG. The conditions used for these 
experiments allow the formation of  a functional initia- 
tion complex where formyl-methionyl- tRNA Met is 
bound at the P site and thus can react with puromy- 
cin at low magnesium concentrat ion [ 11, 12]. 

Table 1 indicates that  under these condit ions the 
binding of  formylated methionyl- tRNA Met is depen- 

dent upon initiation factor and GTP addition. The 
binding of  the mischarged formylated tRNA Met spe- 

cies is stimulated approx. 5-fold by initiation factors 
in the presence of  GTP, while in the absence of  GTP 
no strong stimulation is found. 

Similar results were found using poly UG instead 
of  poly  AUG as messenger RNA. 

As a control,  in experiments not  reported in table 
1 we repeated the binding reactions with formyl- 
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Table 2 
Ribosomal binding and puromycin reaction of valy- and formyl-valyl-tRNA Met in presence of R 17 RNA. 

Initiation complex Puromycin reaction 

R17 RNA Initiation factors Initiation factors 
- -  - b  - -  

-GTP +GTP -GTP +GTP -GTP +GTP -GTP +GTP 

Val.tRNA~.ethA _ 0.20 0.12 ~.13 0.12 0.46 0.43 0.44 0.43 
(33 pmoles) + 0.17 0.10 0.13 0.12 0.48 0.49 0.45 0.49 

fVal-tRNA Met - 0.23 0.27 0.24 0.53 0.21 0.19 0.23 0.58 
(37 pmoles) + 0.21 0.22 0.22 0.82 0.20 0.19 0.23 1.70 

The conditions are the same as in table 1.0.7 uZ260 of RI7 RNA was used instead of Poly AUG. Results are expressed in pico- 
moles of (formyl)-valyl-tRNA Met bound to ribosomes or in pieomoles of (formyl)-valyl-puromycin. 

aminoacyl-tRNA species other than methionyl- 
tRNA Met in which the tRNA moiety corresponds to 
the amino acid. Under the condition described above, 
binding of formyl-valyl-tRNA Val was not increased by 
initiation factors, whereas that of formyl-phenylalanyl- 
tRNA Phe was slightly increased. 

Also shownin table 1 is that the binding of the non- 
formylated mischarged tRNA Met species is lower than 
observed for the formylated species. The binding of 
both phenylalanyl- and valyl-tRNAf Met is insensitive 
to GTP. Our data indicate only a low residual binding 
of phenylalanyl-tRNA Met which is not stimulated by 
the initiation factors. On the contrary, the binding of 
valy-tRNA Met , in absence of initiation factors, has 
been found relatively strong. This binding is inhibited 
by initiation factors. Similarly, the weaker binding of 
methionyl-tRNA Met is also inhibited by initiation fac- 
tors. 

Table 2 shows the same experiments performed 
with R 17 RNA. The results are identical to those ob- 
tained with poly AUG except that we did not find the 
relatively strong binding with valyl-tRNA Met in the 
absence of initiation factors. 

3.2 Puromycin reactions 

In order to demonstrate that the formyl-phenyla- 
lanyl-tRNA Met and the formylwalyl-tRNA~ et are 
correctly accomodated on the ribosome we measured 
the reaction with puromycin of the various formylated 
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aminoacyl-tRNA Met species. Formyl-methionyl- 
tRNA Met and peptidyl-tRNA's are known to react 
with puromycin only when bound at the P site of the 
ribosome [ 13]. Our results indicate that the formy- 
lated mischarged tRNAf Met species react with puro- 
mycin as well as formyl-methionyl-tRNAf Met does. 
All these reactions are GTP and initiation factor de- 
pendent. 

In control experiments we did not fred any re- 
action between puromycin and the non-formylated 
aminoacyl-tRNA Met species. 

Identical results were found using R17 RNA 
(table 2) instead of poly AUG for the puromycin re- 
action. 

4. Discussion 

The experiments reported here show that formyl- 
valyl-tRNA Met and formyl-phenylalanyl-tRNA Met 

Mef behave similarly to formyl-methionyl-tRNAf dur- 
ing the initiation step of protein synthesis. This was 
proved (i) by initiation factor and GTP dependent 
binding of the formylated mischarged tRNA Met spe- 
cies to the ribosomes and (ii) by reactivity with puro- 
mycin. These reactions occur in the same way with 
poly AUG and poly UG, showing therefore that the 
incorrectly acylated tRNA Met species respond to the 
two codons AUG and GUG. 

Moreover we found that the non-formylated valyl- 
tRNAf Met forms a poly AUG dependent complex with 
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the ribosomes, but this complex does not respond to 
GTP, is inhibited by initiation factors and does not 
react with puromycin. This suggests that valyl- 
tRNA Met, in contrast with the formylated products, 
is bound on the ribosomes in a way not allowing pro- 
tein synthesis. This particular behaviour o f  valyl- 
tRNA Met is not  observed when R17 RNA is used as a 
message. 

Concerning the requirements for a correct initiation 
complex our results suggest that the structure o f  tRNA 
itself is essential for the specificity o f  the initiation 
step. On the contrary, the nature of  the amino acid 
bound to the initiator tRNA seems not to be impor- 
tant, for the correct construction of  the initiation com- 
plex, as the replacement o f  the methionine moiety in 
the formylated methionyl-tRNA Met by phenylalanine 
or valine does not chffnge the specific properties of  
this tRNA during initiation. Moreover the formylation 
of  the wrong amino acids linked to tRNA Met is neces- 
sary to observe puromycin reactive initiation complex- 
es. 

The results of  Kerwar and Weissbach:in vitro [15] 
and of  Brown in vivo [16] show that initiation is possi- 
ble when methionine is replaced by its analogues ethio- 
nine and norleucine. In the work reported here we em- 
phasize that methionine may also be replaced in vitro 
by structurally unrelated amino acids such as phenyla- 
lanine or valine. 
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