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Abstract

We suggest an algorithm for derivation of the Picard–Puchs system of Pfaffian equations for
Abelian integrals corresponding to semiquasihomogeneous Hamiltonians. It is based on an effective
decomposition of polynomial forms in the Brieskorn lattice. The construction allows for an explicit
upper bound on the norms of the polynomial coefficients, an important ingredient in studying zeros
of these integrals.
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1. Introduction

Given a polynomial in two variablesf ∈ R[x, y] and a polynomial 1-formω onR2, how
many isolated ovalsδ on the level curvesf = const may satisfy the condition

∮
δ
ω = 0?

This is the long-standinginfinitesimal Hilbert problem, see [1]. The answer is to be given
in terms of the degrees off andω.

A recent approach to this problem, suggested in [15,16,18] is based on the fact that
periods of polynomial 1-forms restricted on level curves of polynomials, satisfy a system
of differential equations with rational coefficients, called thePicard–Fuchs system. Under
certain restrictions on the monodromy group, the number of zeros of solutions of such
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systems can be estimated from above in terms of the magnitude of coefficients of this
system, more precisely, the norms of its matrix residues. Thus it becomes important to
derive the Picard–Fuchs system for Abelian integrals so explicitly as to allow for the
required estimates for the residues.

In [16] a Fuchsian system was derived in thehypergeometric form

(t · 1 +A)İ = BI, İ = d

dt
I (t), (1.1)

whereI (t) = (I1(t), . . . , Il (t)) is a collection of integrals of some monomial forms over
any oval of the level curve{f = t}, andA,B are two constant(l× l)-matrices of explicitly
bounded norms, depending onf (1 always stands for the identity matrix of the appropriate
size). The rational matrix functionR(t) = (t · 1 + A)−1B has only simple poles and the
norm of its matrix residues can be explicitly majorized provided that the eigenvalues ofA

remain well apart. This allows to solve the infinitesimal Hilbert problem for all polyno-
mialsf whose critical values (after a suitable normalization) are sufficiently distant from
each other. What remains is to study the case of confluent critical values (including those
at infinity).

In a general hypergeometric system (1.1), the residues may or may not blow up as some
of the singular points tend to each other. The particular feature of the Picard–Fuchs system
is its isomonodromy: the monodromy group remains the same under deformations off

(at least for sufficiently genericf ). This implies that even if the explosion of residues
occurs, it cannot be caused by the explosion of the eigenvalues. In order to find out
what indeed happens with the residues, the first step is to write down as explicitly as
possible the Picard–Fuchs system as a flat meromorphic connexion with singularities in
the holomorphic bundle over the variety of all polynomialsf of a given degree.

This problem is solved in the paper for polynomials with a fixed principal (quasi)
homogeneous part having an isolated critical point at the origin.

As an auxiliary first step, we need to describe explicitly the structure of the relative
cohomology module. While the subject is fairly classic and sufficiently well understood,
the existing tools do not allow for the quantitative analysis. We suggest an alternative,
completely elementary construction that immediately yields all necessary bounds. This
construction, exposed in Section 2 is based on “division byf ”, a lemma distilled from the
paper [8] by J.-P. Françoise. The Pfaffian form of the Picard–Fuchs system is derived in
Section 4. In the last section we mention some simple properties of the derived system and
formulate a conjecture that it has only logarithmic singularities in the affine part.

2. Relative cohomology revisited

2.1. Relative cohomology, Brieskorn and Petrov modules

Denote byΛk , k = 0,1, . . . , n, the module of polynomialk-forms on the complex affine
spaceCn for a fixedn� 1. If f ∈ C[x1, . . . , xn] � Λ0 is a polynomial, then the collection
df ∧Λk−1 of k-formsdivisible by df ∈ Λ1, is aC-linear subspace inΛk , and the quotient

Λkf = Λk/df ∧ Λk−1, k = 1, . . . , n, (2.1)



S. Yakovenko / Bull. Sci. math. 126 (2002) 535–554 537

is called the space ofrelative k-forms. Since the exterior derivatived preserves divisibility
by df , therelative de Rham complex Λ•

f ,

0 → Λ1
f

d−→ Λ2
f · · · d−→ Λn−1

f

d−→ Λnf
d−→ 0, (2.2)

naturally appears. A formω ∈ Λk is calledrelatively closed if dω= df ∧ η andrelatively
exact if ω = df ∧ ξ +dθ for appropriateη ∈ Λk andξ, θ ∈ Λk−1. Therelative cohomology
groups H k

f = Hk(Λ•
f ), relatively closedk-forms modulo relatively exact ones, are

important characteristics of the polynomialf .
Together with the naturalC-linear structure, the relative cohomology groupsH k

f

possess the structure of a module over the ringC[f ] = f ∗C[x1, . . . , xn]. This follows
from the identity

f · (df ∧ η+ dθ)= df ∧ (f η− θ)+ d(f θ) (2.3)

meaning that relatively exact forms are preserved by multiplication byf .
As is well-known, the highest moduleH n

f , as well as allH k
f with 0< k < n − 1, is

zero. Instead, we consider another important module, calledBrieskorn module (lattice) [4,
6,7], defined as the quotient

Bf = Λn/df ∧ dΛn−2, (2.4)

and theC[f ]-modulePf , the quotient ofall (n− 1)-forms by theclosed, (n− 1)-forms,

P f = Λn−1/
(
df ∧ Λn−2 + dΛn−2) ⊇ H n−1

f . (2.5)

The latter is an extension ofH n−1
f : the quotientP f /H

n−1
f is naturally isomorphic to

the finite-dimensionalC-spaceΛnf = Λn/df ∧ Λn−1. In several sources,Pf is referred
to as thePetrov module. The exterior differential naturally projects as abijective map
d: P f → Bf which obviouslyis not a C[f ]-module homomorphism.

Clearly, a relatively exact (closed) form is exact (resp., closed) after being restricted on
any nonsingular level setf−1(t)⊂ Cn, t ∈ C sincedf vanishes on all such sets.

The inverse inclusion is considerably more delicate. Gavrilov studied the casen =
2 and proved that for a 1-form with exact restrictions on all level curvesf−1(t) ⊂ C2

to be relatively exact, it is sufficient to require that the polynomialf has only isolated
singularities and all level curvesf−1(t) be connected [9,10]. This result generalizes the
earlier theorem by Ilyashenko [13]. A multidimensional generalization in the same spirit
was obtained by I. Pushkar’ [17]. The affirmative answer depends on the topology of a
generic level setf−1(t) (its connectedness forn= 2 or vanishing of the Betti numbersbk
for k between 0 andn− 2, see [3,5]).

Both the isolatedness and connectedness assumptions can be derived from a single
assumption that the principal (quasi)homogeneous partf̂ of the polynomialf has an
isolated critical point at the origin: such polynomials are calledsemiquasihomogeneous [2].
For two variables with equal weights it suffices to require thatf̂ factors as a product of
pairwise different linear homogeneous terms.
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2.2. Computation of relative cohomology

Besides the above question on the relationship between the algebraically defined
cohomology of the relative de Rham complex and analytically defined cohomology of
(generic) fibers, the natural problem of computingH •

f arises.
This problem was addressed in the papers [3,5–7,9,10] mentioned above. Using analytic

tools or theory of perverse sheaves andD-modules, their authors prove that under certain
genericity-type assumptions onf , the highest relative cohomology moduleH n−1

f and the
Petrov modulePf are finitely generated over the ringC[f ]. For semiquasihomogeneous
polynomials one can describe explicitly the collection of generators forBf , the polynomial
formsω1, . . . ,ωl ∈ Λn−1 such that any other formω ∈ Λn−1 can be represented as

ω =
l∑
i=1

piωi + df ∧ η+ dξ,

pi = pi(f ) ∈ C[f ], η, ξ ∈ Λn−2, (2.6)

with appropriate polynomial coefficientspi that are uniquely defined.
The proofs of this and related results, obtained in either analytic or algebraic way, are

sufficiently involved. In particular, it is very difficult if possible at all to get an information
on (i) how the decomposition (2.6) depends on parameters, in particular, iff itself depends
on parameters, and (ii) how to place explicitquantitative bounds on the coefficientspi(f )
in terms of the magnitude of coefficients of the formω. For example, to extract such
bounds from the more transparent analytic proof by Gavrilov, one should place alower
bound on the determinant of the period matrix of the formsωi over a system of vanishing
cycles on the level curvesf−1(t). The mere nonvanishing of this determinant is a delicate
assertion whose proof in [9] is incomplete (a simple elementary proof was supplied by
Novikov [14]). The explicit computation of this determinant for a specific choice of
the generatorsωi was achieved by A. Glutsuk [11], but the answer is given by a very
cumbersome expression.

In the next section we suggest an elementary derivation of the formula (2.6) under the
assumption that the polynomialf is semiquasihomogeneous. This derivation:

(1) gives an independent elementary demonstration of the Gavrilov–Bonnet–Dimca theo-
rem for the most important particular case of semiquasihomogeneous polynomials;

(2) proves that the polynomial coefficientspi and the formsη, ξ from the decomposition
(2.6) depend polynomially on the coefficients of the nonprincipal part off , provided
that the principal quasihomogeneous part off remains fixed;

(3) yields the collection of the coefficients(p1, . . . , pl) of (2.6) as a result of application
of a certainlinear operator to the formω. The norm of this operator can be explicitly
bounded in terms off (and the chosen set of generators{ωi}) and the degree
degω.
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3. Bounded decomposition in the Brieskorn and Petrov modules

3.1. Degrees, weights, norms

In this section we first consider quasihomogeneous polynomials from the ringC[x] =
C[x1, . . . , xn] with rational positive weightswi = degxi normalized by the condition
w1 + · · · +wn = n to simplify the treatment of the most importantsymmetric case when
wi = 1. The symbol degf always means the quasihomogeneous degree.

Remark 1. Later on we will introduce additional variablesλ = (λ1, . . . , λm) considered
asparameters, assign them appropriate weights and work in the extended ringC[x,λ] =
C[x1, . . . , xn, λ1, . . . , λm]. Even in the symmetric case the weights of the parameters will
in general be different from 1.

The Euler field associated with the weightsw1, . . . ,wn is the derivationX =∑
wixi∂/∂xi of C[x]. By construction,Xf = rf, r = degf ∈ Q, for any quasihomo-

geneous polynomialf (the Euler identity).
We put degdxi = degxi = wi . This extends the quasihomogeneous grading on all

k-forms: in the symmetric case, the degree of a polynomialk-form will be k plus the
maximal degree of its coefficients. Obviously, degω= degdω for any form, provided that
dω �= 0. The Lie derivativeXω of a quasihomogeneous formω of degreer by the Euler
identity isrω. Note that degω > 0 for all k-forms withk � 1.

Thenorm of a polynomial in one or several variables is defined as the sum of absolute
values of its (real or complex) coefficients. This norm is multiplicative. The norm of a
k-form by definition is the sum of the norms of its polynomial coefficients; it satisfies the
inequality‖ω ∧ η‖ � ‖ω‖ · ‖η‖ for any two formsω,η.

The exterior derivative operator is bounded in the sense of this norm if the degree is
restricted:‖dω‖ � (maxi wi)degω · ‖ω‖. In particular, in the symmetric case‖dω‖ �
r‖ω‖, r = degω. Conversely, a primitive of ann-from µ can be always chosen bounded
by the same norm‖µ‖.

Unless explicitly stated differently, a monomial (monomial form, etc.) has always the
unit coefficient.

3.2. Parameters

We will systematically treat the case when all objects (forms, functions etc.) depend
polynomially on finitely many additional parametersλ= (λ1, . . . , λm). We will denote by
Λk[λ], k = 0, . . . , n, the collection ofk-forms whose coefficients polynomially depend on
λ. For instance, the notationη ∈ Λn−1[λ] means that

η=
n∑
i=1

ai(x,λ) dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn

with polynomial coefficientsai ∈ C[x,λ].
In such case the norm of forms, functions etc. will be always considered relative to the

ring C[x,λ], that is, as the
∑
i ‖ai‖ of absolute values of coefficientsai of the complete
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expansion inx, λ. If the parametersλs are assigned weights, we take them into account
when defining the degree of the form. To stress the fact that the norm is computed relative
to the ringC[x,λ] and not toC[x] (i.e., that the situation is parametric), we will sometimes
denote the norm by‖ · ‖λ. For an instance,‖2λ1x1‖ = 2|λ1| �= 2= ‖2λ1x1‖λ.

3.3. Division by a quasihomogeneous differential df . The division modulus

If f ∈ C[x1, . . . , xn] is a quasihomogeneous polynomial having anisolated singularity
at the origin, then the multiplicityl of this singularity can be easily found by Bézout
theorem, since no roots of the system of algebraic equations∂f/∂xi = 0, i = 1, . . . , n,
can escape to infinity. In the symmetric casel = (degf − 1)n. Choose any monomial
basisϕ1, . . . , ϕl of the local algebraC[[x1, . . . , xn]]/〈∂f 〉, 〈∂f 〉 = 〈 ∂f

∂x1
, . . . ,

∂f
∂xn

〉. Then the

monomialn-formsµi = ϕi dx1 ∧ · · · ∧ dxn form a basis ofΛnf = Λn/df ∧ Λn−1 overC:
anyn-formµ can be divided out as

µ=
l∑
i=1

ciµi + df ∧ η, ci ∈ C, η ∈ Λn−1, (3.1)

with appropriate constantsc1, . . . , cl ∈ C (coefficients of the “remainder”
∑
ciµi ) and a

polynomial formη ∈ Λn−1 (the “incomplete ratio”). Moreover, ifµ is quasihomogeneous,
then the decomposition (3.1) contains only terms with degµi = degµ and degη =
degµ − degf . This immediately follows from quasihomogeneity and the uniqueness of
the coefficientsci . From this observation we also conclude that all monomial forms of
degree< degf must be amongµi , and, moreover, any monomial form of degree greater
than maxi degµi , is divisible without remainder bydf .

The choice of the monomial formsµi spanning the quotient, is not unique, though the
distribution of their degrees is. Denote byρ = ρ(f ) the maximal difference

ρ(f )= max
i

degµi − min
i

degµi = max
i

degϕi − min
i

degϕi. (3.2)

The following results are well-known.

Proposition 1. 1. In the symmetric case ρ(f ) < l = (r − 1)n [2, §5.5].
2. In the bivariate case n= 2 the inequality ρ(f ) < r = degf holds if and only if f is a

“simple singularity” of one of the following types,

Ak: f = xk+1
1 + x2

2, k � 2,

Dk : f = x2
1x2 + xk−1

2 , k � 4,

E6: f = x3
1 + x4

2,

E7: f = x3
1 + x1x

3
2,

E8: f = x3
1 + x5

2,

see e.g., [2, §13, Theorem 2].
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From these observations it can be immediately seen that the division with remainder
(3.1) is a bounded linear operation in the space of alln-forms of restricted degrees.

Lemma 1. Assume that f ∈ Λ0 is a quasihomogeneous polynomial having an isolated
critical point of multiplicity l at the origin, and the monomial n-forms µ1, . . . ,µl ∈ Λn

form the basis of Λnf .
Then there exists a finite constant M <+∞ depending only on f and the choice of the

basis {µi}, such that any n-form µ ∈ Λn can be divided with remainder by df as in (3.1)
subject to the follouring constraints,

degη� degµ− degf, ‖η‖ +
∑

|ci | �M‖µ‖. (3.3)

If the form µ is quasihomogeneous, then degη= degµ−degf and ci can be nonzero only
if degµi = degµ.

The constantM depends on the choice of the monomial basis{µi}. The optimal choice
of such basis (out of finitely many possibilities) results in the smallest valueM =M(f )
that depends only onf . We will always assume that the basis{µi} is chosen optimal in
this sense.

Definition 1. The minimal constantM(f ) corresponding to an optimal choice of the
monomial basis of the quotientΛnf is called thedivision modulus of the quasihomogeneous

polynomialf ∈ Λ0.

Corollary 1. Assume that µ ∈ Λn[λ] depends polynomially on additional parameters λ.
Then µ can be divided with remainder by df so that the remainder and the incomplete
ratio depend polynomially on λ with the same division modulus,

ci = ci(λ) ∈ C[λ], i = 1, . . . , n, η ∈ Λn−1[λ],
‖η‖ +

∑
‖ci‖ �M(f )‖µ‖, ‖ · ‖ = ‖ · ‖λ.

Proof. Every monomial from the expansion ofµ in x,λ can be divided out separately by
df which is independent ofλ. ✷
Proof of Lemma 1. Let M be the best constant such that (3.3) holds for all monomial
n-forms with degµ � l. It is finite since there are only finitely many such forms. In
particular, since any form of degreel is divisible bydf by Proposition 1, the respective
fractionη will be of the norm at mostM‖µ‖.

Writing an arbitrary monomialn-form of degree> l as a product of a monomial form
of degreel times a monic monomial functionxα ∈ C[x], α ∈ Zn+, we construct the explicit
division formulas (without remainders) for all monomial forms of higher degrees. The
division constant will be given by the same numberM, since multiplication by a monic
monomial preserves the norms of both‖µ‖ and‖η‖.

All the other assertions of the Lemma are well-known [2].✷
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3.4. Computability of the division modulus

Despite its general nature, the above proof is constructive, at least in the low dimensional
casesn = 1,2, allowing for an explicit computation of the division modulus in these
cases.

The one-dimensional case is trivial: for the monomialf (x)= xr the division modulus
M(f ) is equal to r and it can be obviously recalculated for any other principal
homogeneous part. The “special case” of a multivariate polynomialf (x)= xr1 + · · · + xrn,
see [12], is reducible to the one-dimensional situation. In this casel = (r − 1)n monomial
forms xαdx1 ∧ · · · ∧ dxn with 0 � αi � r − 1 form the basis, and the corresponding
division modulus is again equal tor. This example admits an obvious generalization for
quasihomogeneous “special polynomials” with different weights.

For a bivariate truly homogeneous polynomialf (i.e., in the symmetric case, the
most important for applications), the division modulusM for all higher degree forms
(degµ� 2 degf ) can be explicitly computed as the norm of the inverse Sylvester matrix
for the partial derivatives∂f

∂x1
and ∂f

∂x2
[16]. The “quasimonic” polynomials, introduced in

that paper, are defined by the conditionM(f ) = 1, which in many respects is a natural
normalizing condition for multivariate polynomials.

The choice of the basic forms even in the symmetric bivariate case depends onf : while
it is generically possible to choose them asxα1

1 x
α2
2 dx1 ∧ dx2 with 0 � α1,2 � r − 1, for a

badly chosenf some of these forms of degree greater thanr = degf can become linear
dependent modulodf , requiring a different choice. In order to avoid making this choice,
one may allow aredundant (i.e., linear dependent) collection of generating formsµi .
Choosing all monomial forms of degree� 2r makes the corresponding division for low
degree forms trivial, so that the division modulusM(f ) is determined only by division of
forms of higher degree. Details and accurate estimates in the bivariate symmetric case can
be found in [16].

To describe the division modulusM(f ) in the case ofn� 3 variables is a considerably
more difficult problem, though it still can be reduced to analysis of finitely many monomial
divisions. One can (at least, theoretically) expressM(f ) via lower bounds for minors of
certain explicitly formed matrices.

Remark 2. It is worth mentioning that the division modulusM(f ) is not directly related
to the norm‖f ‖, even in the symmetric bivariate case. If degµ � l andµ = df ∧ η,
then‖µ‖ � ‖df ‖ ‖η‖. On the other hand,‖µ‖ �M−1‖η‖ by the definition ofM(f ).
Therefore

M(f )� ‖df ‖−1 � r−1‖f ‖−1, r = degf,

that is, the division modulus for a polynomialf with the small norm must be large. The
inverse is not true: a polynomial with a small division modulus can have a very large
norm. Simple examples can be constructed in the formf (x) = c

∏
i (x1 − λix2) with

sufficiently close values of the parametersλi ∈ [0,1] and a suitably chosen normalizing
constantc ∈ C.
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3.5. Division by f

We begin by establishing an analog of the Euler identity in the Brieskorn module. It
plays the central role for explicitly constructing the decomposition (2.6).

Lemma 2. Assume that f ∈ Λ0 is a quasihomogeneous polynomial of degree r . Then any
polynomial n-form divisible by df in Λn, can itself be divided by f in the Brieskorn module
Bf . It also admits a polynomial primitive divisible by f .

In other words, for any form η ∈ Λn−1 there exist four forms µ ∈ Λn,ω ∈ Λn−1 and
ξ, ξ ′ ∈ Λn−2 such that

df ∧ η = fµ+ df ∧ dξ (3.4)

= d(fω)+ df ∧ dξ ′. (3.5)

The degrees of all forms µ,ω, ξ, ξ ′ are all equal to degη in case the latter is
quasihomogeneous.

The division operation is always well-posed in the sense that the decomposition (3.5)
can be always chosen to meet the inequality

‖ω‖ + ‖ξ ′‖ � (n+ 3)degη · ‖η‖ (3.6)

(a similar inequality can be proved also for the first decomposition (3.4)).

Proof. Note that for anyn-formµ ∈ Λn and any vector fieldX on Cn,

(Xf )µ= (iXdf )µ= df ∧ iXµ,

where iX is the inner antiderivative, sincedf ∧ µ = 0. We will need this formula for the
case whenX is the Euler vector field.

To prove the first divisibility assertion (3.4), we have to show that the identity

df ∧ η= fµ+ df ∧ dξ (3.7)

can be always resolved as a linear equation with respect toµ andξ for any choice ofη.
Using the Euler identity for functions and the above remark, we representfµ as a form
divisible bydf ,

fµ= r−1(Xf )µ= r−1(iXdf )µ= df ∧ r−1iXµ. (3.8)

Eq. (3.7) will obviously be satisfied if

η= r−1iXµ+ dξ,
that is, whenη is cohomologous tor−1iXµ. This last condition is equivalent to the equality
between the exterior derivatives

dη= r−1d iXµ= r−1Xµ,

since by the homotopy formula,d iXµ = Xµ − iXdµ = Xµ. Thus resolving Eq. (3.7) is
reduced to inverting the Lie derivativeX on the linear space ofn-forms.

We claim that the linear mapµ �→ Xµ of Λn to itself, is surjective (and obviously
degree-preserving), guaranteeing thus solvability of the last equation for any choice ofη.
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Indeed, any monomialn-form µα = xαdx1 ∧ · · · ∧ dxn is an eigenvector ofX with the
strictly positive eigenvalue degµα � n (recall that the weightswi are normalized so that
the volume formdx1 ∧ · · · ∧ dxn is of degreen). ThusX is surjective onΛn (actually,
bijective) and one can chooseµ= rX−1(dη). The norm of the inverse operatorX−1 does
not exceed(r/n)degη in the symmetric case. The proof of (3.4) is complete.

To prove the second assertion (3.5), we transform it using (3.8) as follows,

df ∧ η= f dω+ df ∧ (ω+ dξ ′)= r−1df ∧ iXdω+ df ∧ (ω+ dξ ′),

which will be obviously satisfied if

η= r−1iXdω+ω+ dξ ′. (3.9)

Taking the exterior derivative as before, we reduce this equation to the form

dη= r−1d iXdω+ dω= r−1Xµ+µ, µ= dω.
Solvability of this equation with respect toµ, (and hence toω) for any left-hand side
dη follows from invertibility of the differential operatorr−1X + 1 on the linear space of
polynomialn-forms (1 stands for the identity operator). Exactly as in the previous situation,
all monomialn-forms are eigenvectors for(r−1X + 1)|Λn with the positive eigenvalues,
all greater or equal tor−1n+ 1, hencer−1X+ 1 is invertible onΛn andω can be chosen
as a primitive of(r−1X+ 1)−1dη.

To prove the inequality between the norms, notice thatµ= dω satisfies the inequality
‖µ‖ � ‖dη‖ � degη‖η‖. A primitive ω can be always take of the norm‖ω‖ � ‖dω‖.
Together this yields‖ω‖ � degη‖η‖.

The norm‖ξ ′‖ can be found from (3.9). Clearly,‖iXµ‖ � n‖µ‖ because of the choice
of the weights degxi which satisfy the condition

∑
wi = n. Substituting this inequality

into (3.9), we obtain

‖ξ ′‖ � ‖dξ ′‖ � ‖η‖ + n‖dω‖ + ‖ω‖ � (n+ 2)degη‖η‖,
since degω = degη� 1. ✷
3.6. Generating Petrov and Brieskorn modules: the algorithm

Division by the gradient ideal together with the Euler identity as formulated in
Lemma 2, allows for a constructive proof of the representation (2.6) for an arbitrary semi-
quasihomogeneous polynomialF .

Let F = f + h ∈ C[x1, . . . , xn] be a semiquasihomogeneous polynomial with the
principal quasihomogeneous partf and the lower-degree parth. Denote as before by
µ1, . . . ,µl ∈ Λn the forms spanningΛnf = Λn/df ∧ Λn−1 (note that the quotient is
computed using only the principal partf ). We claim that:

(1) anyn-formµ ∈ Λn can be represented as

µ=
l∑
i=1

qiµi + dF ∧ dζ, qi ∈ C[F ], ζ ∈ Λn−2, (3.10)
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(2) any(n− 1)-formω ∈ Λn−1 can be represented as

ω =
l∑
i=1

piωi + dF ∧ ξ + dξ ′, pi ∈ C[F ], ξ, ξ ′ ∈ Λn−2. (3.11)

The construction of the decomposition (3.10) begins by division ofµ bydf as explained
in Lemma 1:

µ=
∑

ciµi + df ∧ η, ci ∈ C, η ∈ Λn−1.

If degµ < r = degf = degF , then the incomplete ratio is in fact absent,η = 0, and we
arrive to a particular case of (3.10) withqi = ci of degree 0 (constants).

If degµ is higher thanr, we transform the termdf ∧ η using Lemma 2 and then
substitutef = F − h:

µ−
∑

ciµi = fµ′ + df ∧ dζ = Fµ′ + dF ∧ dζ −µ′′, µ′′ = hµ′ + dh∧ dζ.
Obviously, bothµ′ andµ′′ are of degreestrictly inferior to degµ, which allows to continue
the process inductively. Assuming that the reprasentations (3.10) are known for bothµ′
andµ′′, we substitute them into the last identity and after collecting terms arrive to a
representation forµ. In the symmetric case the inductive process cannot take more than
degµ− r steps. It is a direct analog of the process of division of univariate polynomials,
see also [16].

To construct (3.11), we dividedω by df . If degω < r, then the incomplete ratio is
absent and we obtain a special kind of (3.11) exactly as before.

Otherwise in the division with remainder

dω=
l∑
i=1

ci dωi + df ∧ η, ci ∈ C, η ∈ Λn−1,

substitutedf ∧ η= d(fω′)+ df ∧ dξ and pass to the primitives. We obtain

ω−
∑

ciωi = fω′ + df ∧ ξ + dξ ′

= Fω′ + dF ∧ ξ + dξ ′ −ω′′, ω′′ = hω′ + dh∧ ξ. (3.12)

For the same reasons as before, the degrees ofω′,ω′′ are strictly smaller than degω, hence
the process can be continued inductively.

Remark 3. In a somewhat surprising way, it turned out impossible to transform directly
the decomposition (3.10) for the formdω ∈ Λn into (3.11) forω.

3.7. Effective decomposition in the Petrov module

The construction above is so transparent that any qualitative as well as quantitative
assertion concerning these expansions, can be immediately verified.

We will show that

(1) all terms of the decomposition (3.11) depend polynomially on the lower order terms
of F , assuming that the principal part if fixed, and



546 S. Yakovenko / Bull. Sci. math. 126 (2002) 535–554

(2) the well-posedness of the construction is determined solely by the division modulus
M(f ) of the principal homogeneous part.

In order to formulate the result, consider ageneral semiquasihomogeneous polynomial
with the prescribed principal quasihomogeneous part,

F(x,λ)= f (x)+ h(x,λ), h(x,λ)=
∑

degfs<degf

λsfs(x), (3.13)

wheref1, . . . , fm ∈ C[x1, . . . , xn] are all (monic) monomials of degree strictly inferior to
r = degf , arbitrarily ordered. We treat the coefficientsλ1, . . . , λm as the parameters of the
problem, assigning to them the weights so that

degλs + degfs = degf = r for all s.

This choice makes the entire polynomialF quasihomogeneous of the same degreer in the
ring C[x,λ] = C[x1, . . . , xn, λ1, . . . , λm]. Instead of the ringC[F ], the coefficientspi of
the decomposition (3.11) will belong to the ringC[F,λ] and their quasihomogeneity will
be understood in the sense that the formal variableF is assigned the weight degF = r.

Theorem 1. If the quasihomogeneous polynomial f ∈ C[x] has an isolated critical point
at the origin and F ∈ C[x,λ] is a general semiquasihomogeneous polynomial (3.13),
then any polynomial quasihomogeneous (n − 1)-form ω ∈ Λn−1[λ] of degree k can be
represented as

ω =
l∑
i=1

piωi + dF ∧ ξ + dξ ′. (3.14)

The coefficients pi ∈ C[F,λ] and the (n− 2)-forms ξ, ξ ′ ∈ Λn−2[λ] are all polynomial
and quasihomogeneous jointly in F,λ (resp., in x,λ) of the degrees k − degωi , k − r and
k respectively.

The norm of the coefficients relative to the ring C[F,λ1, . . . , λm] is explicitly bounded
in terms of n, r, k and the division modulus M(f ). In particular, for the symmetric case
when degx1 = · · · = degxn = 1,

l∑
i=1

‖pi‖ � k!rk(n+3)Mk‖ω‖, k = degω, M =M(f ), ‖ · ‖ = ‖ · ‖λ. (3.15)

Remark 4. The fact that the formω is quasihomogeneous, is not important: any polynomial
form is the sum of quasihomogeneous parts, each of them being divisible separately.

Remark 5. Even in the symmetric case, the degrees of the parameters are different
from 1: degλs = r − degfs will take all natural values from 1 tor.

Proof of Theorem 1. The first assertion of Theorem 1 (on polynomiality and quasihomo-
geneity) follows from direct inspection of the algorithm described above, since all trans-
formations on each inductive step (exterior differentiation, division bydf which is inde-
pendent ofλ, and the Euler identity inPf ) respect the quasihomogeneous grading.
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The only assertion that has to be proved is that on the norms. In order for a sequence of
increasing withk real constantsCk > 0 to be upper bounds for the decomposition (3.14),

l∑
i=1

‖pi‖ � Ck‖ω‖, for all ω with degω� k,

they should satisfy a certain recurrent inequality which we will instantly derive from the
suggested algorithm.

Denote bypi ∈ C[F,λ] (resp., byp′
i and p′′

i ) the polynomial coefficients of the
decomposition of the formsω (resp.,ω′ andω′′) from the identity (3.12): since the degrees
of bothω′,ω′′ are less thank and the sequenceCk is increasing, we have∑

i

‖p′
i‖ � Ck−1‖ω′‖,

∑
i

‖p′′
i ‖ � Ck−1‖ω′′‖.

Multiplication byF corresponds to a shift of coefficients in the decomposition ofω′. Thus
from (3.12) follows the inequality∑

i

‖pi‖ �
∑
i

‖ci‖ +
∑
i

‖p′
i‖ +

∑
i

‖p′′
i ‖ �

∑
i

‖ci‖ +Ck−1(‖ω′‖ + ‖ω′′‖).

By Lemma 2,‖ω′‖ � (n+ 3)k‖η‖. The norm of the inferior parth is by definition equal
to the number of terms, that is, the number of monomials inn variables of degree� r − 1.
Therefore‖h‖ � rn and‖dh‖ � rn+1. This implies an upper bound for‖ω′′‖:

‖ω′′‖ � ‖h‖‖ω′‖ + ‖dh‖‖ξ‖ � (‖h‖ + ‖dh‖)(‖ω′‖ + ‖ξ‖)� 2rn+1(n+ 3)k‖η‖
by Lemma 2. Finally,‖η‖ + ∑‖ci‖ � M‖ω‖ by definition of the division modulus
M =M(f ). Assembling all these bounds together, we conclude that∑

‖pi‖ �M‖ω‖ +Ck−1 · 3rn+1(n+ 3)k‖ω‖.
Thus the increasing sequenceCk � 1 will form upper bounds for the norms of the
coefficients of decomposition for polynomial forms of degree� k, provided that

Ck �AkCk−1, A� 4rn+1(n+ 3)M � rn+3M

(notice thatr � 2), which can be immediately satisfied if we put

Ck = k!rk(n+3)Mk.

This proves the inequality for the norms.✷
Note that the bound established in this theorem, is polynomial inM =M(f ) and (for a

fixed r) factorial ink = degω, that is, only slightly overtaking the exponential growth.

3.8. Nonhomogeneous division

By a completely similar procedure one can describe the result of division by a
nonhomogeneous differentialdF as a sequence of divisions by the principal homogeneous
partdf .
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More precisely, ifµ ∈ Λn[λ] is a polynomialn-form polynomially depending on
the parametersλ1, . . . , λm and F = f + ∑

λsfs is as in (3.13), then there exists a
representation

µ=
l∑
i=1

= ci(λ)µi + dF ∧ η, c1, . . . , cn ∈ C[λ], η ∈ Λn−1[λ], (3.16)

polynomially depending on parameters. Ifµ is quasihomogeneous, then so areci , andη,
with degci = degµ − degµi and degη = degµ − degF . Moreover, the ratio(‖ci‖λ +
‖η‖λ)/‖µ‖λ bounded in terms of degµ and the division modulusM(f ) of f only.

Indeed, dividingµ by df yields

µ=
∑

ciµi + df ∧ η=
∑

ciµi + dF ∧ η−µ′, µ′ = dh∧ η,
whereh= F −f , hence degh < degf = degF and therefore degµ′ < degµ. This means
that the process of division can be continued inductively. Since‖µ′‖ � ‖h‖‖η‖constr,n
M(f )‖µ‖, the norms of the remainder and the incomplete ratio are bounded in terms of
M(f ) and the degrees. In the symmetric case the bound looks especially simple.

Proposition 2. In the symmetric case of all weights equal to 1, the division of a form of
degree k = degµ is bounded as follows,

‖η‖λ +
l∑
i=1

‖ci‖λ �Mk(F) · ‖µ‖, Mk(F )= krn(k−r)
(
M(f )

)k
.

Proof. In this case‖h‖ � rn, so that‖µ′‖ � Mrn‖µ‖, and finally ‖η‖ + ∑‖ci‖ �
M‖µ‖(1+K + · · ·+Kdegµ−r ), whereK =Mrn. Thus the norm of the nonhomogeneous
division operator obviously does not exceedMk(krn(k−r)). This expression is exponential
in k = degµ and polynomial inM =M(f ). ✷

4. Picard–Fuchs system for Abelian integrals

Consider a quasihomogeneous polynomialf ∈ Λ0 of degree r = degf having
an isolated singularity of multiplicityl at the origin. As before, letµ1, . . . ,µl be
generators ofΛnf overC andω1, . . . ,ωl their monomial primitives. Consider the general
semiquasihomogeneouspolynomialF = f +∑m

1 λsfs ∈ C[x,λ] as in (3.13) with the fixed
principal partf , whose coefficientsλ1, . . . , λm are the natural parameters. Consider in the
parameter spaceCm the locusΣ such that forλ ∈ Cm\Σ the level set{x ∈ C: F(x,λ)= 0}
is a nonsingular algebraic hypersurface. Denote byΓ = Γ (λ), λ /∈ Σ , any continuous
family of (n− 1)-cycles on the zero level. The Abelian integrals

Ii(λ)=
∫
Γ (λ)

ωi, i = 1, . . . , l, (4.1)

are well defined multivalued analytic functions onCm\Σ . In this section we will derive a
Pfaffian system of linear equations satisfied by these integrals.
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We will always assume that the weights of the parametersλs are chosen so thatF
becomes a quasihomogeneous polynomial inx, λ of degreer: degλs = r − degfs. The
enumeration of the monomialsfs begins with the free termf1 ≡ 1 of degree 0 so that
the respective coefficientλ1 is necessarily of degreer. Recall thatρ(f ) is the maximal
difference (3.2) between the degrees of the formsµi .

Theorem 2. There exist (l × l)-matrix polynomials C0(λ),C1(λ), . . . ,Cm(λ),

C0(λ)= λ1 · 1 +C′(λ2, . . . , λm),

degC0 � r + ρ(f ), degCs � degfs + ρ(f ), s = 1, . . . ,m
(4.2)

(the degrees are quasihomogeneous), such that on Cm\Σ
∂

∂λs

(
C0(λ)I

) = Cs(λ)I, s = 1, . . . ,m. (4.3)

The norms ‖Cs‖λ are bounded by a power of the division modulusM(f ).

In other words, the column vector functionI (λ) on the complement toΣ satisfies the
matrix Pfaffian equation

dI =ΩI, Ω = C−1
0 ·

(
−dC0 +

m∑
s=1

Cs dλs

)
, (4.4)

with a rational matrix-valued 1-formΩ having the poles only on the locusΣ ′ = {detC0 =
0} ⊂ Cm. Here d is the exterior derivation with respect to the variablesλs only: for
c(λ) ∈ C[λ], dc= ∑

s
∂c(λ)
∂λs

dλs .
The proof is constructive. The description of the matrix polynomialsCs(λ) is given

below.

4.1. Gelfand–Leray derivative with respect to parameters

Lemma 3. If ω ∈ Λn−1 is a polynomial form with constant (independent of λ) coefficients,
and ηs ∈ Λn−1[λ] any form satisfying the identity

fs dω= −dF ∧ ηs, (4.5)

(recall that fs = ∂F
∂λs
), then

∂

∂λs

∫
Γ (λ)

ω =
∫
Γ (λ)

ηs.

Proof. To derive this formal identity, we expressλs = H(x) from the equation
F(x,λs) = 0, assuming all other parameters fixed, and apply the Gelfand–Leray formula
toH : for (4.5) to hold, it would be sufficient ifη = ηs satisfies

dω= dH ∧ η.
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It remains to observe that by the implicit function theorem and the definition of the
parameters,

dF + ∂F

∂λs
dH = 0,

∂F

∂λs
= fs.

Here and aboved stands for the exterior derivative with respect to the “spatial” variables
x1, . . . , xn. ✷

The standard Gelfand–Leray derivative appears for the parameter occurring before the
constant termf1 ≡ 1 (modulo the sign).

4.2. Derivation of the system: beginning of the proof of Theorem 2

Divide each of the formsFµi ∈ Λn[λ], µi = dωi , by dF with with the remainder
coefficients and the incomplete ratios polynomially depending onλ as in Proposition 2:

Fµi = dF ∧ ηi +
l∑
j=1

cijµj , cij = cij (λ). (4.6)

Clearly, the quasihomogeneous degree degcij in C[λ] is equal tor + degµi − degµj �
ρ(f )+ r (cij ≡ 0 if the difference is negative).

Let C0 = C0(λ) be the(l × l)-matrix polynomial with the entriescij (λ). SincedF
does not depend onλ1 (the free term ofF ), while the only term depending onλ1 in Fµi
is λ1µi , the dependence ofC0 on λ1 can be immediately described: the corresponding
remainder coefficientscij (λ1) for the division ofλ1µi by dF form the scalar matrixλ1 · 1
(the incomplete ratio is absent).

Sincecij do not depend onx (being “constants depending on the parameters”), the
identity (4.6) implies that

d

(
Fωi −

∑
j

cijωj

)
= −dF ∧ (−ωi − ηi), i = 1, . . . , l.

Let

ω′
i,s = −fs(ωi + ηi), i = 1, . . . , l, s = 1, . . . ,m.

All these forms are polynomial and polynomially depending on parameters. Their degrees
can be easily computed: degηi = degµi = degωi,degω′

i,s = degfs + degµi .
By the parametric Gelfand–Leray formula (Lemma 3), the partial derivatives of integrals

of the formsFωi − ∑
j cijωj over the cycleΓ (λ) ⊂ {F = 0} ⊂ Cn are equal to the

integrals of the formsω′
i,s . Since the termsFωi vanish onΓ (λ) for all values ofλ, we

have

∂

∂λs

(∑
j

cij (λ)Ij (λ)

)
= I ′

i,s (λ), I ′
i,s (λ)=

∮
Γ (λ)

ω′
i,s .
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The formsωi were chosen to generate the Petrov moduleP F overC[F,λ], so each of the
Abelian integrals

∮
ω′
i,s can be expressed as a polynomial combination,

I ′
i,s =

l∑
j=1

pij,s Ij , pij,s ∈ C[F,λ],

for all i, s. Denote byCs = Cs(λ) the polynomial(l × l)-matrix function formed by the
free terms of the polynomialspij,s (· , λ):

Cs(λ)=
[
pij,s (F,λ)|F=0

]l
i,j=1, s = 1, . . . ,m.

All other terms, being divisible byF , disappear after integration over the cycle on the
level surface{F = 0}. Collecting the terms, we conclude that the partial derivatives of the
column vector functionI (λ)= (I1(λ), . . . , Il(λ)), Ii =

∮
ωi , satisfy the system

∂(C0I)

∂λs
= CsI, s = 1, . . . ,m.

4.3. Bounds for the norms: end of the proof of Theorem 2

The construction described above, does not yet imply the assertion on the norms of the
matrix polynomialsC0, . . . ,Cm for only one reason: multiplication byF = f + h, h =∑
λsfs , is not a bounded operator. While multiplication byh increases the norm at most

by ‖h‖λ = constn,r (not exceeding(r − 1)n in the symmetric case), the norm‖f ‖ cannot
be bounded in terms ofM(f ), as required in the theorem (see Remark 2).

To correct this drawback, exactly as in [16], the division line (4.6) should be first
prepared using (3.8) as follows,

Fµi = (f + h)µi = df ∧ η′
i + hµi = dF ∧ η′

i +µ′
i ,

η′
i = r−1iXµi, µ′

i = hµi − dh∧ η′
i ,

(4.7)

where (we again make all estimates for the symmetric case only),

‖η′
i‖ � (n/r)‖µi‖, ‖µ′

i‖ � ‖h‖(1 + r)(n/r)‖µi‖.
Then formsµ′

i should be divided bydF with remainder: since their norms are bounded
by a constant depending only onn, r (the norms of the monomial formsµi are equal to
1), the results of such division will be bounded by suitable powers ofM(f ) by virtue of
Proposition 2.

Collecting the terms, we conclude that the coefficientscij ∈ C[λ] of the corresponding
remainders in (4.6) and the incomplete ratiosηi ∈ Λn−1[λ] will be bounded by expressions
polynomial inM(f ).

The rest of the derivation remains unchanged and the estimates completely straight-
forward: the polynomial bounds forηi imply those of the polynomial coefficientspij,s ∈
C[F,λ] by Theorem 1. This proves the last assertion of Theorem 2.✷
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5. Observations. Discussion

The algorithm of derivation of the Picard–Fuchs system in the Pfaffian form is so
transparent that many things become obvious.

5.1. Bounds

Though the matrix polynomialsCs(λ) are not quasihomogeneous (their entries have
different degrees), the determinant detC0(λ) is a quasihomogeneous polynomial from
C[λ]. Its degree can be immediately computed aslr from the explicit representation
(4.2). This same representation proves that this determinant, equal toλn1+ polynomial in
(λ2, . . . , λm), does not vanish identically, so that the system (4.4) is indeed meromorphic.

Moreover, the norm of the inverse matrixC−1
0 can be explicitly majorized in terms of

the distance to the critical locus. One possibility to do this is to consider the sectionsλ1 = 1
and apply the Cartan inequality as in [16], using the quasihomogeneity.

5.2. Spectrum

The spectrum ofC0(λ) can be also easily computed: it consists of alll critical values
of the polynomialF(x,λ), at least whenF(· , λ) is a Morse polynomial. To see this,
it is sufficient to evaluate both parts of (4.6) at any ofl critical points a1, . . . , al ∈
Cn. The column vectorsvi = (ϕ1(ai), . . . , ϕl(ai))

T, i = 1, . . . , l, are the corresponding
eigenvectors (recall thatµi = ϕi dx1 ∧ · · · ∧ dxn).

5.3. Hypergeometric form

Restricting the Pfaffian system (4.4) on the one-dimensional complex linesλs =
const, s = 2, . . . ,m, parameterized by the value oft = λ1, one obtains a parameterized
family of Picard–Fuchs systems of ordinary differential equations. In this case only the
matrixC1 is relevant.

By Theorem 2, it is quasihomogeneous of degree� ρ(f ) jointly in the variables
λ1, . . . , λm. If ρ(f ) < r = degλ1, thenC1 cannot depend onλ1 and hence the Picard–
Fuchs system in this case will have the hypergeometric form (1.1). By Proposition 1, this
happens only whenf is a simple quasihomogeneous polynomial of one of the types listed
there. For hyperelliptic polynomials (the singularity of the typeAk) this was well-known,
see [16]. In turn, the hypergeometric form implies that all singular points of the Picard–
Fuchs system areFuchsian (with simple poles of the rational coefficients) whenF(·, λ) is
a Morse polynomial.

5.4. Logarithmic poles

For the full Pfaffian system (4.4) the polar locus, occurring where detC0(λ) vanishes,
is of multiplicity 1 (it is sufficient to produce just one value of the parametersλ such that
F(· , λ) has simple critical points). Yet it is not the characteristic property.
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A rational 1-formω analytic outside a hypersurfaceΣ ′ = {g = 0} ⊂ Cm,g being a
polynomial without multiple factors, is said to have alogarithmic singularity on this
hypersurface, if bothgω anddg ∧ω extend as polynomial forms acrossΣ ′ onCm.

This is only one of several close but non-equivalent definitions, probably the strongest
possible. It ensures that the restriction ofω on any holomorphic curveγ cuttingΣ ′ at
a pointa, has a Fuchsian singularity with the residue independent on the choice ofγ ,
depending only on the pointa.

The basic question concerning the system (4.4) is whether this system itself or a suitable
gauge transformation of this system with a rational matrix gauge function, are Fuchsian
with bounded residues. If the answer is positive, this would mean a positive solution of the
infinitesimal Hilbert problem.

Using symbolic computation for implementing the algorithm, we discovered that in
the hyperelliptic case (singularity of the typeAk) the Picard–Fuchs system (4.4) indeed
has only logarithmic poles until the degreek = 6 of the polynomialf = xk1 + x2

2. This
naturally suggests the following conjecture.

Conjecture. All singularities of the Picard–Fuchs system (4.4)are only logarithmic poles
on Σ ′ = {detC0 = 0}.

It would be interesting to verify this conjecture for other simple singularities listed in
Proposition 1, perhaps first by symbolic computation.

The next step could be to study the behavior of residue of (4.4), the matrix function
defined on the regular part ofΣ ′, checking whether it is bounded near singular points of
the discriminant.

5.5. Singular perturbations

The polynomial dependence of the matricesCs on the lower degree coefficients of the
polynomialF = f + · · · fails for the coefficients of the principal part. Though apparently
rational, this dependence certainly must exhibit singularities whenf degenerates into a
quasihomogeneous form with nonisolated singularities. The Picard–Fuchs system in such
cases may have singular points corresponding toatypical values of F . Their appearance
must somehow be related to the fact that the division modulus explodes when such
degeneracy occurs, thus creating asingularly perturbed system of linear differential
equations. These phenomena seem to be worth of detailed study.
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