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Abstract

We suggest an algorithm for derivation of the Picard—Puchs system of Pfaffian equations for
Abelian integrals corresponding to semiguasihomogeneous Hamiltonians. It is based on an effective
decomposition of polynomial forms in the Brieskorn lattice. The construction allows for an explicit
upper bound on the norms of the polynomial coefficients, an important ingredient in studying zeros
of these integrals.
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1. Introduction

Given a polynomial in two variableg € R[x, y] and a polynomial 1-form onR?, how
many isolated oval8 on the level curveg = const may satisfy the conditi% w=07?
This is the long-standinmfinitesimal Hilbert problem, see [1]. The answer is to be given
in terms of the degrees gf andw.

A recent approach to this problem, suggested in [15,16,18] is based on the fact that
periods of polynomial 1-forms restricted on level curves of polynomials, satisfy a system
of differential equations with rational coefficients, called Bieard—Fuchs system. Under
certain restrictions on the monodromy group, the number of zeros of solutions of such
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systems can be estimated from above in terms of the magnitude of coefficients of this
system, more precisely, the norms of its matrix residues. Thus it becomes important to
derive the Picard—Fuchs system for Abelian integrals so explicitly as to allow for the
required estimates for the residues.

In [16] a Fuchsian system was derived in tiypergeometric form

(t-1+ A)I =BI, i:%l(t), (1.1)

wherel (r) = (I1(¢), ..., I;(t)) is a collection of integrals of some monomial forms over
any oval of the level curvéf =}, andA, B are two constant x /)-matrices of explicitly
bounded norms, depending ¢gn(1 always stands for the identity matrix of the appropriate
size). The rational matrix functioR () = (¢ - 1+ A)~1B has only simple poles and the
norm of its matrix residues can be explicitly majorized provided that the eigenvalues of
remain well apart. This allows to solve the infinitesimal Hilbert problem for all polyno-
mials f whose critical values (after a suitable normalization) are sufficiently distant from
each other. What remains is to study the case of confluent critical values (including those
at infinity).

In a general hypergeometric system (1.1), the residues may or may not blow up as some
of the singular points tend to each other. The particular feature of the Picard—Fuchs system
is its isomonodromy: the monodromy group remains the same under deformatiorfs of
(at least for sufficiently generig). This implies that even if the explosion of residues
occurs, it cannot be caused by the explosion of the eigenvalues. In order to find out
what indeed happens with the residues, the first step is to write down as explicitly as
possible the Picard—Fuchs system as a flat meromorphic connexion with singularities in
the holomorphic bundle over the variety of all polynomiglsf a given degree.

This problem is solved in the paper for polynomials with a fixed principal (quasi)
homogeneous part having an isolated critical point at the origin.

As an auxiliary first step, we need to describe explicitly the structure of the relative
cohomology module. While the subject is fairly classic and sufficiently well understood,
the existing tools do not allow for the quantitative analysis. We suggest an alternative,
completely elementary construction that immediately yields all necessary bounds. This
construction, exposed in Section 2 is based on “divisiorf hya lemma distilled from the
paper [8] by J.-P. Francoise. The Pfaffian form of the Picard—Fuchs system is derived in
Section 4. In the last section we mention some simple properties of the derived system and
formulate a conjecture that it has only logarithmic singularities in the affine part.

2. Relative cohomology revisited
2.1. Relative cohomology, Brieskorn and Petrov modules
Denote byA*, k =0, 1, ..., n, the module of polynomial-forms on the complex affine

spaceC” forafixedn > 1. If f € C[x1,...,x,] Alisa polynomial, then the collection
df A A¥=1 of k-formsdivisibleby df € A%, is aC-linear subspace id* , and the quotient

Al =AY jdf A AL k=1,.00n, (2.1)
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is called the space oélative k-forms. Since the exterior derivativé preserves divisibility
by df, therelative de Rham complex A%,

0 AL -5 A2 Lant Lo Lo, (2.2)

naturally appears. A formy € A% is calledrelatively closed if dw = df A n andrelatively
exact if w = df A& +d6 for appropriate € A* andg, § € AK~1. Therelative cohomology
groups H’} = H"(A}), relatively closedk-forms modulo relatively exact ones, are
important characteristics of the polynomjél

Together with the naturaC-linear structure, the relative cohomology grouﬂg‘f
possess the structure of a module over the iig] = f*Cl[x1, ..., x,]. This follows
from the identity

fodf nn+do)=df A(fn—0)+d(f0) (2.3)

meaning that relatively exact forms are preserved by multiplicatiofi.by

As is well-known, the highest moduIH’}, as well as allH:. with 0 <k <n —1, is
zero. Instead, we consider another important module, cBHeskorn module (lattice) [4,
6,7], defined as the quotient

By=A"/df ndA" 2, (2.4)
and theC[ f1-module Py, the quotient ofll (n — 1)-forms by theclosed, (n — 1)-forms,
Pr=A""/(df NA"?+dA"?) 2 H' (2.5)

The latter is an extension dﬁ!’}‘lz the quotientPf/H’}‘l is naturally isomorphic to

the finite-dimensionaC-space ’} = A"/df A A" L. In several sourcesPy is referred
to as thePetrov module. The exterior differential naturally projects asbgective map
d: Py — By which obviouslyis not a C[ f]-module homomorphism.

Clearly, a relatively exact (closed) form is exact (resp., closed) after being restricted on
any nonsingular level sgt~1(r) c C”, t € C sincedf vanishes on all such sets.

The inverse inclusion is considerably more delicate. Gavrilov studied thencase
2 and proved that for a 1-form with exact restrictions on all level curfe(r) c C2
to be relatively exact, it is sufficient to require that the polynonjidhas only isolated
singularities and all level curveg~1(r) be connected [9,10]. This result generalizes the
earlier theorem by llyashenko [13]. A multidimensional generalization in the same spirit
was obtained by I. Pushkar’ [17]. The affirmative answer depends on the topology of a
generic level seff ~1(r) (its connectedness far= 2 or vanishing of the Betti numbebs
for k between 0 and — 2, see [3,5]).

Both the isolatedness and connectedness assumptions can be derived from a single
assumption that the principal (quasi)homogeneous paof the polynomial f has an
isolated critical point at the origin: such polynomials are cadfad quasihomogeneous|[2].

For two variables with equal weights it suffices to require tfigactors as a product of
pairwise different linear homogeneous terms.
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2.2. Computation of relative cohomology

Besides the above question on the relationship between the algebraically defined
cohomology of the relative de Rham complex and analytically defined cohomology of
(generic) fibers, the natural problem of computli§ arises.

This problem was addressed in the papers [3,5-7,9,10] mentioned above. Using analytic
tools or theory of perverse sheaves dnanodules, their authors prove that under certain
genericity-type assumptions gfy the highest relative cohomology modlﬂij‘fl and the
Petrov moduleP are finitely generated over the ririgf 1. For semiquasihomogeneous
polynomials one can describe explicitly the collection of generatorB fgithe polynomial
formsws, ..., w € A"~ 1 such that any other forra € A" 1canbe represented as

1

o= piwj+df An+dE,
i=1

pi = pi(f) €CLf], n,&E € A"2, (2.6)

with appropriate polynomial coefficiengs that are uniquely defined.

The proofs of this and related results, obtained in either analytic or algebraic way, are
sufficiently involved. In particular, it is very difficult if possible at all to get an information
on (i) how the decomposition (2.6) depends on parameters, in particufatsilf depends
on parameters, and (ii) how to place expliantitative bounds on the coefficientp; ()
in terms of the magnitude of coefficients of the formn For example, to extract such
bounds from the more transparent analytic proof by Gavrilov, one should pliesa
bound on the determinant of the period matrix of the fotsp®ver a system of vanishing
cycles on the level curveg—1(r). The mere nonvanishing of this determinant is a delicate
assertion whose proof in [9] is incomplete (a simple elementary proof was supplied by
Novikov [14]). The explicit computation of this determinant for a specific choice of
the generators; was achieved by A. Glutsuk [11], but the answer is given by a very
cumbersome expression.

In the next section we suggest an elementary derivation of the formula (2.6) under the
assumption that the polynomiglis semiquasihomogeneous. This derivation:

(1) gives an independent elementary demonstration of the Gavrilov—Bonnet—Dimca theo-
rem for the most important particular case of semiquasihomogeneous polynomials;
(2) proves that the polynomial coefficiens and the forms;, & from the decomposition
(2.6) depend polynomially on the coefficients of the nonprincipal payt,girovided
that the principal quasinomogeneous parfakemains fixed,;
(3) yields the collection of the coefficientps, ..., p;) of (2.6) as a result of application
of a certainlinear operator to the formw. The norm of this operator can be explicitly
bounded in terms off (and the chosen set of generatdts}) and the degree

degw.
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3. Bounded decomposition in the Brieskorn and Petrov modules
3.1. Degrees, weights, norms

In this section we first consider quasihomogeneous polynomials from th&€fing=
Clx1, ..., x,] with rational positive weightav; = degx; normalized by the condition
w1 + -+ - + wy, = n to simplify the treatment of the most importasytmmetric case when
w; = 1. The symbol deg always means the quasihomogeneous degree.

Remark 1. Later on we will introduce additional variablés= (A1, ..., A,;) considered
asparameters, assign them appropriate weights and work in the extendedGjngi] =
Clx1, ..., Xn, A1, ..., Ay ]. Evenin the symmetric case the weights of the parameters will
in general be different from 1.

The Euler field associated with the weights, ..., w, is the derivationX =
> w;x;d/dx; of C[x]. By constructionXf = rf, r = degf € Q, for any quasihomo-
geneous polynomigt (the Euler identity).

We put deglx; = degx; = w;. This extends the quasihomogeneous grading on all
k-forms: in the symmetric case, the degree of a polynoritdrm will be k plus the
maximal degree of its coefficients. Obviously, deg degdw for any form, provided that
dw # 0. The Lie derivativeXw of a quasihomogeneous formof degreer by the Euler
identity isrw. Note that deg > O for all k-forms withk > 1.

Thenorm of a polynomial in one or several variables is defined as the sum of absolute
values of its (real or complex) coefficients. This norm is multiplicative. The norm of a
k-form by definition is the sum of the norms of its polynomial coefficients; it satisfies the
inequality|lw A n]| < @]l - [In]| for any two formsw, 7.

The exterior derivative operator is bounded in the sense of this norm if the degree is
restricted:||dw| < (Mmax w;)degw - ||w]||. In particular, in the symmetric cagilo| <
rllw|l, r = degw. Conversely, a primitive of an-from p can be always chosen bounded
by the same normju||.

Unless explicitly stated differently, a monomial (monomial form, etc.) has always the
unit coefficient.

3.2. Parameters

We will systematically treat the case when all objects (forms, functions etc.) depend
polynomially on finitely many additional parameters= (A1, ..., A,,). We will denote by
A¥[A], k=0, ..., n, the collection ok-forms whose coefficients polynomially depend on
A. For instance, the notatiope A"1[A] means that

n
n:Za,-(x,)»)dxl/\nJ\cffi A~ ANdxy
i=1
with polynomial coefficients; € C[x, A].
In such case the norm of forms, functions etc. will be always considered relative to the
ring C[x, 1], that is, as thé , |la;|| of absolute values of coefficients of the complete
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expansion inx, A. If the parameters, are assigned weights, we take them into account
when defining the degree of the form. To stress the fact that the norm is computed relative
to the ringC[x, A] and not tdC[x] (i.e., that the situation is parametric), we will sometimes
denote the norm by - ||,. For an instance|2i1x1|| = 2|A1| # 2= ||2A1x1]l 5.

3.3. Division by a quasihomogeneous differential df. The division modulus

If feClxy,...,x,]Iis aquasihomogeneous polynomial having shated singularity
at the origin, then the multiplicity of this singularity can be easily found by Bézout
theorem, since no roots of the system of algebraic equatigfdy; =0, i =1,...,n,
can escape to infinity. In the symmetric cdse (degf — 1)". Choose any monomial
basisps, ..., ¢; of the local algebr&[[x1, ..., x,11/(3f), (3f) = (;—L, e ﬁ). Then the

> dxp
monomialn-formsu; = ¢; dx1 A -+ - A dx, form a basis ofA’} =A"/df A A" L overC:
anyn-form p can be divided out as

!

;L:Zc,-m—i—df/\n, ¢ €C, neA"_l, (3.1)

i=1
with appropriate constants, ..., ¢; € C (coefficients of the “remaindery_c; ;) and a
polynomial formy € A"~ (the “incomplete ratio”). Moreover, if. is quasihomogeneous,
then the decomposition (3.1) contains only terms with @eg degu and deg =
degu — degf. This immediately follows from quasihomogeneity and the uniqueness of
the coefficients:;. From this observation we also conclude that all monomial forms of
degree< degf must be among;, and, moreover, any monomial form of degree greater
than maxdegu;, is divisible without remainder byf .
The choice of the monomial forms; spanning the quotient, is not unique, though the

distribution of their degrees is. Denote py= p(f) the maximal difference

o(f) =maxdegu; — mindegu; = maxdegy; — mindegy;. (3.2)
The following results are well-known.

Proposition 1. 1. Inthe symmetriccase p(f) <= (r — 1" [2, 85.5]
2. Inthe bivariate case n = 2 theinequality p(f) < r = degf holdsif and onlyiffisa
“simple singularity” of one of the following types,
A f=xiT 428, k=2
Dy: f :x%xz—f—x’z{_l, k>4,
Ee: f =xf—|—x§,
E7 f =xf+x1x§’,
Eg: f =xf—|—xg,

seeed., [2, 813, Theorem 2]
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From these observations it can be immediately seen that the division with remainder

(3.1) is a bounded linear operation in the space ofdtirms of restricted degrees.

Lemma 1. Assume that f € A° is a quasihomogeneous polynomial having an isolated
critical point of multiplicity / at the origin, and the monomial n-forms p1, ..., u; € A"
formthebasisof A”,.

Then there exists a finite constant M < +oo depending only on f and the choice of the
basis {1;}, such that any n-form i € A can be divided with remainder by df asin (3.1)
subject to the follouring constraints,

degn < degu —degf. Il + ) leil < Mljpl. (3.3)

If theform u is quasihomogeneous, then degn = degu — degf and ¢; can be nonzero only
if degu; = degpu.

The constand/ depends on the choice of the monomial bdgig. The optimal choice
of such basis (out of finitely many possibilities) results in the smallest viue M (f)
that depends only oif. We will always assume that the basis;} is chosen optimal in
this sense.

Definition 1. The minimal constantM ( f) corresponding to an optimal choice of the
monomial basis of the quotiem’} is called thedivision modulusof the quasihomogeneous

polynomial f € A°.

Corollary 1. Assume that « € A"[A] depends polynomially on additional parameters A.
Then u can be divided with remainder by df so that the remainder and the incomplete
ratio depend polynomially on A with the same division modulus,

ci=ci(M)eCAl, i=1,...,n, ne A"l
Il 4+ leill < MOl 1= 1

Proof. Every monomial from the expansion gfin x, A can be divided out separately by
df which is independentof. 0O

Proof of Lemma 1. Let M be the best constant such that (3.3) holds for all monomial
n-forms with dege < [. It is finite since there are only finitely many such forms. In
particular, since any form of degreées divisible bydf by Proposition 1, the respective
fractionn will be of the norm at mosM || .||

Writing an arbitrary monomiat-form of degree- [ as a product of a monomial form
of degred times a monic monomial functiatf € C[x], « € Z', we construct the explicit
division formulas (without remainders) for all monomial forms of higher degrees. The
division constant will be given by the same numBér since multiplication by a monic
monomial preserves the norms of bdh|| and||7n]|.

All the other assertions of the Lemma are well-known [2]1
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3.4. Computability of the division modulus

Despite its general nature, the above proofis constructive, at least in the low dimensional
casesn = 1, 2, allowing for an explicit computation of the division modulus in these
cases.

The one-dimensional case is trivial: for the monomjigk) = x” the division modulus
M(f) is equal tor and it can be obviously recalculated for any other principal
homogeneous part. The “special case” of a multivariate polynofitied = x] + - - - + x;,,
see [12], is reducible to the one-dimensional situation. In this tase — 1)” monomial
forms x%dx1 A -+ Adx, with 0 < oy < r — 1 form the basis, and the corresponding
division modulus is again equal to This example admits an obvious generalization for
guasihomogeneous “special polynomials” with different weights.

For a bivariate truly homogeneous polynomigél(i.e., in the symmetric case, the
most important for applications), the division modulus for all higher degree forms
(degu > 2degf) can be explicitly computed as the norm of the inverse Sylvester matrix
for the partial derivative%i1 and% [16]. The “guasimonic” polynomials, introduced in
that paper, are defined by the conditidf( ) = 1, which in many respects is a natural
normalizing condition for multivariate polynomials.

The choice of the basic forms even in the symmetric bivariate case deperfdsvbiie
it is generically possible to choose themg3x5?dxy A dxp with 0 < a1 2 <r — 1, fora
badly chosernf some of these forms of degree greater thandegf can become linear
dependent moduldf, requiring a different choice. In order to avoid making this choice,
one may allow aredundant (i.e., linear dependent) collection of generating forms
Choosing all monomial forms of degree2r makes the corresponding division for low
degree forms trivial, so that the division modulds 1) is determined only by division of
forms of higher degree. Details and accurate estimates in the bivariate symmetric case can
be found in [16].

To describe the division modulug (1) in the case of: > 3 variables is a considerably
more difficult problem, though it still can be reduced to analysis of finitely many monomial
divisions. One can (at least, theoretically) expr&ssf) via lower bounds for minors of
certain explicitly formed matrices.

Remark 2. It is worth mentioning that the division moduldg( 1) is not directly related
to the norm| f||, even in the symmetric bivariate case. If deg: / andu = df A n,
then ||l < Ildf]l lInll. On the other handju| > M~1||n| by the definition of M (f).
Therefore

M) = Nafiit =17t r=degf,

that is, the division modulus for a polynomiglwith the small norm must be large. The
inverse is not true: a polynomial with a small division modulus can have a very large
norm. Simple examples can be constructed in the fgitn) = ¢[[; (x1 — A;x2) with
sufficiently close values of the paramet@fse [0, 1] and a suitably chosen normalizing
constant e C.
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3.5. Divisionby f

We begin by establishing an analog of the Euler identity in the Brieskorn module. It
plays the central role for explicitly constructing the decomposition (2.6).

Lemma 2. Assume that f € A is a quasihomogeneous polynomial of degree r. Then any
polynomial n-formdivisibleby df in A™, canitself bedivided by f inthe Brieskorn module
B ;. 1t also admits a polynomial primitive divisible by f.

In other words, for any form n € A"~ there exist four forms u € A", w € A" ! and
£, € A"? such that

df Anm = fu+df ndE (3.4)

=d(fw)+df ANdE'. (3.5)

The degrees of all forms u,w,£&,&’ are all equal to degn in case the latter is
guasihomogeneous.

The division operation is always well-posed in the sense that the decomposition (3.5)
can be always chosen to meet the inequality

loll 4 11"l < (n + 3) degn - [In]| (3.6)
(asimilar ineguality can be proved also for the first decomposition (3.4)).

Proof. Note that for any:-form i € A" and any vector field& onC”",

X =(xdf)p=df Nixp,

where i is the inner antiderivative, sine&f A u© = 0. We will need this formula for the
case wherX is the Euler vector field.
To prove the first divisibility assertion (3.4), we have to show that the identity

df An=fu+df ndé& (3.7)
can be always resolved as a linear equation with respeetadndé for any choice ofy.
Using the Euler identity for functions and the above remark, we reprg&eras a form
divisible bydf,

fu=rtXHp=rtixdH)p=df nr-tixp. (3.8)
Eq. (3.7) will obviously be satisfied if

n=r"tixp+dt,

that is, when; is cohomologous te~tix 1. This last condition is equivalent to the equality
between the exterior derivatives

dn=r"Yixp=r"1Xpu,

since by the homotopy formuldjxu = Xu — ixduw = Xu. Thus resolving Eq. (3.7) is
reduced to inverting the Lie derivativé on the linear space af-forms.

We claim that the linear map — Xu of A” to itself, is surjective (and obviously
degree-preserving), guaranteeing thus solvability of the last equation for any chaice of
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Indeed, any monomial-form p, = x%dx1 A --- A dx, IS an eigenvector ok with the
strictly positive eigenvalue deg, > n (recall that the weights); are normalized so that
the volume formdxy A --- A dx, is of degreen). ThusX is surjective onA” (actually,
bijective) and one can chooge= r X ~1(dn). The norm of the inverse operat&ir ! does
not exceedr/n) degn in the symmetric case. The proof of (3.4) is complete.

To prove the second assertion (3.5), we transform it using (3.8) as follows,

df An= fdo+df A(o+dE)=r"Ydf Nixdw+df A (w+ dE'),
which will be obviously satisfied if

n=r"tixdo + o +d&'. (3.9)
Taking the exterior derivative as before, we reduce this equation to the form

dn= ridixdo +do=r"*Xp+p, p=do.

Solvability of this equation with respect to, (and hence taw) for any left-hand side
dn follows from invertibility of the differential operator—1X + 1 on the linear space of
polynomialrz-forms (1 stands for the identity operator). Exactly as in the previous situation,
all monomialn-forms are eigenvectors far —1X + 1)|4» with the positive eigenvalues,
all greater or equal to~1n + 1, hence—1X + 1is invertible onA” andw can be chosen
as a primitive ofr X + 1)~ 1dn.

To prove the inequality between the norms, notice that dw satisfies the inequality
el < lldnll < degnlinll. A primitive w can be always take of the norfiw| < ||dw|.
Together this yield§w| < degn||n|l.

The norm||¢’|| can be found from (3.9). Clearlyljx || < n||| because of the choice
of the weights deg; which satisfy the conditiory  w; = n. Substituting this inequality
into (3.9), we obtain

IE"N < Id&"Il < lInll + nlldwll + o] < (n +2) degnlinll,

sincedegp =degn >1. O
3.6. Generating Petrov and Brieskorn modules: the algorithm

Division by the gradient ideal together with the Euler identity as formulated in
Lemma 2, allows for a constructive proof of the representation (2.6) for an arbitrary semi-
quasihomogeneous polynomial

Let F = f + h € C[x1,...,x,] be a semiquasihomogeneous polynomial with the
principal quasihomogeneous paftand the lower-degree pakt Denote as before by
U1, ..., € A" the forms spanningl’} = A"/df A A""! (note that the quotient is
computed using only the principal paf). We claim that:

(1) anyn-form u € A" can be represented as

I
u=> qipi+dF nd¢, g eC[F], {€A"2, (3.10)
i=1
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(2) any(n — 1)-formw € A"~* can be represented as
I
w=Y piwi+dF A& +dE', pieC[F], £& €A (3.11)
i=1
The construction of the decomposition (3.10) begins by divisiqnloy df as explained
in Lemma 1:

w=) cimi+df An, ¢ eConed"

If degu < r = degf = degF, then the incomplete ratio is in fact absemt= 0, and we
arrive to a particular case of (3.10) with = ¢; of degree 0 (constants).

If degu is higher thanr, we transform the terndf A n using Lemma 2 and then
substitutef = F — h:

p= ciwi=fu' +df Nde=Fp' +dF nde =", p"=hy' +dhnde.

Obviously, bothu” andu” are of degrestrictly inferior to degu, which allows to continue
the process inductively. Assuming that the reprasentations (3.10) are known far'both
and ., we substitute them into the last identity and after collecting terms arrive to a
representation for. In the symmetric case the inductive process cannot take more than
degu — r steps. It is a direct analog of the process of division of univariate polynomials,
see also [16].
To construct (3.11), we dividéw by df. If degw < r, then the incomplete ratio is
absent and we obtain a special kind of (3.11) exactly as before.
Otherwise in the division with remainder
I
do=> cido;+df An. c€C,neA" "
i=1
substitutedf A n =d(fo') +df Ad& and pass to the primitives. We obtain
o= ciwp = fo +df NE+dE
= Fo' +dF ANE+dE — o, o =ho' +dh NE. (3.12)
For the same reasons as before, the degree$ of’ are strictly smaller than deg hence
the process can be continued inductively.

Remark 3. In a somewhat surprising way, it turned out impossible to transform directly
the decomposition (3.10) for the foriaw € A™ into (3.11) forw.

3.7. Effective decomposition in the Petrov module
The construction above is so transparent that any qualitative as well as quantitative
assertion concerning these expansions, can be immediately verified.

We will show that

(1) all terms of the decomposition (3.11) depend polynomially on the lower order terms
of F, assuming that the principal part if fixed, and
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(2) the well-posedness of the construction is determined solely by the division modulus
M (f) of the principal homogeneous part.

In order to formulate the result, considegeneral semiquasihomogeneous polynomial
with the prescribed principal quasihomogeneous part,

F,)=f@)+h@1), hx.D= Y  Afik), (3.13)
degf; <degf
wherefi, ..., fm € Clx1, ..., x,] are all (monic) monomials of degree strictly inferior to
r = degf, arbitrarily ordered. We treat the coefficients ..., A,, as the parameters of the
problem, assigning to them the weights so that

degr; +degf; =degf =r foralls.

This choice makes the entire polynomiabuasihomogeneous of the same degriethe
ring Clx, Al = C[x1, ..., xn, A1, ..., A]. Instead of the ringC[ F], the coefficienty; of
the decomposition (3.11) will belong to the rififj 7, A] and their quasihomogeneity will
be understood in the sense that the formal vari@bige assigned the weight dég=r.

Theorem 1. If the quasihomogeneous polynomial f € C[x] has an isolated critical point
at the origin and F € C[x, A] is a general semiquasihomogeneous polynomial (3.13)
then any polynomial quasihomogeneous (n — 1)-form w € A" ~1[A] of degree k can be
represented as

I
o= piwj+dF NE+dE. (3.14)
i=1

The coefficients p; € C[F, 1] and the (n — 2)-forms &, £’ € A"?[A] are all polynomial
and quasihomogeneousjointly in F, A (resp., in x, 1) of the degreesk — degw;, k — r and
k respectively.

The norm of the coefficientsrelative to thering C[F, A1, ..., A,y ] is explicitly bounded
in terms of n, r, k and the division modulus M (f). In particular, for the symmetric case
when degx; =--- =degx, =1,

!
D olpil <KAHFCTIMY ol k=degw, M=M(f), |-l=1"IIx (3.15)
i=1

Remark 4. The fact that the formv is quasihomogeneous, is notimportant: any polynomial
form is the sum of quasihomogeneous parts, each of them being divisible separately.

Remark 5. Even in the symmetric case, the degrees of the parameters are different
from 1: deg; = r — degf; will take all natural values from 1 te.

Proof of Theorem 1. The first assertion of Theorem 1 (on polynomiality and quasihomo-
geneity) follows from direct inspection of the algorithm described above, since all trans-
formations on each inductive step (exterior differentiation, divisio fywhich is inde-
pendent of, and the Euler identity iPr) respect the quasihomogeneous grading.
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The only assertion that has to be proved is that on the norms. In order for a sequence of
increasing withk real constant€’; > 0 to be upper bounds for the decomposition (3.14),

l
> llpill < Crlloll,  for all » with dego < &,
i=1

they should satisfy a certain recurrent inequality which we will instantly derive from the
suggested algorithm.

Denote by p; € C[F, ] (resp., byp; and p!) the polynomial coefficients of the
decomposition of the forms (resp.»’ andw”) from the identity (3.12): since the degrees
of bothw’, " are less thak and the sequendg, is increasing, we have

Dopil < Cralle' . Y I/l < Ceeallw”].
i i

Multiplication by F corresponds to a shift of coefficients in the decompositian’ oThus
from (3.12) follows the inequality

D oIpll <D el + ) Ipil+ D Ip Il < lleill + Cr-a(le' Il + " I).
i i i i i

By Lemma 2,||o’|| < (n + 3)k||n||. The norm of the inferior pari is by definition equal
to the number of terms, that is, the number of monomialsvariables of degre€ r — 1.
Therefore|h|| < " and||dh| < r*+1. This implies an upper bound fde”|:

lleo” Il < 'l + IdRINE N < (Rl + IdR Dl ||+ 151D < 27"+ Dk

by Lemma 2. Finally,|[n]l + Y _ llcill < M|lw| by definition of the division modulus
M = M(f). Assembling all these bounds together, we conclude that

> Upill < Mol + Ci-1- 37"+ + Dkl

Thus the increasing sequencg > 1 will form upper bounds for the norms of the
coefficients of decomposition for polynomial forms of deggek, provided that

Cr > AkCr_1, A=&"TY(mn+3M >r"3M

(notice that > 2), which can be immediately satisfied if we put
Cr = klrk 43 pk,

This proves the inequality for the normsg

Note that the bound established in this theorem, is polynomi# ia M (f) and (for a
fixedr) factorial ink = degw, that is, only slightly overtaking the exponential growth.

3.8. Nonhomogeneousdivision
By a completely similar procedure one can describe the result of division by a

nonhomogeneousdifferentiald F as a sequence of divisions by the principal homogeneous
partdf.
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More precisely, ifu € A"[A] is a polynomialn-form polynomially depending on
the parameters.s, ..., A, and F = f + Y As f; is as in (3.13), then there exists a
representation

!
w=Y =ciMui+dFAn, c1.....c, €CAL ne A" A, (3.16)
i=1
polynomially depending on parametersulfis quasihomogeneous, then so areandn,
with dege; = degu — degu; and deg; = degu — degF. Moreover, the ratid||c; ||, +
I711) /1]l bounded in terms of dggand the division moduluaZ( f) of f only.
Indeed, dividingu by df yields

M=Zcim+df/\n=ZCiui+dF/\n—u’, W =dhAn,

whereh = F — f, hence defj < degf = degF and therefore deg’ < degu. This means

that the process of division can be continued inductively. Sipcé < ||4]||Inll const,,
M(f)|\ull, the norms of the remainder and the incomplete ratio are bounded in terms of
M (f) and the degrees. In the symmetric case the bound looks especially simple.

Proposition 2. In the symmetric case of all weights equal to 1, the division of a form of
degree k = degu is bounded as follows,

I
Il + Y lleill < Me(F) - il Mi(F) = kr"®=0 (M) .
i=1

Proof. In this case|k| < r", so that|ju/|| < Mr*||w|, and finally 5] + Y |lcill <
M| pl|(L+ K +-- -+ K9€94—") \whereK = Mr". Thus the norm of the nonhomogeneous
division operator obviously does not exce®d (kr**—")). This expression is exponential
in k = degu and polynomial inM = M(f). O

4. Picard-Fuchssystem for Abelian integrals

Consider a quasihomogeneous polynomjale A® of degreer = degf having
an isolated singularity of multiplicityl at the origin. As before, lejs, ..., u; be
generators 01‘4’} overC andwsi, ..., w; their monomial primitives. Consider the general
semiquasihomogeneous polynonfiak= f+Y 7' A, fs € C[x, A] as in (3.13) with the fixed
principal partf, whose coefficientss, ..., A,, are the natural parameters. Consider in the
parameter spade” the locusX such thatfon. € C™\ X' the level sefx € C: F(x, 1) =0}
is a nonsingular algebraic hypersurface. Denotel'by I" (1), A ¢ X, any continuous
family of (n — 1)-cycles on the zero level. The Abelian integrals

Il()\')z / 0)[, i=la"'9la (41)
Il

are well defined multivalued analytic functions @\ X. In this section we will derive a
Pfaffian system of linear equations satisfied by these integrals.
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We will always assume that the weights of the parametgrare chosen so that
becomes a quasihomogeneous polynomial,in of degreer: degr; = r — degf. The
enumeration of the monomialg begins with the free ternf; = 1 of degree 0 so that
the respective coefficient; is necessarily of degree Recall thatp(f) is the maximal
difference (3.2) between the degrees of the founs

Theorem 2. There exist (I x I)-matrix polynomials Co(A), C1(1), ..., Cry(X),
CO(A') = A':I. : 1+ C/()\'27 R }\m)9

degCo<r+p(f), degC <degf +p(f). s=1,....m 4-2)
(the degrees are quasihomogeneous), such that on C"\ X
ad
(CoI)=CsWI, s=1,....m. (4.3)

O\
The norms ||C; || are bounded by a power of the division modulus M (f).

In other words, the column vector functidiia) on the complement t&’ satisfies the
matrix Pfaffian equation

m
dIr=e1, 2=c;t (—dco+ZCs dxs>, (4.4)
s=1

with a rational matrix-valued 1-forf2 having the poles only on the locus = {detCo =
0} c C™. Hered is the exterior derivation with respect to the variablgsonly: for
c(\) €ClAl, de=Y", 0;;? dhs.

The proof is constructive. The description of the matrix polynomé@lér) is given

below.

4.1. Gelfand—Leray derivative with respect to parameters

Lemma 3. If w € A" isa polynomial formwith constant (independent of 1) coefficients,
and n; € A"~1[A] any form satisfying the identity

fsdwo=—dF Anj, (4.5)
(recall that f; = £), then

v =]
) YT

ro) o)

Proof. To derive this formal identity, we express; = H(x) from the equation
F(x, As) =0, assuming all other parameters fixed, and apply the Gelfand—Leray formula
to H: for (4.5) to hold, it would be sufficient iff = n, satisfies

do=dH N7.
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It remains to observe that by the implicit function theorem and the definition of the
parameters,
oF oF
dF+ —dH=0, —=f;.
+ s s fs
Here and abové stands for the exterior derivative with respect to the “spatial” variables
X1y ..., Xp. O

The standard Gelfand—Leray derivative appears for the parameter occurring before the
constant terny; = 1 (modulo the sign).

4.2. Derivation of the system: beginning of the proof of Theorem 2

Divide each of the form& u; € A*[A], u; = dw;, by dF with with the remainder
coefficients and the incomplete ratios polynomially depending as in Proposition 2:

l

F,bLl‘ZdF/\T]i-f-ZCij/,Lj, cij = cij(M). (4.6)
=1

Clearly, the quasihomogeneous degreeddemn C[A] is equal tor 4 degu; — degu; <
p(f) +r (ci;j = 0if the difference is negative).

Let Co = Co(A) be the(/ x [)-matrix polynomial with the entries;;(1). Sinced F
does not depend ary (the free term off’), while the only term depending on in Fu;
is A1ui, the dependence afp on A1 can be immediately described: the corresponding
remainder coefficients; (11) for the division ofiyu; by d F form the scalar matrixs - 1
(the incomplete ratio is absent).

Sincec;; do not depend o (being “constants depending on the parameters”), the
identity (4.6) implies that

d(Fa),-—Zcija)j>=—dF/\(—a),-—77,-), i=1,...,1.
J

Let
wl’-,sz—fs(a)i—i—m), i=1....1,s=1....m.

All these forms are polynomial and polynomially depending on parameters. Their degrees
can be easily computed: dgg= degu; = degw;, degw; ; = degf; + degu;.

By the parametric Gelfand—Leray formula (Lemma 3), the partial derivatives of integrals
of the forms Fw; — Zj cijw; over the cycleI’(,) C {F =0} c C" are equal to the
integrals of the form&)l’.,s. Since the termg w; vanish onr" (1) for all values ofix, we
have

0
aT(ZcU-(x)Ij(x)) =0 0= ol
S j

ro)
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The formsw; were chosen to generate the Petrov modtjeoverC[F, 1], so each of the
Abelian integralsf wf’,s can be expressed as a polynomial combination,

!
Iy = Zpij,slj» pij.s € CLF, ],
j=1

for all i, s. Denote byC, = C, (1) the polynomial(! x [)-matrix function formed by the
free terms of the polynomials;; (-, 1):

!
Cs() =[pijs(F. MlF=0]; ;3. s=1....m.

All other terms, being divisible by, disappear after integration over the cycle on the
level surface F = 0}. Collecting the terms, we conclude that the partial derivatives of the
column vector functiod (\) = (I1(%), ..., [;(A)), I; = § w;, satisfy the system

d(Col)
s

Cil, s=1,...,m.

4.3. Boundsfor the norms. end of the proof of Theorem 2

The construction described above, does not yet imply the assertion on the norms of the
matrix polynomialsCo, ..., C;, for only one reason: multiplication by = f + h, h =
> Xs fs, is not a bounded operator. While multiplication byincreases the norm at most
by |4, = const,, (not exceedingr — 1) in the symmetric case), the norf|| cannot
be bounded in terms d¥ ( /), as required in the theorem (see Remark 2).

To correct this drawback, exactly as in [16], the division line (4.6) should be first
prepared using (3.8) as follows,

Fui=(f +hui=df An;+hpi =dF An; + u,

. 4.7
mp=r~tixpi, W =hu —dh A, “.7)

where (we again make all estimates for the symmetric case only),

il < /Ol il < IR +r) /P [l

Then formsy; should be divided by/ F with remainder: since their norms are bounded
by a constant depending only anr (the norms of the monomial forms; are equal to
1), the results of such division will be bounded by suitable power® 0f) by virtue of
Proposition 2.

Collecting the terms, we conclude that the coefficients C[A] of the corresponding
remainders in (4.6) and the incomplete ratips A”~*[1] will be bounded by expressions
polynomial inM (f).

The rest of the derivation remains unchanged and the estimates completely straight-
forward: the polynomial bounds fay; imply those of the polynomial coefficienjs; ; €
C[F, A] by Theorem 1. This proves the last assertion of Theorent2.
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5. Observations. Discussion

The algorithm of derivation of the Picard—Fuchs system in the Pfaffian form is so
transparent that many things become obvious.

5.1. Bounds

Though the matrix polynomial€ (1) are not quasihomogeneous (their entries have
different degrees), the determinant @gti) is a quasihomogeneous polynomial from
C[A]. Its degree can be immediately computed/asrom the explicit representation
(4.2). This same representation proves that this determinant, equgttpolynomial in
(A2, ..., An), does not vanish identically, so that the system (4.4) is indeed meromorphic.

Moreover, the norm of the inverse matr@gl can be explicitly majorized in terms of
the distance to the critical locus. One possibility to do this is to consider the sektien$
and apply the Cartan inequality as in [16], using the quasihomogeneity.

5.2. Spectrum

The spectrum offg(A) can be also easily computed: it consists of/alitical values
of the polynomial F(x, 1), at least whenF' (-, 1) is a Morse polynomial. To see this,
it is sufficient to evaluate both parts of (4.6) at anylo€ritical pointsas,...,qa; €
C". The column vectors; = (¢1(a;), ..., ¢1(a)", i =1,...,1, are the corresponding
eigenvectors (recall that; = ¢; dx1 A -+ - Adxy).

5.3. Hypergeometric form

Restricting the Pfaffian system (4.4) on the one-dimensional complex lipes
const s = 2,...,m, parameterized by the value ot A1, one obtains a parameterized
family of Picard—Fuchs systems of ordinary differential equations. In this case only the
matrix C1 is relevant.

By Theorem 2, it is quasihomogeneous of degtee(f) jointly in the variables
M, ..., . If p(f) <r =degry, thenC1 cannot depend od; and hence the Picard—
Fuchs system in this case will have the hypergeometric form (1.1). By Proposition 1, this
happens only whetf is a simple quasihomogeneous polynomial of one of the types listed
there. For hyperelliptic polynomials (the singularity of the typge this was well-known,
see [16]. In turn, the hypergeometric form implies that all singular points of the Picard—
Fuchs system areuchsian (with simple poles of the rational coefficients) whei, A) is
a Morse polynomial.

5.4. Logarithmic poles
For the full Pfaffian system (4.4) the polar locus, occurring wher€ggt) vanishes,

is of multiplicity 1 (it is sufficient to produce just one value of the parametesach that
F (-, ) has simple critical points). Yet it is not the characteristic property.



S Yakovenko / Bull. Sci. math. 126 (2002) 535-554 553

A rational 1-formw analytic outside a hypersurfac® = {g = 0} c C™, g being a
polynomial without multiple factors, is said to havel@arithmic singularity on this
hypersurface, if botlgew anddg A w extend as polynomial forms acro&s on C™.

This is only one of several close but non-equivalent definitions, probably the strongest
possible. It ensures that the restrictions®@fon any holomorphic curve cutting X’ at
a pointa, has a Fuchsian singularity with the residue independent on the choiee of
depending only on the poiat

The basic question concerning the system (4.4) is whether this system itself or a suitable
gauge transformation of this system with a rational matrix gauge function, are Fuchsian
with bounded residues. If the answer is positive, this would mean a positive solution of the
infinitesimal Hilbert problem.

Using symbolic computation for implementing the algorithm, we discovered that in
the hyperelliptic case (singularity of the typg) the Picard—Fuchs system (4.4) indeed
has only logarithmic poles until the degree= 6 of the polynomialf = x’l‘ + x%. This
naturally suggests the following conjecture.

Conjecture. All singularities of the Picard—Fuchs system (4.4) are only logarithmic poles
on X’ = {detCy = 0}.

It would be interesting to verify this conjecture for other simple singularities listed in
Proposition 1, perhaps first by symbolic computation.

The next step could be to study the behavior of residue of (4.4), the matrix function
defined on the regular part &’, checking whether it is bounded near singular points of
the discriminant.

5.5. Sngular perturbations

The polynomial dependence of the matri€gson the lower degree coefficients of the
polynomial F = f + - - - fails for the coefficients of the principal part. Though apparently
rational, this dependence certainly must exhibit singularities whetegenerates into a
guasihomogeneous form with nonisolated singularities. The Picard—Fuchs system in such
cases may have singular points correspondingtypical values of F. Their appearance
must somehow be related to the fact that the division modulus explodes when such
degeneracy occurs, thus creatingsiagularly perturbed system of linear differential
equations. These phenomena seem to be worth of detailed study.
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