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Magnetic resonance elastography (MRE) is an MRI-based technique to noninvasively measure tissue stiffness.
Currently well established for clinical use in the liver, MRE is increasingly being investigated to measure brain
stiffness as a novel biomarker of a variety of neurological diseases. The purpose of this work was to apply a recently
developed MRE pipeline to measure regional brain stiffness changes in human subjects across the Alzheimer's
disease (AD) spectrum, and to gain insights into the biological processes underlying those stiffness changes by
correlating stiffness with existing biomarkers of AD. The results indicate that stiffness changes occur mostly in the
frontal, parietal and temporal lobes, in accordance with the known topography of AD pathology. Furthermore,
stiffness in those areas correlates with existing imaging biomarkers of AD including hippocampal volumes and
amyloid PET. Additional analysis revealed preliminary but significant evidence that the relationship between
brain stiffness andAD severity is nonlinear and non-monotonic. Given that similar relationships have been observed
in functionalMRI experiments,weused task-free fMRI data to test thehypothesis that brain stiffnesswas sensitive to
structural changes associated with altered functional connectivity. The analysis revealed that brain stiffness is
significantly and positively correlated with default mode network connectivity. Therefore, brain stiffness as
measured by MRE has potential to provide new and essential insights into the temporal dynamics of AD, as well
as the relationship between functional and structural plasticity as it relates to AD pathophysiology.

© 201 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Alzheimer's disease (AD) is characterized clinically by the progres-
sive impairment of cognitive function typically beginning with episodic
memory, and pathologically by extracellular amyloid plaques and in-
tracellular neurofibrillary tangles (McKhann et al., 1984). The single
biggest risk factor is old age and therefore the number of affected indi-
viduals in the industrialized world continues to grow as demographics
shift toward an older population (Hebert et al., 2003). AD biomarkers
are important tools to improve understanding of disease etiology, aid
in early diagnosis and provide metrics for the testing of candidate ther-
apies. In fact, biomarkers have already been incorporated into the most
recent criteria for the diagnosis of AD (McKhann et al., 2011), as well as
mild cognitive impairment (MCI) due to AD (Albert et al., 2011), and
pre-clinical AD (Sperling et al., 2011). Most research on AD biomarkers
has concentrated on 5 major modalities. These biomarkers measure 2
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different processes associated with the AD cascade: 1. Fibrillar amyloid
beta deposition (measured by amyloid positron emission tomography
[PET] imaging or cerebrospinal fluid [CSF] assay); and 2. Tau-mediated
neurodegeneration (measured by CSF assay, fluorodeoxyglucose 18F
[FDG] PET, and structural MRI).

Based on these modalities, Jack et al. proposed a model of dynamic
biomarkers across the AD spectrum, which hypothesized that the bio-
markers progressmonotonically fromnormal to abnormal in a character-
istic temporal sequence (Jack et al., 2010, 2013). This model provides a
theoretical framework for how to usemultimodal biomarker data tomea-
sure an individual's position along the spectrum of AD severity, andwork
is ongoing to validate the model. However, these 5 biomarkers certainly
do not measure all biological processes associated with Alzheimer's dis-
ease, and novel biomarkers that measure additional processes would im-
prove the model. Notably, the model does not currently include direct
measures of functional and structural connectivity.

Previously, we reported that global brain stiffness as measured by
magnetic resonance elastography (MRE) was decreased in subjects
with AD compared to age-matched control subjects bothwith andwith-
out a significant brain amyloid load (Murphy et al., 2011). MRE is an
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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MRI-based technique to noninvasively measure tissue stiffness
(Muthupillai et al., 1995). It is a three step process beginning with the
introduction of shear waves into the tissue of interest via an external
vibration source. The resulting shear waves are imaged with a phase-
contrast MRI pulse sequence by applying motion-encoding gradients
that are synchronized to the external vibrations. Finally, the shear
wave images are mathematically inverted to calculate a stiffness map,
which is also called an elastogram. MRE is already used clinically to
measure liver disease severity from the early stages of fibrosis through
cirrhosis (Yin et al., 2007). More recently, several groups have begun
to apply MRE to the brain to measure the effects of age and sex on
brain structure (Arani et al., 2015; Sack et al., 2009), or to investigate
the potential of brain stiffness as a novel biomarker of a number of neu-
rological diseases including multiple sclerosis (Streitberger et al., 2012;
Wuerfel et al., 2010), normal pressure hydrocephalus (Freimann et al.,
2012; Streitberger et al., 2011), intracranial tumors (Murphy et al.,
2012b; Xu et al., 2007), and amyotrophic lateral sclerosis (Romano
et al., 2014).

The purpose of this work was to measure the relationship between
brain stiffness and severity of AD pathophysiology along the entire dis-
ease spectrum, and to gain further insight into the biological processes
underlying changes in brain stiffness due to AD. To date only measures
of global brain stiffness in AD have been studied systematically and
elastography thus remains a largely unexplored and potentially unique
window into the biological expression of the disease. These aims, respec-
tively, were accomplished by applying recently developed MRE tech-
niques to measure regional brain stiffness in subjects spanning the AD
spectrum (i.e., cognitively normal→mild cognitive impairment→ADde-
mentia), and then investigating the relationships between brain stiffness
and existing biomarkers.

2. Materials and methods

2.1. Subject recruitment

This study was approved by our institutional review board. After
obtaining informed written consent, we scanned 48 subjects in 4 age-
and gender-matched groups including 16 amyloid-negative cognitively
normal controls (CN−, 8 male, 8 female), 16 amyloid-positive cogni-
tively normal controls (CN+, 8male, 8 female), 8 amyloid-positive sub-
jects with mild cognitive impairment (MCI, 4 male, 4 female), and 8
amyloid-positive subjects with probable Alzheimer's disease (AD, 6
male, 2 female). These subjects were recruited from the Mayo Clinic
Study of Aging (MCSA) and the Alzheimer's Disease Patient Registry.
Criteria for the diagnosis of cognitively normal control subjects includ-
ed: 1. no active neurologic or psychiatric disorders; 2. absence of any on-
going medical problems or their treatments that may interfere with
cognitive function; 3. a normal neurological exam; 4. no psychoactive
medications; and 5. were independently functioning community
dwellers. Thediagnosis of probableAlzheimer's diseasewasmadeaccord-
ing to the Diagnostic and Statistical Manual for Mental Disorders, III
Edition—Revised (DSM-III-R) Criteria for dementia, and National Institute
of Neurological and Communicative Disorders and Stroke/Alzheimer's
Disease and Related Disorders Association Criteria (NINCDS/ADRDA) for
AD. To ensure the MCI and AD groups had AD pathology, the subjects
also were required to have tested positive for brain amyloid load
(i.e., PIB SUVR N1.5).

2.2. PET scans

Quantitative image analysis for PIB PETwas done using an in-house,
fully automated image processing pipeline as previously described (Jack
et al., 2008). Statistics on image voxel values were extracted from auto-
matically labeled cortical ROIs using an in-housemodified version of the
AAL atlas (Tzourio-Mazoyer et al., 2002). A cortical amyloid PET stan-
dardized uptake value ratio (SUVR) was formed by combining the
prefrontal, orbitofrontal, parietal, temporal, anterior cingulate, and pos-
terior cingulate/precuneus ROI values normalized by the cerebellar gray
matter ROI of the atlas. The cut-off of 1.5 PIB SUVR for amyloid positivity
was previously determined as the optimal threshold for separating high
versus low amyloid PET values measured in sample including CN, MCI
and AD subjects (Jack et al., 2008).

2.3. MRE acquisition

MRE images were collected with a modified single-shot spin-echo
EPI pulse sequence on a 3 T MR imager (SIGNA Excite, GE Healthcare,
Waukesha, WI). Shear waves of 60 Hz were introduced into the brain
as previously described (Murphy et al., 2011). This system is comprised
of an active pneumatic driver (located outside the scanner room),which
vibrates a soft, pillow-like passive driver placed under the subject's
head. The resulting displacement field was imaged with the following
parameters: TR/TE = 3600/62 ms; FOV = 24 cm; BW = ±250 kHz;
72 × 72 imaging matrix reconstructed to 80 × 80; frequency encoding
in the right-left direction; 3×parallel imaging acceleration; 48 contiguous
3 mm thick axial slices; one 4 G/cm, 18.2 ms, zeroth- and first-order mo-
ment nulled motion-encoding gradient on each side of the refocusing RF
pulse synchronized to the motion; motion encoding in the positive and
negative x, y and z directions; and 8 phase offsets sampled over one peri-
od of the 60 Hzmotion. The resulting images have 3mm isotropic resolu-
tion and were acquired in just less than 7 min. Two additional phase
offsets with the motion turned off were acquired for subsequent signal-
to-noise ratio (SNR) calculations.

2.4. Image processing

The MRE pipeline for measuring regional brain stiffness has been
previously detailed, alongwith an evaluation of its test–retest reliability
in young volunteers (Murphy et al., 2013). First, complex phase-
difference images in each of the x, y and z motion-encoding directions
were calculated by taking the product of the complex-valued image
with positive motion encoding and the complex conjugate of the
image with negative motion encoding. To reduce slice-to-slice phase
discontinuities, constant and slowly varying phase ramps in the acquisi-
tion plane were removed by first applying a 2D low pass filter (3 × 3
rectangular window function in k-space) to the complex phase differ-
ence images (Murphy et al., 2012a). Wave images were then calculated
as the phase-difference between the original complex phase difference
images and the low pass-filtered phase difference images.

To create the regions of interest (ROIs) and a brain mask we used a
separately acquired T1-weighted IR-SPGR image that was collected
with the following parameters: sagittal orientation; frequency encoding
in the superior–inferior direction; TR/TE = 6.3/2.8 ms; flip angle =
11°; TI = 400 ms; FOV = 27 cm; 256 × 256 acquisition matrix;
BW = ±31.25 kHz; 1.75× parallel imaging acceleration in the ante-
rior–posterior direction; and 200 1.2-mm slice locations. A lobar
atlas in a standard template space was warped to the subject's T1
image using a unified segmentation algorithm implemented in
SPM5 (Ashburner and Friston, 2005). This algorithm also segmented
the T1-weighted image to calculate maps of gray matter (GM),
white matter (WM), and cerebrospinal fluid (CSF) content in each
voxel. The T1-weighted image along with the lobar atlas and the
segmentation images were then registered (6 degree of freedom
rigid body transformation) and resliced to the T2-weighted magni-
tude image from the MRE data in order to calculate the regional as-
signment and the GM, WM and CSF content in each voxel in MRE
space. A brain mask was generated by including any voxel in
which GM plus WM content was greater than CSF content. The T1-
weighted image was also used to calculate hippocampal volumes
using FreeSurfer for later use as an established measure of disease
severity (Fischl et al., 2002). One scan failed this process, and so
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analyses that included hippocampal volumes were performed on
the remaining 47 subjects.

Stiffness was calculated in 9 large, bilateral ROIs to maintain high
test–retest reliability: global (whole brain excluding cerebellum), fron-
tal lobes, occipital lobes, parietal lobes, temporal lobes, deep GM/WM
(insula, deep gray nuclei and white matter tracts), cerebellum, senso-
ry/motor strip (pre- and post-central gyri), and a composite region
labeled FPT (frontal, parietal and temporal lobes excluding the pre-
and post-central gyri). For each region, the wave images were first
masked with the ROI, which was the intersection of the atlas region
and the brain mask. Using recently developed adaptive methods, the
curl of the wave images was calculated to eliminate the effects of longi-
tudinal waves, and the curl images were smoothed with a filter of the
form (1-x2)2(1-y2)2(1-z2)2, where x, y, and z are linearly spaced
from − 1 to 1 over 5 × 5 × 5 window (Murphy et al., 2013; Romano
et al., 2000). Since the evaluation of this function is equal to zero
along all edges, the effective filter kernel has a size of 3 × 3 × 3. Finally
a stiffness map was calculated by direct inversion of the Helmholtz
equation that models shear wave motion in a homogeneous, linear, vis-
coelastic material (Manduca et al., 2001). Stiffness was calculated as the
median from the ROI after excluding one voxel from the surface of the
regionmask to eliminate edge-related bias. Finally, themedian stiffness
was corrected for SNR using a previously described iterative approach.
This approach has been shown in reproducibility studies to provide co-
efficient of variation of less than 1% for global brain stiffness and less
than 2% for the lobes of the brain and the cerebellum (Murphy et al.,
2013). For display purpose only, the stiffness maps were smoothed
with a 3 × 3 × 3 median filter.

2.5. Task-free functional MRI acquisition, preprocessing, and analysis

Task-free fMRI data were acquired using a General Electric 3 T Signa
HDx scanner, 8 channel head coil, gradient EPI, TR = 3000 ms, TE =
30 ms, 90° flip angle, 21 cm field of view, 64 × 64 in-plane matrix,
slice thickness 3.3 mm without gap, and 113 volumes were obtained.
Subjects were instructed to keep their eyes open during scanning. All
TF-fMRI data sets with greater than 3 mm of translational movement,
3° of rotational movement, or that failed visual inspection for obvious
artifacts were excluded from analysis. Preprocessing was performed
utilizing a combination of the Statistical ParametricMapping (SPM5) soft-
ware (http://www.fil.ion.ucl.ac.uk/spm/software/spm5/) (Wellcome
Department of Cognitive Neurology, University College London, UK), the
Resting-State fMRI Data Analysis Toolkit (REST) v1.5 (http://www.
restfmri.net) (Song et al., 2011), Data Processing Assistant for Resting-
State fMRI (DPARSF) v2.0 (http://www.restfmri.net) (Chao-Gan and Yu-
Feng, 2010), group ICA of fMRI toolbox (GIFT) software v2.0c (http://
icatb.sourceforge.net) (Calhoun et al., 2001b), and in-house developed
software implemented in MATLAB v7.11 (Mathworks Inc., Natick, MA,
USA).

Preprocessing steps included discarding the first 3 volumes to obtain
steady state magnetization, slice time correction, realignment, normali-
zation to SPM5 EPI template, smoothing with 4 mm full-width half
maximum Gaussian kernel, linear detrending to correct for signal drift,
and 0.01–0.08 Hz bandpass filtering to reduce non-neuronal contribu-
tions to blood-oxygenation-level-dependent (BOLD) signal fluctuations
(Fox et al., 2009; Weissenbacher et al., 2009). In addition, linear regres-
sion correction for spurious variables included rigid body transforma-
tion motion effects and the first seven principle components of the
voxel-wise time courses within white matter and cerebral spinal fluid
regions of interest derived from their respective template space priors
(Behzadi et al., 2007).

The anterior defaultmode network (aDMN)was back-reconstructed
for each subject using the spatial-temporal dual regression method
implemented in the GIFT software package (Calhoun et al., 2001a).
The aggregate group independent component analysis (GICA) aDMN
template from the high-dimensional ICA MCSA functional atlas was
used for the back-reconstruction (available at http://mayoresearch.
mayo.edu/mayo/research/jack_lab/supplement.cfm) (Jones et al.,
2012). Back-reconstructed maps were scaled to z-scores for each sub-
ject. For our measure of anterior-to-posterior (A–P) DMN connectivity
we used the midline posterior DMN (pDMN) ROIs from theMCSA func-
tional atlas and extracted the median z-score within this ROI from each
subject's back-reconstructed aDMN maps.

2.6. Statistical analysis

All variables were corrected for age by first fitting the values versus
age by linear regression, calculating the residuals, and finally adding a
constant term (the value of the linear regression evaluated at age 80).
Group-wise differences in the median stiffness between the CN and
AD groups were tested by region using the Wilcoxon rank sum test
(Devore, 2012). After establishing a summary ROI, the Kruskal–Wallis
test was used to determine if at least one of the 4 groups had a median
stiffness different from the others (Devore, 2012). Subsequent post hoc
comparisons were again made with theWilcoxon rank sum test. Corre-
lations were tested by Spearman rank correlation. To estimate the func-
tional formof these relationships,we selected oneof fourmodels (linear
or restricted cubic splines with 3, 4 or 5 knots) that minimized Akaike's
information criterion (Akaike, 1974). These models were further evalu-
ated with an F test and the corresponding p values are reported in the
Results section (Devore, 2012). For display, regressionmodel figures in-
clude the mean fit (solid line) and 95% confidence intervals (dotted
lines) calculated using 10,000 bootstrap samples.

3. Results

3.1. Changes in brain stiffness follow the known topography of AD

We measured regional brain stiffness in four age- and gender-
matched groups: 16 amyloid PET-negative cognitively normal controls
(CN−), 16 amyloid PET-positive cognitively normal controls (CN+), 8
amyloid PET-positive subjects with mild cognitive impairment (MCI)
due to AD, and 8 amyloid PET-positive subjects with AD dementia. Exam-
ple images from a subject in the CN− group are shown in Fig. 1.

Summary results by region are shown for all 32 CN subjects versus
the 8 subjects with AD dementia in Fig. 2 (mean ± standard deviation
after age correction) and listed in Table 1. This study reproduces the pre-
vious finding that global brain stiffness is decreased in subjects with AD
dementia compared to control subjects (Murphy et al., 2011). Further-
more, group-wise differences in stiffness were observed within the
lobes of the brain that contain primarily hetero modal association corti-
ces (p b 0.01 in the frontal and temporal lobes, p= 0.056 in the parietal
lobes), but not throughout the rest of the brain (p N 0.1, occipital lobes,
sensory/motor strip, deep gray and white matter, and the cerebellum).
Based on these results,we generated anoptimizedmeta-region of inter-
est (ROI) for CN and AD group-wise discrimination that included the
frontal, parietal and temporal lobes but excluded the pre- and post-
central gyri, which is labeled FPT in Fig. 2. FPT stiffness for each of the
four groups is summarized in Fig. 3. A Kruskal–Wallis test indicates
that the groups are different from one another (p = 0.020), and subse-
quent pair-wise comparisons indicate that subjects with AD have de-
creased stiffness compared to both the CN− (p = 0.0013) and CN+
(p = 0.011) groups. This ROI outperforms all others for discriminating
the two groups. Receiver operating characteristic curve (ROC) analysis
indicates an area under the curve of 0.871 and accuracy of 85.0%.

3.2. Stiffness decreases with increasing disease severity as measured by
standard AD imaging biomarkers across all subjects

To gain insight into how brain stiffness changes may progress along
the spectrum of AD, we evaluated brain stiffness against two other
well accepted continuous imaging measures of disease severity. As
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Fig. 1. ExampleMRE images from a cognitively normal control. The T1-weighted (T1w) image is shown in the top-left panel, and the T2-weighted (T2w)MREmagnitude image is shown
in the bottom-left. A curl wave image is shown in the top-right panel, along with the resulting elastogram in the bottom-right panel.

Fig. 2. Summary of stiffness in CN subjects versus subjects with AD. Stiffness was
measured in 9 regions of interest. The bars represent the mean stiffness of the subjects
in each group (32 CN versus 8 AD), while the error bars represent the standard
deviation. Significant differences were observed in the global, frontal lobe, temporal
lobe, and FPT regions (**p b 0.01), and trend level significance was observed in the
parietal lobe region (*p = 0.056).
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hypothesized, changes in brain stiffness correlated continuously with
these established measures of AD severity. More specifically, brain stiff-
ness positively correlated with hippocampal volume (R = 0.50, p =
4.6e-4, Spearman rank correlation), while stiffness was negatively cor-
related with PIB SUVR (R = −0.32, p = 0.027).

3.3. Preliminary within-group evidence suggests that brain stiffness chang-
es non-monotonically across the AD spectrum

Among all MCI subjects, around 60% are amyloid positive (Jack et al.,
2008), thus only 60% would be considered etiologically to have “MCI
due to AD” using current diagnostic criteria from the National Institute
Table 1
Summary of regional stiffness in cognitively normal and AD groups.

Stiffness (kPa, mean ± standard
deviation)

ROI CN AD Cohen's d

Global 2.51 ± 0.09 2.40 ± 0.09 1.26
Frontal 2.65 ± 0.15 2.47 ± 0.12 1.23
Occipital 2.65 ± 0.13 2.68 ± 0.24 −0.23
Parietal 2.42 ± 0.10 2.33 ± 0.10 0.88
Temporal 2.69 ± 0.11 2.58 ± 0.09 1.04
Deep GM/WM 2.79 ± 0.25 2.63 ± 0.27 0.64
Cerebellum 2.15 ± 0.11 2.11 ± 0.17 0.26
Sensory/Motor 2.82 ± 0.29 2.62 ± 0.11 0.73
FPT 2.63 ± 0.10 2.48 ± 0.09 1.51

Image of Fig. 1
Image of Fig. 2


Fig. 3. Summary of FPT stiffness by group. Each marker represents one subject, the
horizontal lines represent the group median, the boxes represent the interquartile
range, and the whiskers represent the range. A Kruskal–Wallis test indicated that at
least one group was different from the others (p = 0.02), and post hoc Wilcoxon rank
sum tests indicated the AD group was significantly softer than both the CN groups
(*p b 0.05).
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of Aging and Alzheimer's Association (NIA-AA) (Albert et al., 2011). For
this reason we included only amyloid PET positive subjects in our MCI
group and all of our MCI subjects therefore meet NIA-AA criteria for
MCI due to AD. Thus our elastography findings in MCI reflect an etiologi-
cally pure group that lies between CN+ and AD dementia on the disease
severity spectrum. Our 4 groups of subjects then would array themselves
from least tomost severe along the AD disease spectrum as follows: CN−
(uninvolved), CN+ (earliest involvement), MCI (intermediate involve-
ment), and AD dementia (most involvement).

Unexpectedly, stiffness within the MCI group was not intermediate
between the control subjects and thosewith AD (Fig. 3). Stiffnesswithin
the MCI group was highly variable, ranging from the stiffest within the
entire study to well within the range of subjects with AD. However,
stiffness within this group was highly predicted by both amyloid load
as measured by PIB SUVR (R = −0.86, p = 0.011, Spearman rank cor-
relation), as well as by hippocampal volume (R = 0.88, p = 0.0072).
The signs of these correlations suggest that stiffness spikes at the
onset of MCI (i.e., subjects with MCI but relatively low disease severity
as assessed by biomarkers) before falling to the levels observed in AD,
and example stiffness maps demonstrating this relationship between
stiffness and AD severity are shown in Fig. 4.
Fig. 4. Example elastograms across the AD spectrum. Relative to a CN control subject, stiffness
high-amyloid subjects with MCI (ha-MCI) to levels that are common within the AD group.
To further investigate this relationship, we again separated the
subjects into four groups (CN−, CN+, MCI and AD) and performed an
ANCOVA on stiffness versus PIB SUVR. This test indicated that the stiff-
ness versus PIB relationship was different between groups (p b 0.001).
Subsequently we tested each group for significant stiffness versus PIB
relationships and found significant correlations in each of the CN−
and MCI groups and trend level significance in the CN+ group
(Fig. 5). Furthermore, the sign of those correlations alternates as the
groups progress along the AD spectrum. Stiffness decreases with in-
creasing amyloid load in the CN− group (R = −0.72, p = 0.0024,
Spearman rank correlation), then increases with increasing amyloid in
the CN+ group (R = 0.47, p = 0.066), and then again decreases with
increasing amyloid load in the MCI group (R = −0.86, p = 0.011). No
significant relationship was observed between stiffness and amyloid
load in the AD group (R = −0.26, p = 0.54).

Non-monotonic relationships were also observed using restricted
cubic splines to fit the relationship between stiffness and existing bio-
markers. The fits with the optimal number of knots as determined by
Akaike's information criterion (AIC) are shown in Fig. 6. Brain stiffness
versus amyloid load showed a significant non-monotonic relationship
(middle panel, R2=0.22, F-test p=0.011), just as it does versus hippo-
campal volumes (top panel, R2 = 0.36, F-test p = 0.00065).

3.4. Brain stiffness is associated with functional connectivity

Similar non-monotonic relationships have been reported in
functional MRI experiments of subjects with MCI and AD, both with a
memory task (Putcha et al., 2011), and in changes to intrinsic connectiv-
ity networks (Bai et al., 2011). Given the above evidence of non-
monotonic changes in brain stiffness across the AD spectrum, we hy-
pothesized that brain stiffness was sensitive to structural alterations
that were associated with changes in functional connectivity. To test
this hypothesis, we used task-free functional MRI (TF-fMRI) scans that
were collected as part of the previouslymentioned study. Since changes
in brain stiffness were most prominent in the frontal lobes, we focused
on the anterior default mode network (aDMN). Maps of aDMN connec-
tivity were generated for each subject by performing a back reconstruc-
tion technique utilizing templates from a previously conducted large
group independent component analysis (Calhoun et al., 2001b). From
these aDMN maps, we extracted the mean connectivity with a region
of interest (ROI) within the posterior DMN (pDMN) as a measure of
anterior-to-posterior (A–P) DMN connectivity, given themounting evi-
dence of the importance of disrupted A–P DMN connectivity across the
AD spectrum (Jones et al., 2011, 2012; Liu et al., 2013). Brain stiffness
is elevated in low (but still positive)-amyloid subjects with MCI (la-MCI) before falling in

Image of Fig. 3
Image of Fig. 4


Fig. 5. Stiffness versus PIB SUVR by group. An ANCOVA showed that the relationship between stiffness and PIB SUVR is significantly different between groups (p b 0.001). The alternating
sign of the correlations is preliminary evidence that the relationship between brain stiffness and AD severity is nonlinear and non-monotonic.
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was significantly correlatedwith this measure of A–P DMN connectivity
(R=0.31, Spearman correlation p=0.035). Therewas no evidence of a
nonlinear or non-monotonic relationship between stiffness and A–P
DMN connectivity as a linear model minimized AIC (Fig. 6, bottom
panel).

4. Discussion

This work represents the first study comparing regional brain stiff-
ness to other standard biomarkers across the spectrum of AD. These re-
sults reproduce our previous finding that global brain stiffness is
decreased due to AD (Murphy et al., 2011), and then expand the
scope of the investigation to earlier stages of the AD pathophysiological
cascade. Furthermore, this study utilizes a newly developed regional
MRE pipeline, which possesses strong test–retest reliability with a typ-
ical coefficient of variation of b1% for measuring global brain stiffness
and b2% for measuring regional stiffness. Moreover, this pipeline is re-
sistant to noise- and edge-related biases, allowing this technique to ac-
curately measure stiffness independent of effects related to atrophy
(Murphy et al., 2013). These regional results indicate that brain stiffness
is both sensitive to AD pathophysiology by detecting significant group-
wise differences in regions known to be affected by the disease, and also
specific since regions that are relatively unaffected by the disease show
no group-wise differences (Arnold et al., 1991; Braak and Braak, 1991).

In general, our results indicate that brain stiffness decreases with in-
creasing AD severity by using existing imaging biomarkers as a contin-
uous variable to define each individual's position along the AD
spectrum. The more unexpected result is the preliminary, but signifi-
cant, evidence of a non-monotonic relationship between brain stiffness
and AD pathophysiological severity when severity is characterized by
both clinical group and AD biomarker values. As this study was based
on a relatively small number of subjects and cross-sectional data, fur-
ther investigations will be needed to corroborate that at least some as-
pects of the AD pathophysiologic cascade follow not only nonlinear,
but non-monotonic time courses.

The existence of such relationships would have a number of impacts
on the field of biomarkers of AD. For example, group-wise discrimination
alone is likely a suboptimal method for evaluating a non-monotonic bio-
marker as suchbiomarkersmay ormaynot exhibit significant group-wise
differences. Consider brain stiffness in the CN−, CN+, and MCI groups
presented in this work. While the median stiffness values within those
groupswere not significantly different from one another, the relationship
between stiffness and amyloid load was significantly different between
groups. This type of relationship may also explain at least in part why
some biomarkers are more accurate for group-wise discrimination than
others. The effect size of CN and AD group-wise differences may be
reduced due to a non-monotonic time course when compared to a bio-
marker with a monotonic time course. Furthermore, non-monotonic
time courses and the distribution of their frequency spectra must be
well understood in order to properly design longitudinal studies. If the
time between follow-up scans is not sufficiently short, the functional
form of the biomarker's time course will be altered. While these alter-
ationsmaybenegligiblewhen thebiomarker's time courses ismonotonic,
when the time course is non-monotonic, the resulting shape of the dis-
cretely sampled time course can be highly impacted by the sampling rate.

Based on this non-monotonic time course, we hypothesized that
brain stiffness was associatedwith alterations in functional connectivity
changes due to AD. We then used TF-fMRI data to show that FPT stiff-
ness was in fact correlated with default mode network connectivity.
This association could be cause and effect, or both TF-fMRI and MRE
changes could both be due to a common upstreampathological process.
The link between functional connectivity and brain stiffness will be the
subject of further investigation, but potential processes that could provide
this link include white matter and/or cerebrovascular plasticity. Both of
these structural changes have been demonstrated in mice when exposed
to an enriched environment (Markham and Greenough, 2004). More re-
cent evidence demonstrates that increased neuronal activity promotes ol-
igodendrocyte precursor cell proliferation and myelin thickening in mice
(Gibson et al., 2014). Such changes in myelination could be expected to
alter both functional connectivity, by increasing conduction speed and
in turn modifying the phase of oscillations between two distant nodes,
and structural measures of white matter, which may be detectable by
either brain stiffness or white matter anisotropy. These two structural
measurements have previously been shown to be strongly correlated
(Johnson et al., 2013). Given this association,MRE can be used in conjunc-
tion with TF-fMRI to study how functional connectivity changes with re-
spect to AD pathophysiology, as well as the relationship between those
functional changes and structural plasticity. One advantage brain stiffness
may have over metrics based on TF-fMRI is high test-retest reliability, as
mentioned above. While TF-MRI connectivity measures are reproducible
at the group level, they are less reliable at the individual level due in
large part to the non-stationary nature of these networks (Jones et al.,
2012). Ultimately we hypothesize that these two types of experiments
provide complimentary information where a TF-fMRI experiment pro-
vides insight into brain connectivity on the order of seconds to minutes,
while brain stiffness reflects, at least in part, the average functional con-
nectivity over a window of weeks or months (assuming time is required
for functional changes to be manifested in brain structure).

In summary, we report that brain stiffness is decreased in subjects
with AD dementia compared to amyloid positive and negative CN sub-
jects. These changes in brain stiffness are also shown to follow the
known topography of the disease. In addition to demonstrating group-

Image of Fig. 5


Fig. 6. Restricted cubic spline regression models of stiffness versus standard biomarkers.
Top panel: The relationship between stiffness and hippocampal volumes was best fit
using 5 knots and was significantly nonlinear (R2 = 0.36, p = 0.00065). Middle panel:
Stiffness versus PIB SUVR was best fit using 4 knots and was significantly nonlinear
(R2 = 0.22, p = 0.011). Bottom panel: Stiffness versus A-P DMN connectivity was best
fit by linear regression (R2 = 0.27, p = 0.067). Lines represent the mean fit (solid line)
and 95% confidence intervals (dotted lines) calculated over 10,000 bootstrap samples.
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wise differences, brain stiffness is also significantly correlated with
existing biomarkers indicating that in general stiffness decreases with
increasing AD severity. Furthermore, in this work we show evidence
that the relationship between brain stiffness and AD severity is non-
linear and non-monotonic. If such a relationship is validated, it will
have an important impact on the design of longitudinal studies. Due
to this non-monotonic relationship, we used TF-fMRI data to test
the hypothesis that brain stiffness was associated with changes in
functional connectivity. Our analysis shows that brain stiffness is
positively correlated with default mode connectivity, which may re-
flect structural alterations that are related to functional plasticity
that occurs throughout the AD cascade. Therefore, while the application
ofMRE toAD is in its infancy and requires further investigation, brain stiff-
ness demonstrates potential for characterizing alterations in brain struc-
ture with respect to the AD spectrum that existing biomarkers have yet
to fully capture.
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