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Rasiowa–Sikorski deduction systems
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Abstract

A Rasiowa-Sikorski system is a sequence-type formalization of logics. The system uses in-
vertible decomposition rules which decompose a formula into sequences of simpler formulae
whose validity is equivalent to validity of the original formula. There may also be expansion
rules which close indecomposable sequences under certain properties of relations appearing in
the formulae, like symmetry or transitivity. Proofs are /nite decomposition trees with leaves
having “fundamental”, valid labels. The author describes a general method of applying the R-S
formalism to develop complete deduction systems for various brands of C.S and A.I. logic,
including a logic for reasoning about relative similarity, a three-valued software speci/cation
logic with McCarthy’s connectives and Kleene quanti/ers, a logic for nondeterministic speci/-
cations, many-sorted FOL with possibly empty carriers of some sorts, and a three-valued logic
for reasoning about concurrency. c© 2002 Elsevier Science B.V. All rights reserved.

Keywords: Rasiowa-Sikorski; Deduction system; Decomposition rule; Decomposition tree;
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1. Introduction

The aim of this paper is to advertise a powerful and <exible, yet simple methodology
of developing deduction systems for various logics based on the analysis of their
semantics.The paper will present a general outline of this methodology, and show
examples of its applications to various brands of computer science logics.

The said methodology is inherently connected with the semantics of the given logic,
and its key concept is to obtain an adequate and complete proof mechanism for
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the logic in a systematic way from the said semantics. This is achieved by “mir-
roring” the semantics of all the logical constructs (connectives, quanti/ers, modali-
ties, etc.) through invertible rules operating on sequences of formulae of the logic.
The methodology is based on the use of a simple and universal deduction mech-
anism developed by Polish logicians about 50 years ago: the Rasiowa–Sikorski
(R–S) deduction system [24]—and hence from now on it will be called R–S
methodology.

An R–S deduction system is a sequence-type formalisation of logics in a natural
deduction style. To prove validity of a complex formula, we decompose it step by
step into a sequence or sequences of simpler ones, the validity of which is equiva-
lent to that of the original formula. The resulting decomposition tree has the structure
of a /nitely branching tree with vertices labelled by sequences of formulae; the tree
is a proof if it is /nite and all its leaves are labelled with “axioms” of the logic,
called fundamental sequences. The R–S system is described in more detail in the next
section.

From the semantic viewpoint, an R–S system is dual to the well-known tableau sys-
tem of Beth [1]; in fact, the concept of developing a proof system through analysing
the semantic is common to both systems. What is more, it can be argued that R–S
systems and tableaux are, in fact, equivalent from the proof-theoretical viewpoint—
though the diJerence in presentation might obscure this fact at
/rst.

In spite of this, there is a large disparity in popularity of both these deduction mecha-
nisms: the tableau systems have gained much popularity due to their widespread use in
proof automation, whereas R–S systems have remained relatively unknown. However,
over the years, the R–S methodology based on the use of such systems has—in the
author’s experience—proved to be a very convenient and powerful tool for developing
proof mechanisms for multifarious formal systems connected with software speci/ca-
tion and veri/cation, logics of information systems, as well as other issues related to
CS logics.

The R–S methodology has four essential advantages:
• A clear-cut method of generating proof rules from the semantics: For all the formula

constructors, we just give the condition for the resulting formula to be satis/ed, and
the condition for it to be not satis/ed.

• The resulting deduction system well suited for automated deduction purposes.
• A standard and intuitively simple way of proving completeness by constructing a

counter-model for a nonprovable formula out of its “wrong” decomposition tree in
an R–S system.

• An almost automatic way of transforming a complete R–S system into a complete
Gentzen calculus system.

In the paper we describe the R–S methodology and show how it can be applied to for-
malize various types of logics encountered in computer science. Concrete examples of
such applications coming from the author’s past work in the area of many-valued logics,
nondeterminism, similarity, indiscerniblity and complementarity, as well as many-sorted
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/rst-order logic with empty carriers of some sorts, are given. Finally, a new result con-
cerning formalisation of a temporal logic with a three-valued semantics for reasoning
about concurrency is presented.

The framework of the paper is based on [15], with new results concerning the
above-mentioned temporal logic and complementarity logics added. There is also a
new chapter on the transformation of an R–S system to a Gentzen calculus of se-
quents subsuming earlier work and completing the presentation of the R–S
methodology.

2. Rasiowa–Sikorski systems, their inherent mechanisms and auxiliary tools

In the section we shall describe the basic concept underlying the R–S methodology—
the R–S deduction system mentioned in the introduction. Besides giving a formal de/-
nition of such a system, we shall also try to point out the mechanisms used within R–S
systems to handle some basic logical constructs, together with some auxiliary technical
tools helpful in developing such systems.

2.1. Fundamentals of Rasiowa-Sikorski deduction systems

A Rasiowa–Sikorski (R–S) deduction system belongs to the broad class of the so-
called “natural deduction” systems. It consists of
• decomposition rules for sequences of formulae (“inference rules”),
• fundamental sequences (“axioms”).
The system is used for constructing a decomposition tree of a formula (or /nite se-
quence of formulae) by repeated applications of decomposition rules. The rules break
a complex formula into a sequence or sequences of simpler ones, the validity of which
is equivalent to that of the original formula. If the resulting tree is /nite and all its
leaves are labelled by fundamental sequences (“guaranteed” to be valid), then the for-
mula (sequence) is said to be provable.

Let us now de/ne the basic notions of the R–S system. We assume the context
of an arbitrary formal language with well-de/ned syntax and semantics, in which the
notion of a model incorporates a valuation. Satisfaction of a formula ’ in a model M
is denoted by M |=’, and the set of all formulae—by F.

De�nition 1. A sequence � =’1; ’2; : : : ; ’n of formulae is satis0ed in a model M
(M |=�) iJ M |=’i for some i; 16i6n, and valid (|=�) iJ M |=� for each M .

Thus, we see that the comma in sequences of formulae is equivalent to meta-
disjunction on the level of satisfaction in a model (incorporating a valuation).

Fundamental sequences form a subclass of valid sequences, i.e. any fundamental
sequence is satis/ed in every model, and are de/ned separately for each concrete logic.
Roughly speaking, they are chosen as sequences “guaranteed to be valid” by force of
some basic law of the semantics of the logics, which gives rise to a simple criterion
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for recognising such sequences. In classical /rst-order logic, a fundamental sequence is
any sequence which contains both a formula and its negation. The underlying semantic
law is, of course, the fact that either a formula or its negation have to be satis/ed in
a model incorporating a valuation.

A decomposition rule is an expression of the form

�

�1 |�2 | : : : |�n

where all the �’s are sequences of formulae. � is called the conclusion of the rule,
and �1; �2; : : : ; �n—its premises. A rule is sound provided its conclusion is valid iJ
all its premises are valid.

Note that the notion of rule soundness used traditionally in case of R–S systems
is stronger than usual. Indeed, sound decomposition rules are equivalent, or invertible
rules leading from valid sequences to valid sequences in both directions—both “down-
wards” and “upwards”. Intuitively, a more complex formula or sequence of formulae
� is replaced by some simpler sequences �1; : : : ; �n whose simultaneous validity is
equivalent to validity of �. This invertibility of rules is symbolised by a double hori-
zontal line in notation of the rules. What is more, the branching | in rules corresponds
to meta-conjunction on the validity level.

An indecomposable formula is, intuitively, a formula not subject to further decom-
position. Its formal de/nition is tailored to a concrete logic; in classical /rst-order logic
it is just any literal. A sequence of formulae is said to be indecomposable if it only
contains indecomposable formulae.

Any decomposition rule can be presented in the following more detailed form:

�′; �; �′′

�′; �1; �′′ |�′; �2; �′′ | : : : |�′; �n; �′′

where �′ is an indecomposable sequence of formulae. As we see, �′; �′′ serve only
as the context, and the actually decomposed subsequence (or just a formula)
is �.

Hence, any decomposition rule is actually applied to the leftmost decomposable
formula or subsequence of formulae, which determines the decomposition order for a
given sequence of formulae. This is part of a “control mechanism” embedded in an R–S
system aimed at facilitating automated deduction by providing an implicit deterministic
algorithm for generating a decomposition tree of a formula (see also Sections 2.2
and 2.5). Moreover, all indecomposable formulae are inherited by the next node in the
decomposition tree, and so further down the branch.

The fundamental strategy of developing decomposition rules is, roughly speaking,
as follows: for each complex (i.e. decomposable) formula 	, and each logical value
k, we must have a decomposition rule expressing validity of the formula equivalent
to the statement “the value of 	 is k” in terms of simultaneous validity of some
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sequence(s) of formulae representing statements of the type “the value of 	i is ki”,
where 	i are some simpler formulae (usually subformulae of 	), and ki are some logi-
cal values. Of course, such strategy can only be implemented if the semantic conditions
quoted above are expressible through formulae of a given logic, which amounts to ex-
pressibility of all the clauses constituting the de/nition of semantics through formulae
of the logic. Hence an R–S system can only be developed for the logics, the lan-
guages of which are expressive enough (for more discussion, see the section on R–S
methodology).

As each complex formula 	 is of the form C(	1; : : : ; 	n), where C is some con-
structor of the logic, the simplest way of implementing the strategy described above
is to provide, for each such constructor, a rule expressing the validity of the formula
representing the statement “the value of C(	1; : : : ; 	n) is k” in terms of simultaneous
validity of some sequences of the formulae representing the statements “the value of
	i is ki”.

For example, in classical logic the statement “the value of 	∨ � is true” is expressed
by the formula 	∨ �. The latter formula is valid iJ, for any model M , either 	 or �
are satis/ed in M , i.e. if the sequence 	; � is valid. This, after adding the contexts,
gives rise to the rule

�′; 	∨ �; �′′

�′; 	; �; �′′ :

On the other hand, the statement “the value of 	∨ � is false” is valid iJ the formula
¬(	∨ �) is valid. The latter holds if both ¬	 and ¬� are satis/ed in any model, i.e.
if both these formulae are valid. As a result, we get the decomposition rule

�′;¬(	∨ �); �′′

�′;¬	; �′′ |�′;¬�; �′′ :

It should be noted that the above method cannot be applied directly to some unary
constructors, because, e.g. in classical logic validity of ¬	 cannot be expressed through
validity of anything simpler. Yet if we go one step lower and assume that 	 is a
composed formula, e.g. of the form 	1 ∨ 	2, then we see that ¬	 can be handled using
the rule for ¬(	1 ∨ 	2) (falsity of disjunction) developed above. Of course, the special
case of 	=¬ � needs a separate “double negation” rule

�′;¬¬	; �′′

�′; 	; �′′ :

Thus, instead of trying to de/ne a rule for negation alone we just use a set of rules for
all the compositions of the form ¬C, where C is any constructor of the logic (including
negation itself).
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As a result, in case of /rst-order classical logic we have a single rule for the (double)
negation itself, plus two rules for each other logical connective and each quanti/er:
one for the resulting formula to be true, and one for it to be false. The full set of
decomposition rules for /rst-order classical logic (quoted from [21]) is given below.
Decomposition rules for classical logic:

�′;¬¬	; �′′

�′; 	; �′′
�′; 	∨ �; �′′

�′; 	; �; �′′
�′;¬(	∨ �); �′′

�′;¬	; �′′|�′;¬�; �′′

�′; 	∧ �; �′′

�′; 	; �′′|�′; �; �′′
�′;¬(	∧ �); �′′

�′;¬	;¬�; �′′
�′;∀x:	; �′′

�′; 	(z); �′′

�′;¬∀x:	; �′′

�′;¬	(t=x); �′′;¬∀x:	
�′;∃x:	; �′′

�′; 	(t=x); �′′;∃x:	
�′;¬∃x:	; �′′

�′;¬	(z); �′′

Here z is a variable which does not appear above the double line, and t is any term
free for x in 	.

As we see, basic decomposition rules of an R–S system break down any complex
formula into its component parts—a sequence or sequences of simpler formulae that
determine validity of the original formula. This is a fundamental concept of an R–S
system that facilitates a “standardized” completeness proof by counter-model construc-
tion.

It should be noted that in addition to the decomposition rules of the type described
above, called replacement rules, in R–S systems we encounter also a diJerent type of
rules, “closing” a sequence under some relational axioms like symmetry or transitivity,
and called expansion rules. For more information on both types of rules, the reader is
referred to Section 2.3.

2.2. Handling quanti0cation and modalities in R–S systems

To see why the R–S systems—and hence R–S methodology—are so widely appli-
cable, in the next two sections we discuss the way in which they handle the problem
of expressing some basic constructs, like quanti/ers or relational axioms, 2 in the form
of either decomposition rules or fundamental sequences.

Let us start with the mechanism of dealing with quanti/cation in R–S systems. From
the rules for classical quanti/ers given in the preceding section:

�′;∀x:	; �′′

�′; 	(z); �′′
�′;∃x:	; �′′

�′; 	(t=x); �′′;∃x:	

2 Here by relational axioms we mean axioms representing basic properties of relations, like re<exivity,
transitivity, etc., which are specially important in case of modal logic. The best-known example of such
axioms are the equality axioms.



B. Konikowska / Theoretical Computer Science 286 (2002) 323–366 329

where z is a new variable, and t is any term free for x in 	, we can see that universal
quanti/cation is replaced by substitution of a new free variable in the quanti/ed for-
mula. Intuitively, this new variable represents an arbitrary substitution of some value
for the original bound variable. In case of existential quanti/cation, we use subsequent
substitutions of arbitrary terms for the bound variable in the quanti/ed formula, while
copying the original formula. Clearly, this allows us to keep looking for a “witness” to
the existential quanti/cation (i.e. a value which substituted for the quanti/ed variable
x satis/es 	) while preserving an equivalent character (invertibility) of the rule.

Note that shifting the existential quanti/er to the end of the decomposed sequence
assures fairness of decomposition: in this way we avoid decomposing the existential
formula again and again while the ones to the right of it would wait, possibly endlessly,
for their turn. This is another element of the control mechanism embedded in R–S
systems to facilitate automated deduction. Evidently, this part of the said mechanism
is a basic safeguard against trivial (avoidable) in/nite loops.

Of course, possibility and necessity modalities—which are just bounded existential
and universal quanti/cation, respectively—can be handled in an analogous way, as we
shall see in the section on similarity and complementarity logics, as well as in the
section on temporal logic.

What is more, the method can be extended to other relationships involving implicit
quanti/cation—like inclusion of sets—which in turn will be seen in the section on the
logic for nondeterministic speci/cations.

2.3. Replacement and expansion rules—handling of relational axioms

Now, let us pass to the problem of handling relation-related axioms, called shortly
relational axioms. The simplest axioms involving one element only, like re<exivity or
irre<exivity, are usually expressed through fundamental sequences. Thus, e.g. the fact
that the equality relation is re<exive is expressed by stating that every sequence of
formulae containing a formula “t = t” is fundamental.

However, properties of relations involving several objects, like symmetry, transitivity,
3-transitivity, antisymmetry, etc., are best expressed using a special type of decompo-
sition rules.

Namely, decomposition rules of any R–S system divided into two basic types. The
/rst—discussed up to now—are replacement rules “breaking down” each decomposable
formula into a sequence or sequences of simpler formulae whose validity determines
validity of the original formula. The R–S system for classical logic (without equality)
given in the preceding section consisted of replacement rules only, and as a typical
example we can quote, e.g. the disjunction rule:

�′; 	 ∨ �; �′′

�′; 	; �; �′′ :

The second are expansion rules which add some formula(e) to the sequence to close it,
e.g. under a symmetry or transitivity property of some relation—or any other “relational
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axiom” of the logic. An exemplary expansion rule is

�′; t = u; �′′

�′; t = u; u = t; �′′

closing a sequence of formulae under symmetry of equality.
If we read the rule in the upward direction, these rules can be called omitting rules

since one of the formulae in the premise is omitted due to the considered relational
property. Sometimes the rule is expressed—for purely technical reasons—in terms of
negated formulae, but the principle is always the same: an expansion rule adds to the
relationships we already have those that follow from them due to certain properties of
the relation involved.

When de/ning decomposition rules or fundamental sequences, we should also keep
in mind a simple fact that validity of the sequence ¬	1; : : : ;¬	n; � is equivalent to
validity of the (meta-)implication 	1∧· · ·∧	n⇒ �. This can be very helpful in de/ning
especially some expansion rules modelling entailments of the kind discussed above.

Typical expansion rules expressing properties of relations will be given in the sub-
sequent sections on modal logics.

An important feature of the R–S methodology is that the two types of rules mentioned
above have the following basic properties:
• Replacement rules are applicable to decomposable sequences only.
• Any R–S system is constructed in such a way that exactly one (instance of) a

replacement rule is applicable to any given decomposable sequence.
• Expansion rules can also be applied to indecomposable sequences.

2.4. Use of signed formulae

In many cases, the language we are interested in does not exhibit the dichotomous
property characteristic for classical logic, where, given a model incorporating a val-
uation, either a formula or its negation must be satis/ed in this model. This is the
case, e.g. when the logical calculus is many valued, the negation is a nonstandard one,
or there is no negation at all. Such a situation is usually a considerable drawback in
developing the R–S deduction system, because we might lack means for expressing
our basic semantic conditions of the form “the value of formula 	 is k” for k diJerent
from true, i.e. the maximal logical value in a given logic.

To overcome it, we can employ the mechanism of the so-called signed formulae
used already by Beth in his tableau systems.

A signed formula is obtained by preceding an ordinary formula by either the “truth”
(satisfaction) operator T, or the “nontruth” (nonsatisfaction) operator N. Thus, using
the N operator we can express the fact that a formula is not satis/ed, which amounts
to introducing an arti/cial two-valued negation on top of the existing structure of the
language. The use of T and N clari/es many technical issues by providing a clear-cut
dichotomy “either T(	) or N(	)”.
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De�nition 2. A signed formula over F is any element of the set

SF = {T(	): 	 ∈F} ∪ {N(	): 	 ∈F}:
The notion of satisfaction of a signed formula in a model M is given by M |=T(	)

i; M |= 	; M |=N(	) i; M �|= 	.

Some examples of rules involving signed formulae will be given in the subsequent
sections.

We should note that the extension of the language with signed formulae need not
be permanent. Namely, the T-N operators are not nested, and we can drop them by
passing from a complete R–S system for signed formulae to an equivalent Gentzen
calculus for “ordinary” formulae, as will be shown in Section 9.

Finally, in case of a general many-valued logic—like e.g. Rosser–Turquette n-valued
logic—instead of “binary” signed formulae we can use formulae labelled with the
individual logical values. An example of such an approach is given e.g. in [14] or
[17]. In that paper, the role of labels is actually played by the Jk operators “selecting”
individual logical values k—but the principle is the same.

2.5. Decomposition trees and proofs

The general idea of the R–S deduction system is to decompose the original for-
mula with the help of replacement rules into quite elementary formulae that cannot
be decomposed any further—they are just the indecomposable formulae mentioned in
Section 2.1. Then, in some logics, sequences of indecomposable formulae are “closed”
by means of expansion rules.

Proofs in R–S systems consist in constructing decomposition trees for formulae—
or more generally, for sequences of formulae—using decomposition rules in the way
described below.

De�nition 3. A decomposition tree for a formula ’ (a sequence �) is a maximal tree
DT (’)(DT (�)) with vertices labelled by sequences of formulae de/ned inductively as
follows:
(i) The root of the tree is labelled by ’(�).

(ii) Let v labelled by � be the leaf of a branch B of the tree constructed up to now.
Then:
(a) we terminate the branch B at vertex v if either:

(a1) � is a fundamental sequence, or
(a2) � is indecomposable and no expansion rule is applicable to �;

(b) otherwise we expand the branch B beyond v by attaching to that vertex n
sons labelled by �1; �2; : : : ; �n if

�

�1|�2| : : : |�n

is a decomposition rule applicable to �.
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Thus in order to obtain a decomposition tree of ’ (or �), we label the root by ’
(resp. �), and then expand the tree by applying the decomposition rules in R–S. If
rule R applied to the label of a vertex has n premises, then the vertex has n sons,
labelled by the n premises of the rule, respectively. If in the course of expanding the
branch we get a fundamental sequence, we terminate the branch—successfully. The
branch is also terminated, but unsuccessfully, if we get an indecomposable sequence
to which no expansion rule (and hence no rule at all) can be applied. Hence, every
leaf of the decomposition tree is labelled by either a fundamental or indecomposable
sequence.

De�nition 4. A decomposition tree is called a proof if it is /nite and all its leaves are
labelled by fundamental sequences. A formula ’ (sequence �) is said to be provable
(�’; ��) iJ its decomposition tree DT (’) (DT (�)) is a proof.

Recall that R–S systems are constructed in such a way that exactly one replace-
ment rule is applicable to each decomposable sequence of formulae. Hence, re/ning
the de/nition of the decomposition tree (see [11]) by adding rules for a unique choice of
new variables=terms introduced by the rules, as well as for a unique choice of the
expansion rule to be applied, we get, in fact, an algorithm for generating a unique
decomposition tree DT (�) (DT (’)) for every sequence � (formula ’). Since the re-
/nement is done in such a way that for a provable � that unique DT (�) is a proof of
�, then the said algorithm can be considered as a proof search algorithm. Of course,
what we call an “algorithm” can only be a real algorithm in case of decidable logic.
In case of an undecidable logic, the only thing we can hope for is a partial algorithm,
which will produce proofs of valid formulae (in practice, those with “short” proofs),
refutations of some invalid formulae (those with /nite decomposition trees), and will
run forever on invalid formulae with in/nite decomposition trees—unless we impose
a /xed limit on the number of steps, after which the algorithm will halt returning a
“failure” result.

From now on, we assume the decomposition tree is unique, and denote it as
above.

Example. As an example, let us consider the proof of an obviously valid FOL
formula

	(a) → (�(a) → ∃x:(	(x) ∧ �(x)))

in the R–S system for classical logic presented in Section 2.1. Since for the sake of
brevity we did not incorporate implication in that system, treating it as a derived con-
junctive, than we /rst replace the above formula by its equivalent using the equivalence
’→  ≡ ¬’∨  , which yields

¬	(a) ∨ (¬�(a) ∨ ∃x:(	(x) ∧ �(x))):
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The proof of the latter formula is as follows:

¬	(a) ∨ (¬�(a) ∨ ∃x:(	(x) ∧ �(x)))

| (∨)

¬	(a);¬�(a) ∨ ∃x:(	(x) ∧ �(x))

| (∨)

¬	(a);¬�(a);∃x:(	(x) ∧ �(x))

| (∃; a)

¬	(a);¬�(a); 	(a) ∧ �(a);∃x:(	(x) ∧ �(x))

| (∧) | (∧)

¬	(a);¬�(a); 	(a);∃x:(	(x) ∧ �(x)) ¬	(a);¬�(a); �(a);∃x:(	(x) ∧ �(x))

Here the symbols labelling the vertical bars denote (the instances of) the rules used,
and the underlined sequences are fundamental sequences labelling the leaves of the
proof tree (recall that any sequences containing both a formula and its negation is
fundamental).

As we have mentioned in the introduction, the R–S system is dual to the tableau
system from the semantic viewpoint. First, in a tableau system we prove validity of a
formula ’ by showing that ¬’ has a closed tableau (refutation method), whereas in
an R–S system we prove directly that ’ has a closed, “correct” decomposition tree.
Second, splitting of branches corresponds to disjunction in a tableau, and to conjunction
in an R–S decomposition tree.

There are, however, two diJerences connected with the issue of automated deduction.
First, the R–S system has an embedded “control mechanism” we have discussed above,
generating after some re/nement a kind of proof search algorithm. Second, in an R–S
system all information needed for further decomposition is contained in the vertex,
so—in contrast to the tableaux case—no “look back” up the branch is needed, and
when constructing the decomposition tree we need only to store the last vertex on
each branch.

Of course, from the viewpoint of practical applications in automated deductions
these diJerences might not be very signi/cant. The “control mechanism” will need to
be replaced by a more eOcient algorithm—probably analogous (or dual) to those used
in case of tableaux, and storage of decomposition tree or a tableaux will probably be
eJected through use of pointers to formulae anyway. However, one thing seems to be
clear: R–S systems are as well suited to automated deduction as tableaux.

In fact, the most important diJerence between these two types of systems—in the au-
thor’s opinion, constituting a pronounced advantage of the R–S systems over tableaux—
is the invertibility of rules in R–S systems: the property that tableaux do not have.
Indeed, invertible rules are more desirable from the automatic deduction viewpoint,
since they facilitate proof search. What is more, they enforce a greater discipline in
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developing the system, and make it easier to discover any possible loopholes leading
to incompleteness.

2.6. Soundness and completeness

If the decomposition rules correctly represent semantics of individual logical
constructs—which is exactly the basic idea behind the formalism, then it is a straight-
forward thing to prove that the system is sound, i.e. provability implies validity.

Theorem 1 (Soundness). For any sequence � and any formula ’;

� � implies |= �; � ’ implies |= ’:

It is much more diOcult to prove completeness, but there is a general strategy of
the proof:

Theorem 2 (Completeness). For any sequence � of formulae; and any formula ’; if
� (’) is valid; then � (’) is provable; i.e.

|= � implies � �; |= ’ implies � ’:

Proof (Strategy): We argue by contradiction, showing that 0� implies �|=�. There
are two situations when the decomposition tree DT (�) is not a proof. First, certain leaf
may be not labelled by a fundamental sequence (Case 1), or the tree may be in/nite.
By KPonig’s lemma, the latter implies existence of an in/nite path (Case 2).

In Case 1, the set � of formulae appearing in the label of the leaf must consist of
indecomposable formulae only; in Case 2, the set � of all indecomposable formulae
appearing in the labels on the in/nite branch cannot contain a fundamental sequence.
In both cases � must be closed under all expansion rules due to maximality of the
tree.

We construct a counter-model CM = 〈C; v〉 for � with the universe consisting of ei-
ther expressions of the language, or equivalence classes of such expressions. In Case 1,
� cannot be true in CM . Indeed, as our decomposition rules are two-way ones, the
label of a node of DT (�) is valid iJ the labels of all its sons are valid. Since the
sequence labelling a leaf of DT (�) is not valid and the tree is /nite in Case 1, this
proves � cannot be valid. In Case 2, we prove by induction on the rank of a for-
mula (de/ned as the “height” of its syntactic derivation tree) that no formula on the
considered in/nite branch can be true in CM . As the top node of this branch is the
root labelled by � itself, then CM �|=�, i.e. � is not valid, which ends the proof by
contradiction.

3. Outline of the R–S methodology

In this section we present the basic outline of the R–S methodology, whose appli-
cations to concrete computer science logics will be given in the subsequent sections.
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According to what has been said above, the basic idea of the methodology is to
develop a sound and complete R–S deduction system (see the preceding section) for
a given logic through analysis of its semantics. In principle, the resulting R–S deduc-
tion system is treated as the /nal result returned by this methodology. However, when
required it can be also further transformed to a Gentzen calculus using the translation
procedure given in the paper, or—after certain re/nement—employed for automatic
deduction purposes. Below we shall describe the individual aspects of the methodol-
ogy, recalling also those that have been already discussed in the preceding sections in
connection with presentation of the R–S deduction systems.
Prerequisites of the methodology: As the R–S methodology is based on analysing the

semantics of a given logic, the /rst prerequisite for applicability of this methodology
is availability of an appropriate semantics for the logic, which is the starting point for
the whole process. However, there is a second prerequisite too: the language of the
logic must be expressive enough to adequately capture the semantics. Indeed: due to
the strategy of developing the decomposition rules of an R–S system (see Development
of an R–S system for a logic below), the individual clauses of the de/nition of the
semantics must be expressible through formulae of the logics. In fact, this requirement
closely parallels the one for tableaux, since both the proof methods base on mirroring
semantics of individual logical constructs by proof rules.
Adapting a logical language for the use of R–S methodology: If the language of

the logic is not expressible enough to capture the necessary semantic conditions, then
we can try to enrich it by introduction of some additional tools, like e.g. signed for-
mulae, nominals, etc. This makes sense in cases when what we are really interested in
is providing a sound and complete logic describing a given class of semantic models,
which gives us a certain liberty with respect to the choice of the actual language. Thus,
for example, the R–S methodology cannot handle any propositional modal or tempo-
ral logic in its “classical” shape, i.e. with language containing propositional variables,
logical conjunctives and modal operators only, since in that case validity of, e.g. ✷	
cannot be expressed through validity of any simpler formulae. However, once we in-
troduce nominals representing states of the underlying Kripke frame and a constant(s)
for the accessibility relation(s), we can easily develop a complete R–S system for the
logic (see e.g. Section 8). What is more, use of R–S methodology makes it quite easy
to provide complete deduction systems for modal logics with modally inexpressible
conditions on the accessibility relations, since in an R–S system such conditions can
as a rule be expressed in a simple way like any other relational axioms, i.e. through
either fundamental sequences or expansion rules (see Section 2.2).
Applicability: From what has been said above it is rather evident that applicability of

the R–S methodology should be practically the same as applicability of the tableau one:
they are based on the same general principle, they are dual from the semantic view-
point, practically equivalent from the proof-theoretic viewpoint, and have analogous
prerequisites for applicability. Of course, up to now applications of the tableaux have
been much more widespread than those of the R–S systems. Yet the application scope
of the latter found in the literature is also quite wide. It covers classical logic [24],
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many-valued logics [11, 4], generic many-valued modal logic [13], arbitrary /nitely val-
ued propositional logics [17], various types of programming logics [2, 11, 16], relative
poly-modal logic [5, 12, 13], and temporal logic (Section 8).

Finally, it should be mentioned that since the R–S methodology is particularly well
suited to relational logics, then a wide class of logics to which the R–S methodology is
not directly applicable can be treated in an indirect way by either providing a relational
semantics for them or translating them to (some variant of) relational logic, for which
an R–S system is readily available. Some examples of logic that can be handled in
this way are various kinds of modal logic [22], relevant logic [21] and intuitionistic
logic [7].
Development of an R–S system for a logic: Assume we already have a logic sat-

isfying the requirements set forth above, and now want to develop a complete R–S
system for it. Then the strategy is as follows:
Development of decomposition rules. As we have already mentioned in Section 2.1,

for each complex (i.e. decomposable) formula 	, and each logical value k, we must
have a decomposition rule expressing validity of the statement “the value of 	 is
k” in terms of simultaneous validity of some sequences of formulae representing the
statements “the value of 	i is ki”, where 	i is a formula simpler than 	 and ki are
some logical values. Only in this way we can ensure that each complex formula is
broken into elementary ones in the decomposition process—which is the cornerstone
of an R–S deduction system. Of course, such strategy can only be implemented if the
semantic conditions quoted above are expressible as formulae of a given logic (for
more discussion, see Adapting a logical language for the use of R–S methodology
above).

When developing the rules, we must keep in mind the fact that the comma in se-
quences corresponds to meta-disjunction on the level of satisfaction in a single model
incorporating a valuation, whereas branching in a decomposition rule corresponds to
meta-conjunction on the validity level (satisfaction in all models). A more detailed dis-
cussion on decomposition rule development can be found in Section 2.1, and the mech-
anisms for handling quanti/cation, modalities and relational type of axioms through
decomposition rules are presented in Section 2.2.
Fundamental sequences. The choice of fundamental sequences is governed by one

basic principle: they must be valid due to some simple semantic property of the logic,
which is expressible by a simple syntactic condition on a sequence �. E.g., in classical
logic the semantic property in question is the excluded middle law, and the corre-
sponding syntactic condition is “for some 	, both 	 and ¬ 	 are in �”. Fundamental
sequences are usually determined by the basic semantic “axioms” of the logic that
guarantee validity of some formulae or meta-disjunctions of formulae. Some laws of
the logic, like properties of relations, can be expressed either through fundamental se-
quences or by expansion rules (see the relevant discussion in Section 2.2), and the
choice is often decided by technical reasons connected with completeness proof.
Ensuring completeness. There are two prerequisites for ensuring completeness of an

R–S deduction system. First, we must have enough decomposition rules to break up
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every complex (in our terminology, decomposable) formula into simpler ones (see
Development of decomposition rules above). Such rules are the replacement rules
discussed in Section 2.2. Second, we must have enough expansion rules (see Sec-
tion 2.2) and fundamental sequences to ensure that every indecomposable sequence
that is valid will be recognised as such in the decomposition process (through giv-
ing rise to a fundamental sequence), and the respective branch of the tree will get
closed. Indeed: expansion rules close indecomposable sequences under, e.g., re<ex-
ivity or transitivity rules for some relations appearing in the formulae, and then the
resulting sequence—if valid—should fall into some class of fundamental sequences.
The heuristics to achieve these is simply to look at the class of indecomposable for-
mulae and check what types of sequences of such formulae must be valid—which
is usually quite easy to determine in view of the simplicity of those formulae. Then
we check if each such type of sequence is either some type of a fundamental se-
quence, or can be transformed to such a sequence through “closure” by an expansion
rule. If not, we add new fundamental sequences and=or expansion rules to guarantee
that.
Further options: As we have said before, the basic goal of the R–S methodology

is to provide a logic with a sound and complete R–S deduction system. However,
there are two optional further alternatives. One of them is transformation to a Gentzen
sequent calculus to provide an interface to the sequent calculus environment, or in
some cases get rid of the signed formulae introduced to enable development of an
R–S system and return to the original language (see Sections 2.4 and 9). This is done
using the practically automatic method described in Section 9. The second, much more
important option, is
Use for automatic deduction: If we want to use the resulting R–S system for au-

tomated deduction purposes, then the elementary control mechanism embedded in the
system, discussed in Sections 2.1, 2.2, and 2.5 must be replaced with something much
more eOcient. For example, instead of the simple decomposition order “from left to
right”, we should decompose formulae in an order that minimizes expansion of the de-
composition tree. Thus, formulae requiring the use of nonbranching rules or rules with
less branching should be decomposed before those requiring rules with more branch-
ing, and likewise those generating shorter sequences of formulae should be decom-
posed before those giving rise to longer ones. Universally quanti/ed formuale should
be decomposed before existentially quanti/ed ones, and when choosing the terms for
substituting into the latter we should start with those already appearing in the sequence,
because this increases the chance of /nding a match to yield a fundamental sequence
and thus close the branch of the decomposition tree.

In case of fundamental sequences themselves, for the automatic deduction purposes
there should be simple algorithm for determining whether a given sequence is funda-
mental or not. This means that fundamental sequences should be best de/ned on the
indecomposable formulae level, because as a rule simplicity of such formulae in terms
of both their depth and length greatly facilitates development of such eJective decision
algorithms.
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Of course, what we have said above is just a small glance at the issues connected
with proof automation, and much deeper considerations are needed in case of any
practical implementation, However, because of the close aOnity between R–S systems
and tableau systems, a lot of ideas might come from looking at the automation methods
used in case of tableau systems. In fact, this should be a fruitful area for further
research.

4. Three-valued and many-valued logics

As the /rst example of an R–S system application, let us consider McCarthy’s three-
valued logic with noncommutative disjunction and conjunction. This calculus is of a
special interest for computer science as it supports lazy, sequential computation. In
fact, McCarthy’s AND and OR have been used in the programming languages Euclid,
Algol-W and C (see [3, 19] for more discussion on the subject). If we denote the three
logical values employed there by tt (truth), + (falsity), and ee (unde/nedness or error),
then the truth tables of McCarthy’s connectives are as follows:

NOT tt + ee

+ tt ee

OR tt + ee

tt tt tt tt

+ tt + ee

ee ee ee ee

AND tt + ee

tt tt + ee

+ + + +

ee ee ee ee

From the above truth tables we can see that McCarthy’s disjunction and conjunction
are not commutative. This rather unusual property can be, however, easily explained if
we interpret ee as corresponding to unde/nedness in the sense of in/nite computation.

If we assume that the computation is sequential and lazy, and the value of a for-
mula is computed from left to right, then obviously ee∨ x = ee∧ x = ee for any logical
value x. Indeed if the computation to evaluate a formula 	 loops, then the evaluation
of 	∨ � and 	∧ � loops too, and so both the formulae should be assigned the value
ee, no matter what the value of � is—because we will never get to � anyway. So e.g.
ee∧ + = + . On the other hand, + ∧ ee= + , since in a lazy computation after evaluating
the /rst argument of a disjunction to + we do not look at the second argument at all
and just accept + as the result, because “false and anything is false”. The asymmetry
follows from the fact that in case of ee∧ + we will never learn that + is there at all!

To develop an R–S deduction system for such a logic, we use signed formulae (or,
alternately, an “is-true” superpredicate T mapping three-valued predicates into two-
valued ones, and its classical negation ¬T=N—see [11]). If we accept tt as the only
designated value, then the semantics of signed formulae is as follows:

|T(	)| =

{
tt iJ |	| = tt;

+ iJ |	| ∈ {+ ; ee};
|N(	)| =

{
tt iJ |	| ∈ {+ ; ee};
+ iJ |	| = tt;
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where | · | represents the value of a formula in a model (incorporating a valuation).
Hence, we can “encode” all the possible values of a three-valued formula in a two-
valued world by remarking that

|	| = tt iJ |T(	)| = tt; |	| = + iJ |T(NOT	)| = tt;

|	| = ee iJ |N(	)| = tt and |N(NOT	)| = tt: (1)

This allows us to develop an R–S deduction system for a language featuring McCarthy’s
connectives. From the above relationships it clearly follows that in case of a three-
valued logic (not necessarily McCarthy’s one) we need four decomposition rules for
each formula constructor: one for the resulting formula ’ to be true, one for it to be not
true, one for NOT ’ to be true (that is, for ’ to be false), and one for NOT ’ to be not
true. Indeed: to develop an R–S system for the logic, we must somehow express the
semantic condition |	|= k for each formula 	 and each logical value k ∈{tt; + ; ee}—
and from Eq. (1) it clearly follows that for this purpose we have to consider all the
four combinations of T=N applied to �=NOT, when � denotes identity. Evidently, the
underlying reason is that in the context of three valued, and in general many-valued
logic, “not true” does not coincide with “false”.

It should be noted that three-valued quanti/ers (e.g. Kleene’s ones) can be dealt
with in much the same way (see [11]).

As an example, let us give the four rules describing McCarthy’s disjunction. A
complete set of decomposition rules for the logic is given in [11]:

�′;T(	 OR �); �′′

�′;T(	);T(NOT 	); �′′|�′;T(	);T(�); �′′

�′;N(	 OR �); �′′

�′;N(	); �′′ |�′;N(NOT 	);N(�); �′′

�′;T(NOT(	 OR �)); �′′

�′;T(NOT 	); �′′ |�′;T(NOT �); �′′
�′;N(NOT(	 OR �)); �′′

�′;N(NOT 	);N(NOT �); �′′

By way of example, let us see how rule (T OR) is developed. According to the truth
tables, |	 OR �|= tt iJ either |	|= tt, or |	|= + and |�|= tt. To express that “and”,
we need either AND or the branching | in the premises. The /rst is not advisable, since
	 OR � should be decomposed into formulae simpler than itself. To use branching, we
must express the condition C above as “C1 and C2”, where C1, C2 do not contain
“and”. It is easy to see that C is equivalent to “(|	|= tt or |	|= +) and (|	|= tt or
|�|= tt)”. Translating the individual semantic conditions into formulae with help of
Equation (1), replacing “and” by branching and “or” by the comma in sequences of
formulae, we get just the discussed rule.

It should be added that the R–S mechanism can be used equally well for formalizing
many-valued logic in general. For example, in [14] it has been used to provide a
complete deduction system for Rosser–Turquette many-valued logic, and in [17]—to
provide a relational style formalization of an arbitrary many-valued propositional logic.
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5. Similarity, indiscernibility and complementarity logic

The second area in which the R–S system has been successfully applied is that of
logics for reasoning about certain relations between objects considered in information
systems, like e.g. indiscernibility, similarity or complementarity.

Let us begin with similarity. By a similarity relation we mean a re<exive and sym-
metric binary relation on a set of entities (see [12, 13]). Given a set of entities and a
set of properties for classifying the entities, we have a whole family of similarity rela-
tions: one for each subset of the set of properties. Formally, the semantic framework
we work with is a universe U of the form

U = 〈ENT; PROP; {sim(P)}P⊆PROP〉; (2)

where ENT is a set of entities, PROP—a nonempty set of properties, and
{sim(P)}P⊆PROP is a family of similarity relations on ENT such that:
(C1) Each sim(P) is a re<exive and symmetric binary relation on ENT;
(C2) sim(∅) = ENT×ENT;
(C3) sim(P ∪Q) = sim(P)∩ sim(Q) for any P;Q⊆PROP.
Within this framework, we consider the operations of the upper and lower approxima-
tion of a set E⊆ENT with respect to the relation sim(P):

sim(P)E = {e ∈ ENT: (∃e′)((e; e′) ∈ sim(P) and e′ ∈ E)};
sim(P)E = {e ∈ ENT: (∀e′)((e; e′) ∈ sim(P) implies e′ ∈ E)}: (3)

Thus sim(P)E consists of all the entities which are not similar with respect to the prop-
erties in P to any entity outside E, and sim(P)E—of all the entities which are similar
to some entity in E. The operation of upper approximation contains implicit existential
quanti/cation, whereas that of lower approximation—implicit universal quanti/cation.

The language is built over a /xed set PROP of properties. It contains terms in TERM

representing subsets of PROP, and formulae in FORM representing subsets of ENT. The
set TERM of terms contains:
• CONP = {p: p∈PROP}—constants representing individual properties in PROP,
• a constant 0 for the empty set of properties ∅,
• VARSP—variables representing subsets of PROP.
It is closed under −;∪;∩ representing set-theoretic operations on sets of properties.

The set FORM of formulae contains:
• VARE—the set of variables representing individual entities,
• VARSE—the set of variables representing sets of entities.
It is closed under ¬;∨;∧, denoting set-theoretic operations on sets of entities. Finally,
if A∈TERM and F ∈FORM, then sim(A)F; sim(A)F ∈FORM, where sim and sim denote
the lower and upper approximation.

We also use a derived constructor → de/ned by

F → G
df≡¬F ∨ G:
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The language is interpreted in models M = 〈U; v〉 consisting of a universe and a (many-
sorted) valuation of variables. Of course, sim and sim are interpreted as the operations
of lower and upper approximation, respectively; terms are interpreted as subsets of
PROP, and formulae—as subsets of the set ENT of entities.

A formula F is said to be satis/ed in a model iJ it evaluates to the whole set ENT

of this model.
The above logic is a polymodal logic, with relative modalities represented by sim(A)

and sim(A). It should be noted that the Rasiowa–Sikorski system presented here was
the /rst axiomatization of this logic, after the problem had been open for several years.

It is not dichotomic, since usually neither F nor ¬F holds. To compensate for this,
we base deduction on formulae of the type

x ∈ F
df≡ x → F; (4)

where x∈VARE and F is any formula. They model set-theoretic membership relation,
since x∈F is satis/ed in M = 〈U; v〉 iJ v(x)∈ |F |M . Such formulae have the desired
dichotomic property: for any model M , either M |= x∈F or M |= x∈ ¬F . A special
kind of type (4) formulae with F ≡ sim(A) y, denoted shortly by x sim(A) y, express
the similarity relation itself, since x sim(A) y holds in M = 〈U; v〉 iJ (v(x); v(y))∈
sim(|A|M ).

We use the signed formulae to represent “top-level” negation. It suOces to consider
signed formulae over formulae of type (4) only, since we can reduce all other formulae
to the former with the following decomposition rules:

�′;T(F); �′′

�′;T(y ∈ F); �′′
�′;N(F); �′′

�′;N(x ∈ F); �′′;N(F)

where x; y∈VARE, y does not occur above the double line, and F is not of the form
z ∈G.

The above rules show a simple, yet ingenious mechanism used to deal with implicit
quanti/cation: substitution of a new variable in case of universal quanti/cation, and
subsequent substitutions of arbitrary variables (note that we do not have any “entity”
terms here) while copying the original formula in case of existential quanti/cation.
This is just a certain variant of the classic way of dealing with quanti/cation in an
R–S system mentioned before and described in [24].

Now let us give some examples of how certain basic features of the similarity
framework are represented in the deduction system.

Property (C2), saying that similarity wrt the empty set of properties is the univer-
sal relation, and re<exivity of similarity stated in (C1) are represented by assuming
that:

Each sequence � containing either T(x sim(0)y) or T(x sim(A)x)
is fundamental:

(5)
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In turn, the other part of (C1)—symmetry of similarity relations—is represented by a
typical expansion rule of the form

�′;N(x sim(A)y); �′′

�′;N(x sim(A)y);N(y sim(A)x); �′′ (6)

Finally, property (C3) is represented by the rules

�′;T(x sim(A ∪ B)y); �′′

�′;T(x sim(A)y); �′′ |�′;T(x sim(B)y); �′′

�′;N(x sim(A ∪ B)y); �′′

�′;N(x sim(A)y);N(x sim(B)y); �′′ (7)

The relative modalities sim(A); sim(A) are dealt with by the following rules:

�′;T(x ∈ sim(A)F); �′′

�′;T(y ∈ F); �′′; ∗ |�′;T(x sim(A)y); �′′; ∗
�′;N(x ∈ sim(A)F); �′′

�′;T(x ∈ sim(A)¬F); �′′

�′;T(x ∈ sim(A)F); �′′

�′;N(x sim(A)z);T(z ∈ F); �′′
�′;N(x ∈ sim(A)F); �′′

�′;T(x ∈ sim(A)¬F); �′′

where y is an arbitrary variable in VARE, ∗ denotes T(x∈ sim(A)F), and z ∈VARE does
not occur above the double line. To see how the T(sim) rule was developed, let us
note (using for simplicity a rather informal notation) that x∈ sim(A)F if there exists a
y such that y∈F and x sim(A)y. As “and” corresponds to the branching |, then using
the method for handling existential quanti/cation known from classical logic we get
just the presented rule. Justi/cation for the T(sim) rule is analogous, but based on
universal quanti/cation over z. In turn, the N-rules just re<ect the duality of the lower
and upper approximations.

To cope with the set parameters A in modalities, before applying our deduction
system we replace each A by a union of atomic “components” that evaluate to a
disjoint cover of PROP in every model. In case of elementary formulas of the form
T(x sim(A)y); N(x sim(A)y), we can break down a term A being the union of some
components into individual components using rules (7).

All the mechanisms outlined above allow us to get a complete deduction system
for the polymodal similarity logic (see [12, 13]). Such result obtained using the R–
S methodology is especially valuable in view of the fact that a polymodal logic with
interdependent relative modalities is particularly diOcult to handle—and hence previous
work on indiscernibility, similarity or discernibility logic was as a rule limited to
considering a single, nonparametrised modality. The same way—as we will see below—
can also be used for other information system logics; it should be also applicable to
other polymodal logics of that type in general.

Out of the system discussed above, it is rather easy to get a complete system for
reasoning about indiscernibility logic. Indeed, the only diJerence between similarity and
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indiscernibility relations is that the latter are transitive whereas the former in general are
not. Hence, it can be shown that after replacing sim with ind (meaning indiscernibility)
in the R–S system for the similarity logic presented here, and augmenting the system
with an expansion rule expressing transitivity of indiscernibility relations, namely

�′;N(x ind(A)y);N(y ind(A)z); �′′

�′;N(x ind(A)y);N(y ind(A)z);N(x ind(A)z); �′′

we get a complete deduction system for indiscernibility logic. It should be noted that
the rules for modalities remain unchanged.

Now let us turn to complementarity. This type of relations are de/ned in the context
of an information system having the form

I = (OBJ;ATTR; {Va}a∈ATTR);

where OBJ is a set of objects, and ATTR is a set of attributes such that each a∈ATTR

is a mapping

a : OBJ → P(Va)

which assigns to each object a set of values associated with attribute a.
For any A⊂ATTR, by the complementarity relation corresponding to A we mean the

binary relation comp(A) on OBJ de/ned by

(x; y) ∈ comp(A) if and only if a(x) = Va\a(y) for all a ∈ A:

Formally, the complementarity framework we work with is

U = 〈OBJ;ATTR; {comp(A)}A⊂ATTR〉;

where {comp(A)}A⊂ATTR is the family of relative complementarity relations on OBJ

characterized by the following properties:
(D1) Each comp(A) is an irre<exive, symmetric and 3-transitive relation, i.e. for all

x; y; z; w∈OBJ,

(x; y); (y; z); (z; w) ∈ comp(A) implies (x; w) ∈ comp(A):

(D2) comp(∅) = ∅.
(D3) comp(A∪B) = comp(A)∩ comp(B) for any A; B⊆ATTR.
As we see, some of the properties of complementarity relations are essentially dif-
ferent from those of similarity relations. Despite this, our deduction system DRS can
be modi/ed to yield a complete deduction system for a polymodal logic based on
complementarity relations.

A purely syntactic change is to replace sim by cp, standing for complementarity. To
express property (D2), saying that complementarity wrt the empty set of properties is
the empty relation, and the part of (D1) saying that complementarity is irre<exive, we
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replace the old assumption (5) with

Each sequence � containing either N(x cp(0)y) or N(x cp(A)x)
is fundamental:

The property of symmetry remains unchanged, and (D3) just mirrors (C3). The only
remaining task is to model 3-transitivity being part of (D1), which is done by intro-
ducing the rule

�′;N(x cp(A)y);N(y cp(A)z);N(z cp(A)w); �′′

�′;N(x cp(A)y);N(y cp(A)z);N(z cp(A)w);N(x cp(A)w); �′′

It can be proved (see [5]) that the deduction system obtained out of DRS as a result
of the above modi/cations is complete for complementarity logics. Note that, similarly
as in case of indiscernibility relations, the rules for modalities remain unchanged.

It should be noted that complementarity logic is an example of the R–S method-
ology allowing to develop complete systems for modal logic with modally inexpress-
ible conditions on the accessibility relation. Indeed, since irre<exivity is not modally
expressible, then in [6] a Hilbert-style axiomatisation of complementarity logics was
impossible without introducing not very natural modal operators of “suOciency”.

6. A logic for nondeterministic speci�cations

The next example is a logic for nondeterministic speci/cations presented in [2, 16]. It
is interpreted in multialgebras, i.e. algebras with set-valued functions. The basic logical
language has only two constructs: the “let” construct used for limiting nondeterminism,
and a “rewrite” operator → interpreted as set inclusion. Notwithstanding these strictly
limited means (no logical connectives at all, not even negation), it is still possible to
provide a simple and elegant complete deduction system for the language using the
R–S method.

In fact, this application shows a decided advantage of the R–S methodology in the
sense of its simplicity and power, since the only two complete deduction systems
of the more widespread types presented earlier in [9, 25] for such nondeterministic
speci/cation logics were based on rather unnatural restrictions on the model level—
whereas the R–S system presented here is complete for the class of arbitrary models.

Now let us introduce some basic notions.
Let �= [S; F] be an algebraic signature, where S is the set of sorts, and F the set

of function symbols, and let X be an S-sorted set of variables.
• A multialgebra over � is a tuple A= [SA; FA], where SA = {As}s∈S is a family of

carrier sets for each sort s∈ S and FA = {fA}f∈F is a family of set-valued functions
such that fA:As1 × · · ·×Asn →P(As) for each [f: s1× · · ·× sn→ s]∈F .

• An n-term over � is any term built over variables in X with help of the function
symbols f∈F and the [let x := t′ in t ni] construct.
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• A formula is any expression of the form t→ t′, where t; t′ are n-terms.
The set of all n-terms over � and X is denoted by NT�(X ), and the set of all formulae—
by F�(X ).

The language is interpreted in models of the form M = 〈A; v〉, where A is a multi-
algebra and v :X →|A| is a (multi-sorted) valuation of variables.

For any x∈X; a∈ |A|, de/ne

v[a=y](x) =

{
a iJ x = y;

v(x) otherwise:

The interpretation of n-terms in M = 〈A; v〉 is a function Tv :NT�(X )→P(|A|) de/ned by
• Tv(x) = {v(x)}; Tv(f(t1; : : : ; tn)) =

⋃
ai∈ Tv(ti) f

A(a1; : : : ; an);

• Tv([let x := t′ in t ni]) =
⋃

a∈ Tv(t′) v[a=x](t).
Thus, the usual substitution of functions is interpreted by taking a set-theoretic union
over all possible combinations of values, whereas the [let x := t′ in t ni] construct limits
nondeterminism and allows us to substitute the same value of t′ for every occurrence
of x in t.

Since the arrow operator is interpreted as inclusion, with the arrow pointing ‘down’
to the smaller set, then satisfaction of a formula t→ t′ in M = 〈A; v〉 is de/ned by

M |= t → t′ iJ Tv(t) ⊇ Tv(t′):

To develop an R–S deduction system for this logic, we proceed analogously as in the
case of similarity logics: we base deduction on the membership relation expressed by
formulae of the type t→ x, where x∈X , and introduce signed formulae in order to
have top-level negation.

Semantically, the inclusion T(t→ t′) represents universal quanti/cation of the form
“for every x, if x∈ t′, then x∈ t”. Analogously, N(t→ t′) represents existential quan-
ti/cation of the form ”there exists an x such that x∈ t′ and x �∈ t”. This is modelled,
as other instances of quanti/cation before, by an appropriate use of variables (see
Section 2.2). Thus we have the following rules:

�′;T(t1 → t2); �′′

�′;N(t2 → x);T(t1 → x); �′′
�′;N(t1 → t2); �′′

�′;T(t2 → y); �′′; ∗ |�′;N(t1 → y); �′′; ∗
where t2 is not a variable in X , x∈X is a variable which does not appear in the
conclusion, y is an arbitrary variable in X , and * denotes N(t1→ t2).

The rules corresponding to normal substitution and to the let construct demonstrate
clearly the diJerence between the two:

�′;T(f(·; ti ; ·) → x); �′′

�′;T(ti → y); �′′; ∗ |�′;T(f(·; y; ·) → x); �′′; ∗

�′;N(f(·; ti ; ·) → x); �′′

�′;N(ti → z);N(f(·; z; ·) → x); �′′
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�′;T([let x := l in t ni] → x′); �′′

�′;T(l→ y); �′′; ∗ |�′;T(t[y=x] → x′); �′′; ∗

�′;N([let x := l in t ni] → x′); �′′

�′;N(l→ z);N(t[z=x] → x′); �′′

where y is an arbitrary variable in X , z ∈X is a variable which does not appear in the
conclusion, and ∗ denotes repetition of the decomposed formula from the conclusion
in the premises.

The complete set of decomposition rules for the logic is given in [16].

7. Many-sorted �rst-order logic with possibly empty carriers of some sorts

It is well-known that classical deduction rules for /rst-order logic become unsound
in presence of empty carriers of some sorts. Indeed, if we interpret universal quan-
ti/cation over an empty set of values as trivially true, and existential quanti/cation
over such a set—as trivially false, then ∀x:’ implies neither ’(z) nor ∃x:’, which
contradicts classical entailment. As empty carriers do appear as an useful tool in soft-
ware speci/cation, providing a complete deduction system for this case is an important
task. The hitherto existing approaches (see [4, 23, 26]) are based on rather rich lan-
guages, involving concepts like dynamic sorts, and in general diverge quite far from
the simplicity of classical /rst-order logic.

However, using the R–S methodology one can formalize a many-sorted FOL allowing
for empty carriers in a quite simple way—which again stresses the advantage of that
methodology in providing complete deduction systems based on simple means. The
resulting logic is very close to classical FOL, and the main idea consists in preceding
formulae with a context being a subset of the set of sorts. Such a contextual formula
has a de/ned value only in models with nonempty carriers of the sorts contained in
its context.

We assume a /nite, nonempty set S of sorts (sort names), to be /xed for the sequel,
and existence of a /xed sort b of logical values. Based on the above, we de/ne a
many-sorted FO language LS .

For s∈ S, let Xs be a countable set of individual variables of sort S, with

Xs ∩ Xs′ = ∅ for s �= s′; X =
⋃
s∈S

Xs:

The unique sort of a variable x∈X is denoted by s: x.
As before, by S∗ we denote the set of all /nite sequences of the elements of S; the

empty sequence is denoted by 0.
Assume we are given sets Fw; s (w∈ S∗; s∈ S) of function symbols of arity f:w→ s,

and sets Pw (w∈ S∗) of predicate symbols of arity w→ b.
The set TS =

⋃
s∈S Ts of terms of the language LS , where Ts is the set of terms of

sort s, is de/ned in the standard way over the sets of variables and function symbols
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given above. To designate a term as a term of sort s, we use the sort symbol as a
superscript.

The minimal context of a term t is de/ned by

Cmin(t) = {s: x: x ∈ X and x occurs in t}:
For simplicity, contexts are identi/ed with their denotations, which involves writing
things like “C ⊆ S” or “s∈C”.

The set PFS of pre-formulae of the language LS is the set of all /rst-order formulae
de/ned in the usual way over the appropriate signature. The minimal context of a pre-
formula ’ is the context

Cmin(’) = {s: x: x ∈ Free(’)};
where Free(’) is the set of all variables having at least one free occurrence in the
formula ’.

By a formula of the language LS we mean every expression of the form C:’, where
C ⊆ S is a context, ’∈PFS is a pre-formula, and C ⊇Cmin(’).

The set of all formulae of LS is denoted by FS .
Thus each formula is of the form C:’, where C ⊆ S is a context, and ’ is a “nor-

mal” (many-sorted) /rst-order formula. Such a formula is interpreted in presence of a
valuation de/ned for all variables of the sorts in C, and it has no value in a model
where the carriers of some of the above sorts are empty.

The language is interpreted in models based on S-sorted structures of the form

A = 〈{As}s∈S ;F;P〉
consisting of a carrier As (possibly empty) for each sort together with interpretations
F;P of function and predicate symbols consistent with their arities. We assume that
the /xed sort b of Boolean values has a carrier B of the form B= {tt; +}, where tt
denotes truth, and + falsity.

We also assume that all the function and predicate symbols are interpreted as total
functions and predicates. Because of this, the minimal contexts de/ned above are indeed
suOcient for the respective terms=formulae to have de/ned values.

Moreover, the above assumption imposes certain limitations on the pattern of empty
carriers in the structures for our language. Namely, if the language contains a constant
f: 0→ s of sort s, then the carrier As of sort s must be nonempty in each model M .
Further, if the language contains a function symbol f: s→ s′ and the carrier As′ is
empty in a model M , then the carrier As must also be empty in the model M—for
otherwise the function symbol f could not be interpreted as a total function on the
carrier of s. These facts will /nd their re<ection in the deduction system.

The language is interpreted in models of the form M = 〈A; v〉, where A is an S-
sorted structure, and v is an S-sorted valuation of variables in A, de/ned as a partial
mapping v : X → ⋃

s∈S As, with

Dom(v) =
⋃{Xs: As �= ∅}; v(xs) ∈ As for any xs ∈ Dom(v):
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Due to possible emptiness of carriers and introduction of contexts, both the interpreta-
tion of terms and interpretation of formulae are partial functions.

The interpretation of terms in a model M = 〈A; v〉 is a partial function TM :TS→⋃
s As such that

Dom(TM ) = {t ∈T: (∀s ∈ Cmin(t))As �= ∅}; TM (Ts) ⊂ As for s ∈ S;

de/ned in the standard way by extending the interpretation of variables given by v to
all terms through interpreting the function symbols according to their interpretation in
the structure A.

If M = 〈A; v〉 is a model, x∈Xs and a∈As, then by M [a=x] we denote the model
M [a=x] = 〈A; v[a=x]〉 with v[a=x] de/ned as before.

The interpretation of formulae in a model M = 〈A; v〉 is a partial function FM :FS→
{tt; +} such that Dom(FM ) = {C:’∈FS : (∀s∈C)As �= ∅} de/ned inductively as fol-
lows:
1. for formulae without quanti/ers, FM (C:’) is de/ned on the basis of the interpretation
TM of terms using the standard interpretation of logical connectives;

2. FM (C:(∀x:’)) =




tt if either As: x = ∅ or

As: x �= ∅ and FM [a=x]:(C ∪ {s: x}):’ = tt

for every a∈As: x;

+ otherwise;

3. FM (C:(∃x:’)) =



tt if As: x �= ∅ and FM [a=x]:(C ∪ {s: x}):’ = tt

for some a∈As: x;

+ otherwise:
FM is extended to other formulae with quanti/ers by interpreting the logical con-
nectives in the standard way.

To develop an R–S system for LS , we assume that our language contains a logical
constant c : 0→ b, and de/ne special ‘emptiness’ and ‘nonemptiness’ formulae’ Es; Ns

for each sort s∈ S by

Es
df= ∅:∀xs:c ∧ ¬c; Ns

df= ∅:∃xs:c ∨ ¬c
where xs is any variable in Xs, and ∅ denotes the empty context.

Then, for every model M = 〈A; v〉, we have

M |= Es iJ As = ∅; M |= Ns iJ As �= ∅;
where As is the carrier of sort s in structure A.

The above formulae play a key role in the deduction system, allowing us to deal
with quanti/cation in presence of empty carriers.

Each sequence � = 	1; 	2; : : : ; 	n containing either
1. both the formulae Es; Ns for some s∈ S, or
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2. each of the formulae Es1 ; : : : ; Esn ; C:’; C:¬’; where C={s1; s2; : : : ; sn} and ’∈PFS ,
is considered fundamental. Since Es is in fact a (meta-)negation of Ns, the /rst type
of a fundamental sequence can be seen as a special instance of that for classical logic
(de/ned as containing both ’ and ¬’). The second type of fundamental sequence is
a general analogue of the latter for our logic, re<ecting the fact that here “either C:’
or C:¬:’” holds only if the carriers of all sorts in C are nonempty.

The rules for connectives also mirror the classical ones, with only the context thrown
in. For quanti/ers, we have new, double rules: one, quite classical, for quanti/cation
over a sort with nonempty carrier, and another, nonclassical, for quanti/cation over a
sort with possibly empty carrier. The latter ones re<ect the fact that universal quan-
ti/cation over an empty carrier is trivially true, whereas the existential one—trivially
false.

(∀1)
�′; C:∀x:’; �′′

�′; C:’(z); �′′ (∀2)
�′; C:∀x:’; �′′

�′; Es: x; (C ∪ {s: x}):’(z); �′′

where s: x∈C where s: x �∈C
and z is a variable which does not appear above the double line

(∃1)
�′; C:∃x:’; �′′

�′; C:’(t=x); �′′; C:∃x:’ (∃2)
�′; C:∃x:’; �′′

�′; Ns: x; �′′ |�′; (C ∪ {s: x}):’(t=x); �′′; ∗
where s: x ∈ C where s: x =∈ C
where ∗ stands for C:∃x:’ and t is any term free for x in ’:

We also have a rule for context manipulation, and a rule re<ecting the limitations on
the pattern of empty carriers imposed by the language:

(Cr)
�′; (C ∪ {s}):’; �′′

�′; Ns; �′′|�′; C:’; �′′ (Etr)
�′; Es1 ; : : : ; Esk ; �

′′

�′; Es1 ; : : : ; Esk ; Es; �′′

where C ⊃Cmin(’); ’ is a literal, and s1; : : : ; sk ; s∈ S are such that Fs1 ;:::; sk ; s �= ∅. The
full set of rules, as well as the soundness and completeness proofs, are given in [15].

As a /nal remark, let us note that since the decomposition rules of our logic diverge
from the classical ones in Section 2.1 only in a simple modi/cation of the quanti/er
rules, and an additional context-handling rule, the proof search=generation mechanism
used for classical many-sorted logics should be easily adaptable for the logic considered
here, thus providing a good proof search basis for software speci/cation=validation
logics.

8. Three-valued temporal logic for reasoning about concurrency

Following the above overview of earlier applications of R–S systems in SC logic,
let us now pass to a quite new application of this mechanism—namely, its use to
formalize a three-valued approach to temporal logic for reasoning about concurrency.
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This application is doubly novel in the sense that the hitherto existing temporal
logics for reasoning about concurrency have been as a rule based on a two-valued
approach to semantics. However, there seems to be a clear motivation for introducing
a third logical value uu interpreted as “unknown”. Indeed if we consider semantics
of concurrent systems based on local states, then it is quite natural that in state s
we can assign de/nite logical values—tt (true) or + ( false)—only to those variables
that are local to the state s. For example, in a multi-agent system an agent usually
does not have up-to-date knowledge about the value of variables controlled by other
agents, because the time he last accessed them they might have been changed by these
agents. Hence, it is natural to assign in the state s the “unknown” value uu to such
nonlocal variables. This provides a natural motivation for developing a logic for con-
currency featuring three logical values: tt, + and uu—which we shall now proceed
to do.

8.1. Syntax and semantics

The temporal logic LT we are going to develop is a propositional logic based on
partial order structures with the classical temporal operators (see e.g. [8]) (always),
� (eventually) and U (until) referring to the future. Since we do not assume existence
of the next step operator ◦, the logic can be used for models based on continuous time
(though it is also applicable to discrete time). The language of LT is built over the set
PROP of propositional atoms with help of the propositional connectives ¬;∨;∧ and the
above temporal operators. Thus the set FORMT of formulae is the least set FO such
that:
1. PROP⊂FO,
2. if 	; �∈FO, then ¬	; 	∨ �; 	∧ �∈FO,
3. if 	∈FO, then �	;✷	∈FO,
4. if 	; �∈FO, then 	U�∈FO.
The language is interpreted in models based on temporal frames of the form

F = 〈S;6〉;

where S is a nonempty set of states, and 6 is a partial order on S constituting the
accessibility relation of F (i.e., 6 is re<exive, weakly antisymmetric and transitive).
Denote by

B = {tt; + ; uu};

the range of logical values we consider here. As the three-valued calculus underlying
our temporal logic we choose the well-known Kleene’s calculus. A model for LT is a
tuple

MT = 〈F; I〉;
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where I : S×PROP→B is the interpretation of propositional atoms. Then I is extended
to the interpretation I∗ of all formulae in FORMT by taking, for any s∈ S:

1: I∗(s; p) = I(s; p) for p∈PROP;

2: I∗(s;¬	) =



tt iJ I∗(s; 	) = + ;

+ iJ I∗(s; 	) = tt;

uu otherwise;

3: I∗(s; 	 ∨ �) =



tt iJ either I∗(s; 	) = tt; or I∗(s; �) = tt;

+ iJ I∗(s; 	) = I∗(s; �) = + ;

uu otherwise;

4: I∗(s; 	 ∧ �) =



tt iJ I∗(s; 	) = I∗(s; �) = tt;

+ iJ either I∗(s; 	) = + ; or I∗(s; �) = + ;

uu otherwise;

5: I∗(s;�	) =



tt iJ (∃s′ ∈ S)(s6 s′ and I∗(s′; 	) = tt);

+ iJ (∀s′ ∈ S)(s6 s′ ⇒ I∗(s′; 	) = +);

uu otherwise;

6: I∗(s;✷	) =



tt iJ (∀s′ ∈ S)(s6 s′ ⇒ I∗(s′; 	) = tt);

+ iJ (∃s′ ∈ S)(s6 s′ and I∗(s′; 	) = +);

uu otherwise;

7: I∗(s; 	U�) =




tt iJ (∃s′ ∈ S)(s6 s′ and I∗(s′; �) = tt

and (∀s′′ ∈ S)(s6 s′′ ¡ s′ ⇒ I∗(s′′; 	) = tt))

+ iJ (∀s′ ∈ S)[(s6 s′ and I∗(s′; �) �= +)

⇒ (∃s′′ ∈ S)(s6 s′′ ¡ s′ and I∗(s′′; 	) = +)]

uu otherwise;

where

s1 ¡ s2
df≡ s1 6 s2; s1 �= s2:

Note that in view of the re<exivity of 6 we have I∗(s; 	U�) = tt if I∗(s; �) = tt. More-
over, the “until” operator we consider here is a strong one, since I∗(s; 	U�) = tt only
if there exists an s′ ∈ S with s6s′ and I∗(s; �) = tt. Finally, since universal quanti/-
cation over an empty set is trivially true, I∗(s′; �) = + for every s′ with s6s′ implies
I∗(s; 	U�) = + .
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Further, in view of the rather complicated character of the U operator there are
several possible ways of de/ning the condition for I∗(s; 	U�) = + . The clause we
chose is advocated by its simplicity. Unfortunately, any attempt to separate + from
uu in this de/nition in a really precise way would yield a very complicated clause,
resulting in an even more complicated deduction rule.

We assume a strong notion of satisfaction=validity in the sense that the only desig-
nated logical value is tt. Thus a formula 	 is
• satis0ed in a state s of a model MT (MT; s |= 	) if I∗(s; 	) = tt,
• satis0ed in a model MT (MT |= 	) if MT; s |= 	 for each state s of MT,
• valid (|=T 	) if MT |= 	 for every model M .

8.2. R–S deduction system

To develop an R–S deduction system for our logic LT, we have to extend the
original language to a broader deduction language LD, since in order to formulate
R–S decomposition rules for temporal formulae we need—exactly as in case of tableau
systems for such logics (see [27])—some means for representing the fact that a formula
	 holds in a state s, and that states s; s′ are in the accessibility relation, i.e. that s6s′.

Thus let VARS be a countable set of state variables, and let ≺ be the constant
representing the accessibility relation. We de/ne the set of state formulae as

FORMS = {x:	: 	 ∈ FORMT; x∈VARS}:

Intuitively, x:	 means that the temporal formula 	 is satis/ed in the state x. The set of
accessibility formulae expressing the accessibility relation on states is

FORMA = {x ≺ y: x; y ∈ VARS}:

Finally, the set of formulae of the deduction language LD is de/ned by

FORMD = FORMS ∪ FORMA:

The underlying temporal frames are the same, but the notion of a model changes to

MD = 〈F; I; v〉;

where, as before, F = 〈S;6〉 is a temporal frame, I : S×PROP→B is the interpretation
of propositional atoms, and, in addition, v : VARS→ S is a valuation of state variables.
The interpretation I+ : FORMD→B of the deduction language formulae is de/ned by

I+(x:	) = I∗(v(x); 	); I+(x ≺ y) =

{
tt if v(x) 6 v(y);

+ otherwise;

where I∗ is de/ned like in the preceding subsection.
A formula ’∈FORMD is said to be

• satis/ed in a model M , in symbols M |=’, iJ I+(’) = tt,
• valid, in symbols |=’. if M |=’ for each model M .
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Fact 1. A formula 	∈FORMT is valid if and only if the formula x:	∈FORMD is valid;
where x is an arbitrary variable in VARS.

Evidently, this means that proving validity in LT can be reduced to proving validity
in LD—which justi/es the usefulness of our deduction language.

Since the logic we consider is a three-valued one, the deduction system is developed
with help of signed formulae (see Section 3) belonging to the set

SFORM = {N’: ’ ∈ FORMD} ∪ {T’: ’ ∈ FORMD}

and interpreted according to the rules

MD |= T(’) iJ MD |= ’; MD |= N(’) iJ MD �|= ’:

Thus our deduction system, denoted by DRT, will operate on sequences � of signed
formulae; recall that � is considered valid if, for any model MD, some element of �
is satis/ed in MD.
Indecomposable formulae are those having one of the following forms:

T(x:p);N(x:p);T(x:¬p);N(x:¬p);T(x ≺ y);N(x ≺ y) (8)

where x; y∈VARS; p∈PROP.
Now we can present our R–S deduction system for three-valued temporal logic. In all

the rules below, the �’s are sequences of signed formulae, with �′ being an indecom-
posable sequence. Furthermore, * always denotes repetition in the premises of the prin-
cipal formula under decomposition from the conclusion, 	; �∈FORMT; x; y; z; v∈VARS.
Finally, in all rules save (tr ≺) the variables y; z; w are mutually diJerent, z; w do not
appear above the double line, and y is an arbitrary variable.

8.2.1. DRT—an R–S deduction system for the three-valued temporal logic LT

Fundamental sequences: The fundamental sequences of DRT are the sequences of
formulae in SFORM that contain either formula (i) or pairs (ii), (iii) given below:

(i) T(x ≺ x); (ii) N(x:	);N(x:¬	); (iii) T(’);N(’); (9)

where x∈VARS; 	∈FORMT; ’∈FORMD.
Decomposition rules:

(T¬¬)
�′;T(x:¬¬	); �′′

�′; (T(x:	); �′′ (N¬¬)
�′;N(x:¬¬	); �′′

�′;N(x:	); �′′

(T∧)
�′;T(x:	 ∧ �); �′′

�′;T(x:	); �′′ |�′;T(x:�); �′′ (N∧)
�′;N(x:	 ∧ �); �′′

�′;N(x:	);N(x:�); �′′

(T¬∧)
�′;T(x:¬(	 ∧ �)); �′′

�′;T(x:¬	);T(x:¬�); �′′ (N¬∧)
�′;N(x:¬(	 ∧ �)); �′′

�′;N(x:¬	); �′′ |�′;N(x:¬�)�′′
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(T∨)
�′;T(x:	 ∨ �); �′′

�′;T(x:	);T(x:�); �′′ (N∨)
�′;N(x:	 ∨ �); �′′

�′;N(x:	); �′′ |�′;N(x:�); �′′

(T¬∨)
�′;T(x:¬(	 ∨ �)); �′′

�′;T(x:¬	); �′′ |�′;T(x:¬�); �′′ (N¬∨)
�′;N(x:¬(	 ∨ �)); �′′

�′;N(x:¬	);N(x:¬�); �′′

(T✷)
�′;T(x:✷	); �′′

�′;N(x ≺ z);T(z:	); �′′ (N✷)
�′;N(x:✷	); �′′

�′;T(x ≺ y); �′′; ∗ |�′;N(y:	); �′′; ∗

(T¬✷)
�′;T(x:¬✷	); �′′

�′;T(x ≺ y); �′′; ∗ |�′;T(y:¬	); �′′; ∗

(N¬✷)
�′;N(x:¬✷	); �′′

�′;N(x ≺ z);N(z:¬	); �′′ X

(T�)
�′;T(x:�	); �′′

�′;T(x ≺ y); �′′; ∗ |�′;T(y:	); �′′; ∗ (N�)
�′;N(x:�	); �′′

�′;N(x ≺ z);N(z:	); �′′

(T¬�)
�′;T(x:¬�	); �′′

�′;N(x ≺ z);T(z:¬	); �′′

(N¬�)
�′;N(x:¬�	); �′′

�′;T(x ≺ y); �′′; ∗ |�′;N(y:¬	); �′′; ∗

(TU)

�′;T(x:	U�); �′′

�′;T(x ≺ y); �′′; ∗ |�′;T(y:�); �′′; ∗ |�′;N(x ≺ z);N(z ≺ y);T(y ≺ z);T(z:	); �′′; ∗

(NU)

�′;N(x:	U�); �′′

�′;N(x ≺ z);N(z:�);T(x ≺ y); �′′; ∗ |�′;N(x ≺ z);N(z:�);T(y ≺ z); �′′; ∗
|�′;N(x ≺ z);N(z:�);N(z ≺ y); �′′; ∗ |�′;N(x ≺ z);N(z:�);N(y:	); �′′; ∗

(T¬U)

�′;T(x:¬(	U�)); �′′

�′;N(x ≺ z);T(z:¬�);T(x ≺ y); �′′; ∗ |�′;N(x ≺ z);T(z:¬�);T(y ≺ z); �′′; ∗
|�′;N(x ≺ z);T(z:¬�);N(z ≺ y); �′′; ∗ |�′;N(x ≺ z);T(z:¬�);T(y:¬	); �′′; ∗

(N¬U)

�′;N(x:¬(	U�)); �′′

�′;T(x ≺ y); �′′; ∗ |�′;N(y:¬�); �′′; ∗ |�′;N(x ≺ w);N(w ≺ y);T(y ≺ w);N(w:¬	); �′′; ∗
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(tr ≺)
�′;N(x ≺ y);N(y ≺ z); �′′

�′;N(x ≺ y);N(y ≺ z);N(x ≺ z); �′′

(as ≺)
�′;N(x ≺ y);N(y ≺ x);N(y:7); �′′

�′;N(x ≺ y);N(y ≺ x);N(y:7);N(x:7); �′′

where 7 is either p or ¬p for some p ∈ PROP:

By way of an explanation, let us /rst note that in Eq. (9), the fundamental sequence in
(i) expresses re<exivity of the partial order relation, (ii) the basic fact that a formula
and its negation cannot be both true, and (iii) is just an exact analogue of the condition
on a fundamental sequence for classical logic.

As we see, the rules for connectives are three-valued analogues of the corresponding
rules for classical logic—which is a consequence of the fact that Kleene’s three-valued
connectives have all the basic properties of the classical connectives except the ex-
cluded middle law. The rules for ✷ and � deal with limited quanti/cation inherent to
these operators in a way quite analogous to the rules for sim and sim in similarity logic
(see Section 2.2). They again exhibit the typical pattern of handling quanti/cation in
R–S systems discussed before. The same is true for the more involved rules concerning
the operator U.

The reader can check himself that in order to get any of the modality rules it
suOces to express the corresponding semantic clause as a quanti/ed meta-formula,
and than transform this formula into a decomposition rule, remembering that: universal
quanti/cation is replaced by substitution of a new variable for the quanti/ed one in the
quanti/ed formula, existential quanti/cation—by substituting any term for the quanti/ed
variable in the quanti/ed formula and repeating the whole existential formula again,
disjunction is represented by a comma in a sequence of formulae, and conjunction—by
branching in a decomposition rule.

The only expansion rules (see Section 2) of our logic are (tr ≺) and (as ≺). Rule
(tr ≺) expresses transitivity of the accessibility relation, and rule (as ≺)—antisymmetry
of the latter relation, whereby x≺y and y≺ x implies that x; y denote the same state,
so x can be substituted for y in any state formula (but the rule is limited to atomic
formulae only in order to delay branching in the decomposition tree). Note that a
corresponding substitution rule for accessibility formulae is not needed, since it would
be just a special case of rule (tr ≺).

Finally, let us note that notation of expansion rules is a somewhat simpli/ed. In fact,
the formulae in the conclusion can appear in an arbitrary order, and can be separated by
arbitrary sequences of formulae; of course, both this order and contexts are preserved
in the premise too. With such rules, their application order will be determined by a
more detailed control mechanisms mentioned in Section 2.5; basically speaking, the
/rst (instance of) rule to be applied is that applicable to the leftmost sequence of
formulae.

Lemma 1. The deduction system DRT is sound.
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Proof. From re<exivity of the accessibility relation, the fact that x:	 and x:¬	 can-
not simultaneously take the value tt and from the properties of signed formulae it
immediately follows that the fundamental sequences given above are indeed valid.

According to the remarks preceding the lemma, the rules for connectives are sound
by the properties of Kleene’s logic, and expansion rules—by the properties of the
accessibility relation. By way of illustration, let us prove soundness of the basic rules
for modal operators. The notation of models and their elements follows that introduced
when de/ning the semantics.

Note that for greater clarity in case of a model MD = 〈F; V; I〉 for the deduction
language LD we use the semantic function I∗ of the underlying model MT = 〈F; I〉 for
LT rather than the semantic function I+ of MD (recall that I+(x:	) = I∗(v(x); 	)). This
facilitates reasoning in case of changing the valuation v for just one variable, since it
makes v explicit, whereas it is only implicit in I+.
Rule (T✷): We have to prove that the conclusion (the sequence over the double

line) is valid if the premise (the sequence under the double line) is valid.
Let us start with downward implication. We argue by contradiction: assume that

�′;T(x:✷	); �′′ is valid, and suppose M = 〈F; I; v〉 is a model such that M �|=�′;
N(x≺ z);T(z:	); �′′. Then M �|=�′; �′′; v(x)6v(z) and I∗(v(z); 	) �= tt, whence M �|=
T(x:✷	) by the semantic clause for ✷—which is a contradiction. Thus the premise
must be valid too.

Now let us pass to the upward implication, assuming that the premise is valid. Sup-
pose �′;T(x:✷	); �′′ is not valid, and let a model M = 〈F; I; v〉 be such that M �|=�′;
T(x:✷	); �′′. Then there exists an s∈ S such that v(x)6s and I∗(s; 	) �= tt. Now let
M ′ = 〈F; I; v′〉, where v′ = v[s=z] (see Section 6 for the de/nition). Since z is a new
variable, then M �|=�′; �′′ implies M ′ �|=�′; �′′. Moreover, as x �= z, then we have
v′(x) = v(x)6s= v′(z) and I∗(v(z); 	)= I∗(s; 	) �= tt. Thus M �|=�′;N(x≺z);T(z:	); �′′,
which contradicts our assumption on the validity of the premise. Hence the conclusions
has to be valid too, and the rule is sound.
Rule (T�): Now we have to prove that the conclusion is valid iJ both the premises

are valid.
The downward implication is trivial, since the conclusion is contained in the premises

(where T(x:�	) is marked by *). To prove the upward implication, assume both
�′;T(x≺y); �′′; ∗ and �′;T(y:	); �′′; ∗ are valid. Let M = 〈F; I; v〉 be an arbitrary
model, and suppose M �|=�′;T(x:�	); �′′. Then from the validity of both the premises
it follows that M |=T(x≺y) and M |=T(y:	). Thus v(x)6v(y) and I∗(v(y); 	) = tt,
whence M |=T(x:�	)—which is a contradiction. In consequence, the conclusion has
to be valid, and the rule is sound.

Since the “until” (U) modality is especially complicated, in its case we will show
validity of two rules: the standard (T¬U) rule, and the negation rule (TU). Remember
that * in the premises of the rule denotes TU.
Rule the conclusion: The downward implication is again trivial. To prove the upward

implication, assume that all the premises are valid, and suppose that �′;T(x:	U�); �′′

is not valid, i.e. M �|=�′;T(x:	U�); �′′ for some model M = 〈F; I; v〉.
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Since the premises are valid and M �|=�′;T(x:	U�); �′′, we have in particular M |=
T(x≺y); M |=T(y:�), whence v(x)6v(y) and I∗(v(y); �) = tt. As M �|=T(x:	U�), then
by the semantic clause for U there must be an s′ ∈ S with v(x)6s¡v(y) and
I∗(s; 	) �= tt. Now let M ′ = 〈F; I; v′〉, where v′ = v[s=z]. Then, in view of z �= x; y, we
have v′(x) = v(x); v′(y) = v(y) and v′(z) = s, whence v′(x)6v′(z)¡v′(y) and
I∗(v′(z); 	) �= tt. In consequence, M ′ |=T(x≺ z); M ′ |=T(z≺y); M ′ |=N(y≺ z) and
M ′ |=N(z:	). Furthermore, as M �|=�′; T(x:	U�); �′′ and z is new, then the same is
true for M ′. Hence M ′ �|=�′; N(x≺ z); N(z≺y); T(y≺ z); T(z:	); �′′; T(x:	U�),
which contradicts validity of the third premise. Thus the upward implication must
hold too.
Rule (T¬U): As before, the downward implication is trivial. To prove the upward

implication, assume that the premises are valid, and suppose the conclusion is not,
i.e. M �|=�′; T(x:¬(	U�)); �′′ for some model M = 〈F; I; v〉. Then there is an s∈ S
such that v(x)6s; I∗(s; �) �= + , and there does not exist an s′ ∈ S with v(x)6s′¡s and
I∗(s′; 	) = + .

Let M ′ = 〈F; I; v′〉, where v′ = v[s=z]. As z is new, then M ′ �|=�′;T(x:¬(	U�)); �′′.
Moreover, M ′ |=T(x≺ z) and M ′ |= N(z:¬�). Since the premises are valid, this implies
M ′ |=T(x≺y), M ′ |=T(y≺ z), M ′ |=N(z≺y), M ′ |=T(y:¬	). Thus v′(x)6v′(y);
v′(y)¡v(z) and I∗(v′(y); 	) = + . Considering the de/nition of v′, in view of z �=y
we get v(x)6v(y)¡s and I∗(v(y); 	) = + , which is a contradiction. Thus the upward
implication must also hold.

Now it remains to prove completeness. Let us de/ne the notions of a decomposition
tree, proof and provability as in Section 2. Then we have the following completeness
result:

Theorem 3. Each valid sequence � of formulae in SFORMD is provable in DRT.

Proof. The proof follows the universal pattern outlined in Section 2: we assume that
� is not provable, and /nd a counter-model for it.

Let us begin with its most crucial part—construction of a counter-model MC for a
set � of indecomposable formulae which does not contain any fundamental sequence
and is closed under the expansion rules (tr≺ ); (as ≺). Let ∼ be a relation on VARS

de/ned by

x ∼ y iJ either x = y or N(x ≺ y) ∈ � and N(y ≺ x) ∈ �:

Then ∼ is re<exive and symmetric. Moreover, it is also transitive in view of the
fact that � is closed under rule (tr ≺). Indeed: if x∼y and y∼ z, then either x =y
or y = z, whence obviously x∼ z, or else (1) N(x≺y); (2) N(y≺ x); (3) N(y≺ z);
(4) N(z≺y)∈�, whence by applying rule (tr ≺) /rst to (1), (3) and then to (4), (2)
we get N(x≺ z);N(z≺ x)∈�. Thus ∼ is an equivalence relation. As the set of states
of our counter-model we take

SC = VARS=∼ = {[x]∼: x ∈ VARS}:
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For simplicity, we shall write [x] instead of [x]∼. As the temporal frame underlying the
counter-model we take FC = 〈SC;6〉, where the accessibility relation 6 is de/ned by

[x] 6 [y] iJ either [x] = [y] or N(x ≺ y) ∈ �:

It is easy to see that 6 is well-de/ned. Indeed, reasoning in the way exactly analo-
gous to the proof of transitivity of ∼ given above, we can show that, for any x; x′; y; y′

such that x �= x′; y �=y′ and x ∼ x′; y ∼ y′, we have N(x≺y)∈� iJ N(x′≺y′)∈�,
whence the de/nition of [x]6[y] is independent of the choice of the representatives
of classes [x]; [y]. Obviously, 6 is re<exive. It is also weakly antisymmetric, since
[x]6[y] and [y]6[x] implies either [x] = [y] or N(x≺y);N(y≺ x)∈�, whence x ∼ y
and again [x] = [y]. Finally, it is also transitive. Indeed, if [x]6[y] and [y]6[z], then
either [x] = [y] or [y] = [z], whence obviously [x]6[z], or else N(x≺y);N(y≺ z)∈�.
As � is closed under rule (tr ≺), this yields N(x≺ z)∈�, whence [x]6[z]. Thus 6
is a partial order and FC is a correct temporal frame.

We put MC = 〈F; I; v〉, where

v(x) = [x] for x ∈ VARS; I([x]; p) =



tt iJ N(x:p) ∈ �;
+ iJ N(x:¬p) ∈ �;
uu otherwise:

Again it is easy to see that I is correctly de/ned. Indeed if x �= x′; x∼ x′ and
N(x′:7)∈�, where 7 is either p or ¬p for some p∈PROP, then N(x≺ x′),
N(x′≺ x); N(x′:7)∈�. As � is closed under rule (as ≺), this implies N(x:7)∈�,
so the de/nition of I([x]; p) does not depend on the choice of the representative of
the class [x]. Moreover, as � does not contain any fundamental sequence, then by (9)
the formulae N(x:p) and N(x:¬p) cannot both belong to �, whence there is no clash
between the tt and + clauses of the de/nition.

It remains to check that MC is indeed a counter-model for �. Our considerations will
be based on the de/nitions of the interpretation I+ on the basis of I and of satisfaction
of signed formulae given in the preceding section. Let ’ be an arbitrary formula in �.
Then ’ is indecomposable, so it must have one of the forms given in (8):

T(x:p);N(x:p);T(x:¬p);N(x:¬p);T(x ≺ y);N(x ≺ y):

Since we have shown above that neither the value of I([x]; p) nor satisfaction of the
relation [x]6[y] depend on the choice of the representatives of classes [x]; [y], in all
the cases below we can assume the representative of a class [z] is just z. In other
words, in order to evaluate I+(x:	) or I+(x≺y) we do not have to consider whether
� contains N(x′:	) or N(x′≺y′) for some x′∼ x; y′∼y—but only whether it contains
N(x:	) or N(x≺y).
Case 1: ’=T(x:p). Then N(x:p) �∈�, since otherwise � would contain a fundamen-

tal sequence (see (9)). Hence I+(x:p) = I([x]; p) = + if N(x:¬p)∈�, and otherwise
I+(x:p) = uu. In both cases MC �|=T(x:p).
Case 2: ’=N(x:p). Then I+(x:p) = tt and again MC �|=N(x:p).
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Case 3: ’=T(x:¬p). Then N(x:¬p) �∈�, since otherwise � would contain a fun-
damental sequence. Hence I([x]; p) = tt if N(x:p)∈�, and otherwise I([x]; p) = uu,
whence I+(x:¬p)∈{+ ; uu}. In both cases, MC �|=T(x:¬p):
Case 4: ’=N(x:¬p). Then I([x]; p) = + , whence I+(x:¬p) = tt and MC �|=N(x:¬p).
Case 5: ’=N(x≺y). Then [x]6[y], whence I+(x≺y) = tt and MC �|=N(x≺y).
Case 6: ’=T(x≺y). Then neither x =y nor N(x≺y) =∈�, for otherwise � would

contain a fundamental sequence. Thus non [x]6[y] and I+(x≺y) = + , whence
MC �|=T(x≺y).

Thus MC is indeed a counter-model for �.
Now let us present in more detail the inductive part of the theorem outlined brie<y

in Section 2. If a sequence � is not provable, then its decomposition tree DT (�) is not
a proof. Hence either the tree is /nite and contains a leaf l labelled by a sequence of
indecomposable formulae which is not fundamental, or it has an in/nite branch B by
Koenig’s lemma. Let us denote by � the set of formulae in the label of leaf l in the
/rst case, and the set of all indecomposable formulae on the branch B in the second
case. Then � is closed under expansion rules and does not contain a fundamental
sequence, whence by what we have proved above it has a counter-model MC.

We shall prove now that � is not valid. If the tree is /nite, then the thesis follows
immediately from invertibility of the rules and the fact that the sequence labelling the
leaf l of the tree is not valid. Now consider the case when the tree has an in/nite
branch B. We shall show that MC—the counter-model for the set of all indecomposable
formulae of B—is a counter-model for �. Let us de/ne the rank r of a formula in
FORMT by
1. r(p) = r(¬p) = 0 for p∈PROP;
2. r(¬	) = 1 + r(	) for 	 =∈PROP;
3. r(D	) = 1 + r(	) for D∈{�;✷};
4. r(	C�) = 1 + max(r(	); r(�)) for C ∈{∨;∧;U}.

Further, de/ne the rank R of formulae in SFORMD as
1. R(T(x≺y)) =R(N(x≺y) = 0;
2. R(T(x:	)) =R(N(x:	)) = r(	).
We shall prove that MC �|=� by induction on the rank of signed formulae on the branch
B. We know that MC �|=’ for any signed formula ’ on B with R(’) = 0, since MC is
a counter-model for all indecomposable formulae on B—and indecomposable formulae
are exactly formulae of rank 0.

Suppose some formulae on B are satis/ed in MC, and let ’ be such a formula with
the least rank. Then R(’)¿0, so ’ is of the form either T(x:	) or T(x:	). Now we shall
argue on the structure of 	 to show that our assumption leads to a contradiction. We
shall make use of the fact that if the decomposed formula contained in the conclusion
of some decomposition rule is on branch B, then one of the sequence of formulae
resulting from its decomposition and contained in the premises of this rule must be on
branch B too.
1. 	 cannot be of the form ¬¬�; �1 ∨ �2; �1 ∧ �2;¬(�1 ∨ �2);¬(�1 ∧ �2). Indeed if e.g.

’=T(x:¬¬�), then T(MC |=T(x:¬¬�) would imply MC |=T(x:�), which is a
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contradiction since T(x:�) would also be on B by rule (T¬¬) and R(T(x:�))¡R(’).
The situation with N, as well as with other combinations of connectives correspond-
ing to single-premise rules is analogous. In case of double-premise rules, branch B
would have to contain one of the premises—and hence again a formula satis/ed in
MC with a rank lower than that of ’ (e.g., if ’=T(x:	∧ �), then B must contain
either T(x:	) or T(x:�)—both satis/ed in MC.

2. 	 cannot be of the form ��; ¬��. Suppose /rst that ’=T(x:��). Then MC |=’
implies that there exists an y∈VARS such that [x]6[y] and I∗([y]; �) = tt. Hence
for such an y we would have MC |=T(x≺y) and MC |=T(y:�). By rule (T�), one
of them has to be on B. Since both have smaller ranks than ’, this is a contradiction.

Now suppose that ’=N(x:��). Then for every z ∈VARS such that [x]6[z] we
have I∗([z]; �) �= tt in MC. In consequence, MC |=N(x≺ z);N(z:�). By rule (N�),
both these formulae have to be on branch B. Since one of them must be satis/ed
in MC and both have smaller ranks than ’, we get a contradiction again.

The proof for each of the remaining cases is analogous to one of the above.
3. 	 cannot be of the form ✷�;¬✷�. The proofs are analogous to the preceding case

by duality between ✷ and �.
4. 	 cannot be of the form �1U�;¬(�1U�2). Suppose ’=T(x:�1U�2). Then MC |=’

implies that there exists y∈VARSE such that [x]6[y]; I∗([y]; �2) = tt, and for ev-
ery z ∈VARSE with [x]6[z]¡[y] we have I∗([z]; �1) = tt. In consequence, MC |=T
(x≺y); MC |=T(y:�2), and MC |=N(x≺ z);N(z≺y);T(y≺ z);T(z:	). Moreover,
by rule (TU) one of these three sequences of formulae have to be on B, and
all of the formulae they include have ranks smaller than ’, Thus we arrive at a
contradiction again.

The proofs for the other cases are quite analogous.
Since all the possible forms of ’ have been excluded, no formula on B can hold on
MC—whence �, which is on B as the label of the root of the tree, is not satis/ed in
MC, and hence not valid.

From the completeness theorem, Fact 1 and the de/nition of a proof in an R–S
system given in Section 2 it follows that in order to prove the validity of a temporal
formula 	∈FORMT we have to construct a decomposition tree of the formula T(x:	),
when x is any variable in VARS. If the tree is /nite and its leaves are labeled with
fundamental sequences only, then 	 is valid—otherwise it is not.

It should be noted that the signed formula operators T;N introduced on top of the
formulae in FORMD can be eliminated by passing from the DRT system to an equivalent
Gentzen sequent calculus in the way described in the next section.

9. Transformation of an R–S system into a Gentzen calculus system

As we have already said, the basic goal—and result—of applying the R–S method-
ology is a complete R–S system for a given logic. However, in order to propagate or
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use this result in the more extensive environment of Gentzen sequent calculus users,
we can transform the latter system almost automatically into a complete Gentzen se-
quent calculus. The interest of such a transformation is twofold. First, it allows us to
pass from a complete deduction system for a richer language of signed formulae to an
equally complete deduction system for the original language in a quite automatic way.
Second, the Gentzen formalism is much more widely known than the Rasiowa–Sikorski
one, so such a translation could generate a more widespread interest in, or use of the
deduction system obtained primarily using Rasiowa–Sikorski method.

In this /nal section we shall present a method for transforming an R–S calculus for
signed formulae over some logic into a Gentzen sequent calculus for the original logic.
The method used is similar to that presented in [10] in case of Beth’s tableaux and
follows from a close connection between validity of sequents and validity of sequences
of signed formulae. We omit the more detailed proofs, which are simple generalizations
of those given, e.g. in [2, 13] for systems with rules having up to two premises only
(here we allow an arbitrary /nite number of premises).

The presentation of transformation given here is tailored to an R–S system using
signed formulae, to show how we can get rid of this temporary extension to the lan-
guage by passing to sequent calculus. The above method applies of course (with minor
adaptations) also to an R–S system for a logic with “standard” negation, which does not
use signed formulae. However, this involves certain additional technical details—which
was another reason for our choice of presentation.

Let us start with introducing the basic notions and notation. The notation not de/ned
below is taken from Sections 1–3.

De�nition 5. By a sequent we mean a pair (:; �) of /nite sets : and � of formulae
in F, written in the form : � �.

A sequent : � � is said to be valid iJ, for any model M satisfying all the formulae
in :, at least one formula in � is satis/ed in M .

Assume that there is some “vocabulary order” on formulae, and that notation of the
type : = {	1; 	2; : : : ; 	n} used for /nite sets of formulae represents just this order. For
the above set :, let T(:);N(:) be sequences of signed formulae de/ned by

T(:) = T(	1);T(	2); : : : ;T(	n); N(:) = N(	1);N(	2); : : : ;N(	n):

Then the simple connection between validity of sequents and validity of signed formu-
lae is as follows:

Lemma 2. A sequent : � � is valid whenever the sequence N(:);T(�) of signed
formulae is valid.

Proof. Recall that a sequence of signed formulae is valid iJ, for any model M , some
formula in this sequence is satis/ed in M . By de/nition, a sequent : � � is valid iJ,
for every model M such that every 	∈: is satis/ed in M , some �∈� is satis/ed
in M . In other words, : � � is valid iJ, for every model M , either some 	∈: is not
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satis/ed in M or some �∈� is satis/ed in M—or, equivalently, for every M , either
N(	) is satis/ed in M for some 	∈: or T(�) is satis/ed in M for some �∈�. The
latter condition is obviously tantamount to validity of the sequence N(:);T(�).

Assume now that we already have a complete R–S deduction system DRS for the
language of signed formulae over our original language. Then from the completeness
theorem for DRS (see Section 2) it follows that

Fact 2. A sequent : � � is valid whenever the sequence N(:);T(�) of signed for-
mulae has a proof in the R–S system; i.e. whenever it has a 0nite decomposition tree
with all terminal sequences fundamental.

The above fact suggests a simple method of developing a sequent calculus for our
original formal language out of the system DRS for sequences of signed formulae; it
suOces to derive from the fundamental sequences and decomposition rules of DRS the
corresponding axioms and inference rules of the sequent calculus, basing on the above
Fact.

The sequent calculus SC we have in mind will consist of axioms, having the form
of single (valid) sequents, and inference rules, leading from valid sequents to valid
sequents. An inference rule is of the form

:1 � �1 :2 � �2 : : : :n � �n

: � �
:

The sequent : � � will be called the conclusion of the rule, and the sequent(s)
:1 � �1; :2 � �2; : : : ::n � �n—its premises. A rule is said to be sound iJ its conclusion
is valid whenever all its premises are valid.

Thus, we should bear in mind that there are two basic diJerences between decom-
position rules for signed formulae and inference rules of the sequent calculus:
• decomposition rules for signed formulae are two-way rules saying that the conclusion

is valid iJ all the premises are valid, whereas sequent calculus rules are, in principle,
one-way rules saying that the conclusion is valid whenever all the premises are valid;

• in proof construction, decomposition rules were used “top down” to construct a
decomposition tree of a sequence of formulae, whereas sequent calculus rules will
be used “bottom up” to deduce a sequent from the axioms.
For any sequence � of signed formulae, let us denote

�+ = {	 ∈F: T(	) ∈ �}; �− = {	 ∈F: N(	) ∈ �}:

Then our basic Lemma 1 can be rephrased as follows: for any /nite sequence � of
signed formulae, the sequent �− � �+ is valid iJ � has a proof in the system DRS.

This immediately gives rise to:

Fact 3. If � is a fundamental sequence in DRS; then �− � �+ is a sound axiom of
the sequent calculus SC.
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Now suppose that

�′; �; �′′

�′; �1; �′′ |�′; �2; �′′| : : : |�′�n; �′′;

is a decomposition rule in DRS. Then, evidently, for any /nite sets :; � ⊂ F, the
sequence N(:); �;T(�) has a proof in DRS whenever all the sequences N(:); �i;T(�);
i = 1; 2; : : : ; n, do. In consequence, considering Lemma 1, the sequent :; �− � �; �+

is valid whenever all the sequents :; �−
i � �; �+

i ; i = 1; 2; : : : ; n, are valid. Thus we
have:

Lemma 3. For every rule

�′; �; �′′

�′; �1; �′′ |�′; �2; �′′ | : : : |�′; �n; �′′;

in the R–S deduction system DRS;

:; �−
1 � �; �+

1 :; �−
2 � �; �+

2 : : : :; �−
n � �; �+

n

:; �− � �; �+

is a sound inference rule of the sequent calculus SC.

The above lemma is exempli/ed by the following table which gives sequent calculus
rules induced by some typical schemata of decomposition rules encountered in R–S
systems.

Decomposition rule Inference rule for sequents

�′;T(	); �′′

�′;T(	1); �′′
: � �; 	1

: � �; 	

�′;N(	); �′′

�′;N(	1); �′′
:; 	1 � �
:; 	 � �

�′;T(	); �′′

�′;T(	1);T(	2); �′′
: � �; 	1; 	2

: � �; 	

�′;N(	); �′′

�′;N(	1);N(	2); �′′
:; 	1; 	2 � �
:; 	 � �

�′;T(	1); �′′

�′;T(	1); �′′ |�′;T(	2); �′′
: � �; 	1; : � �; 	2

: � �; 	

�′;N(	); �′′

�′;N(	1); �′′ |�′;N(	2); �′′
:; 	1 � � :; 	2 � �

:; 	 � �

(Here all the 	’s and 	i’s are ‘ordinary’ formulae in F.)
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There is a general schema of proving that the sequent calculus SC resulting from a
sound complete R–S deduction system is sound and complete:

Theorem 4 (Soundness and completeness). Any sequent is provable in SC i; it is
valid.

Proof. Soundness follows from Fact 2 and Lemma 2. To prove completeness, assume a
sequent : � � is valid. Then the sequence N(:);T(�) is also valid, so by completeness
of DRS it has a /nite decomposition tree T with fundamental sequences at all its
leaves. Out of that tree, we can easily construct a proof of the original sequent in the
SC calculus. Namely, we prove by induction that the sequent �− � �+ corresponding
to any sequence � of formulas labelling a vertex of T is provable. Indeed, the leaves
are labelled by axiomatic sequences, so the corresponding sequents are axioms of SC.
Going upwards in T , we can replace each downward application of an R–S rule by an
upward application of the corresponding sequent calculus rule. We /nish our induction
at the root, which is labelled by the sequence N(:);T(�) corresponding to the original
sequent. .

It should be noted that the sequent calculus SC obtained in this way is usually
extended by adding the weakening rules which allow us to simplify some special rules
of SC, e.g. those dealing with existential quanti/cation, by eliminating the repetition
of the formula from the conclusion in the premises.

Finally, a natural question arises whether a converse translation—from a Gentzen
calculus to an R–S system—is possible and=or desirable. This seems doubtful. First,
no straightforward translation is possible, because R–S rules are invertible, whereas
in general sequent calculus ones are not. Second, it is not quite clear whether such a
translation is really advisable. The best reason would be proof search=generation, to
which an R–S system seems better adapted, but for this purpose a translation to a
tableau system, the rules of which need not be invertible, seems more sensible.

10. Conclusions

The examples presented in the paper prove that the R–S methodology of developing
a complete deduction system for a logic through analysing its semantics is indeed a
powerful and universal tool that allows us to develop complete deduction systems for
a broad class of logics encountered in CS applications in an intuitively clear way,
according to a uniform procedure.

As we have seen, the prerequisite for applying the methodology to a logic is suf-
/cient expressiveness of its language, needed for representing the semantics of its
operators through syntactic means—because this is what we need to build the rules
of an R–S deduction system. If a given language is not expressive enough, we can
sometimes remedy that by introducing certain auxiliary means, like signed formulae,
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nominals, etc. Sometimes a good method is to either give the logic a relational seman-
tics, or translate it to relational logic. Indeed, through the use of variables representing
components of binary relation couples, we can easily model all standard operations on
relations, as well as many nonstandard ones, by decomposition rules, and thus obtain
a complete R–S system for relational logics. In such a way, many logics, like e.g.
modal and substructural ones, have been formalised in an indirect method using the
R–S methodology (see especially the work of Or lowska, McCaull and others quoted
below).

Moreover, as we have argued e.g. in Section 2.5, Rasiowa–Sikorski systems can
lend themselves very well to automation—at least as well as tableau systems. An
indirect proof of this fact is the duality of R–S systems to the tableau systems and
the identity of the general principle underlying both the formalism: direct modelling of
the semantics through proof rules. A clear proof are the properties of an R–S system
itself. After a certain re/nement discussed in Section 2.5, the inductive de/nition of
a decomposition tree can be transformed into a ready-made algorithm for generating
a decomposition tree of a formula, which in case of it being /nite and having leaves
labelled by fundamental sequences only constitutes the proof of that formula. Of course,
a practical use of such an algorithm would require further modi/cations to make it more
eJective, maybe analogous to those performed in case of tableau systems.

On the other hand, the advantage of R–S systems over tableaux is invertibility of
their decomposition rules, which makes them a more powerful and precise tool from
proof-theoretical viewpoint. The need for the validity of the premises to be equiva-
lent to the validity of the conclusion enforces a greater discipline in the deduction
system development and facilitates elimination of possible loopholes. This feature is
reinforced by the principles of R–S methodology outlined above, which give a concrete
prescription for developing a complete deductions system in a systematic way. Another
advantage is that invertible rules are better suited to proof search which facilitates au-
tomated deduction.

In view of all these advantages, Rasiowa–Sikorski deduction mechanism certainly
merits a greater popularity and interest as a very useful tool in many applications. It
is the author’s hope that this paper might contribute towards achieving this goal.
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