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a b s t r a c t

This paper is concerned with the reduction of soft sets and fuzzy soft sets. Firstly, the
problems of suboptimal choice and added parameter set of soft sets are analyzed. Then,
we introduce the definition of normal parameter reduction in soft sets to overcome these
problems. In addition, a heuristic algorithm of normal parameter reduction is presented.
Two new definitions, parameter important degree and decision partition, are proposed
for analyzing the algorithm of normal parameter reduction. Furthermore, the normal
parameter reduction is also investigated in fuzzy soft sets.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Researchers in economics, engineering, environmental science, sociology, medical science, and many other fields deal
with the complexity of uncertain data. The nature of the uncertainty data appearing in these domains can be very
different. While probability theory, fuzzy sets [1], rough sets [2], and other mathematical tools are well-known and often
useful approaches to describing uncertainty, each of these theories has its inherent difficulties, which are pointed out by
Molodtsov [3]. Molodtsov proposed a completely new approach for modeling vagueness and uncertainty-soft set theory.
The soft set theory is free from the difficulties affecting other existing methods.
A soft set is a parameterized family of the subsets of a universal set. It can be said that soft sets are neighborhood systems,

and that they are a special case of context-dependent fuzzy sets. In soft set theory, the problem of setting the membership
function simply does not arise. This makes the theory convenient and easy to apply in practice. Soft set theory has potential
applications in various fields including the smoothness of functions, game theory, operations research, Riemann integration,
Perron integration, probability theory, andmeasurement theory.Most of these applications have already been demonstrated
by Molodtsov [4].
In recent years, research on soft set theory has been active, and great progress has been achieved. Aktas et al. [5] introduce

the basic version of soft group theory, which extends the notion of group to include the algebraic structures of soft sets. Maji
et al. [6] introduce the definition of reduct-soft-set and describe the application of soft set theory to a decision-making
problem using rough sets. The same authors have also published a detailed theoretical study on soft sets [7]. Chen et al. [8]
present a new definition of parameterization reduction in soft sets, and compare this definition to the related concept of
attributes reduction in rough set theory.
Up to the present, all methods about reduction of soft sets only considered the optimal choice, the suboptimal choice

is not referred. After the optimal choice is selected, the data of optimal object are deleted from the data set (such as sold
products, repaired equipments). If we make next decision of the soft set in which the data of optimal choice are deleted,
usually we need to make a new reduction of the soft set again. Obviously, much time is wasted on the reduction of the soft
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set. Furthermore, the added parameter set is not considered too. If new parameters are added to the parameter set, new
reduction of soft sets needs to be made again when we make the decision.
In order to overcome the above problems, a new definition of normal parameter reduction is proposed in this paper

and a heuristic algorithm is presented to make normal parameter reduction. Two definitions of decision partition, based
on the choice value and parameter important degree, are also introduced to analyze the algorithm. The algorithm excludes
unnecessary parameters and searches suitable ones in the feasible parameter sets. Thus this algorithm performs efficiently.
The remainder of this paper is organized as follows. In Section 2, we review the basic concepts of soft set theory.

In Section 3, parameterization reduction of soft sets [8] is described and the problems of suboptimal choice and added
parameter set in soft sets are analyzed. The definition of normal parameter reduction is introduced to overcome these
problems. Furthermore, two definitions of decision partition and parameter important degree are proposed, and some
properties are discussed. The algorithm of normal parameter reduction is presented. In Section 4, normal parameter
reduction of fuzzy soft sets is investigated. Finally, conclusions are given in Section 5.

2. Preliminaries

In this section, we review the notion of soft sets in [4] and some definitions of rough sets. Let U be an initial universe set
and let E be a set of parameters.

Definition 2.1 (See [4]). A pair (F , E) is called a soft set (over U) if and only if F is a mapping of E into the set of all subsets
of the set U , i.e., F : E → P(U), where P(U) is the power set of U .

The soft set is a parameterized family of subsets of the set U . Every set F(ε), ε ∈ E, from this family may be considered
as the set of ε-elements of the soft set (F , E), or as the ε-approximate elements of the soft set. As an illustration, some
examples such as fuzzy sets and topological spaces were listed in [4]. The way of setting (or describing) any object in soft set
theory differs in principle from the way it is used in classical mathematics. In classical mathematics, a mathematical model
of an object is usually constructed which is too complicated to find the exact solution. Therefore the notion of approximate
solution has been introduced in soft set theory, whose approach is opposite the classical mathematics.

Definition 2.2 (See [4]). Assume that we have a binary operation, denoted by ∗, for subsets of the set U . Let (F , A) and (G, B)
be soft sets over U . Then, the operation ∗ for soft sets is defined in the following way: (F , A) ∗ (G, B) = (H, A × B), where,
H(α, β) = F(α) ∗ G(β), α ∈ A, β ∈ B, and A× B is the Cartesian product of the sets A and B.

The definition takes into account the individual nature of any soft set.

Definition 2.3 (See [9]). A knowledge representation system can be formulated as a pair S = (U, A), where U is a nonempty
finite set of objects and A is a nonempty finite set of attributes, such that a : U → Va for any a ∈ A, where Va is called the
value set of a.

Definition 2.4 (See [9]). Each subset of attribute B ⊆ A determines a binary indiscernibility relation IND(B), as follows:

IND(B) = {(x, y) ∈ U × U|∀a ∈ B, a(x) = a(y)}.

The relation IND(B), B ⊆ A, constitutes a partition of U , which we will denote by U/IND(B). Obviously, IND(B) is an
equivalence relation and IND(B) =

⋂
a∈B IND(a).

3. Normal parameter reduction of soft set

In this section, we discuss the parameterization reduction and the normal parameter reduction of soft sets.

3.1. Analysis of parameterization reduction of soft set in [8]

Chen et al. [8] presented a parameterization reduction of soft sets and its applications in a decision making problem,
which can be briefly described as follows.
SupposeU = {h1, h2, . . . , hn}, E = {e1, e2, . . . , em} and (F , E) is a soft set with tabular representation. Let fE(hi) =

∑
j hij

where hij are the entries in the table of (F , E). Further we useME to denote the collection of objects inU which takes themax
value of fE . For every A ⊂ E, ifME−A = ME , then A is called a dispensable set in E, otherwise A is called an indispensable set
in E. Roughly speaking, A ⊂ E is dispensable means that the difference among all objects according to the parameters in A
does not influence the final decision. The parameter set E is called independent if every proper subset of E is indispensable,
otherwise E is dependent. B ⊆ E is called a reduction of E if B is independent andMB = ME , i.e., B is the minimal subset of E
that keeps the optimal choice objects invariant.
The problems of suboptimal choice and added new parameter set can be illustrated by the following example.

Example 3.1. Suppose we have a soft set (F , E)with the tabular representation displayed in Table 1.
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Clearly fE(h2) = 5 is the maximum choice value, thus h2 is the optimal choice object. The soft set in Table 1 has a
parameterization reduction {e3, e6} (not all) of E according to Chen’s method in [8] (see Table 2). If the object h2 is deleted
from the Table 1, the suboptimal choice is h1 or h6 in Table 1. However, from the Table 2, we can see the maximum choice
value is 1 except fe3,e6(h2) = 2, namely, the suboptimal choice is any one in {h1, h3, h4, h5, h6}. Obviously, the suboptimal
choice is incorrect in parameterization reduction tables.
If the character of objects can not be completely embodied by parameter set E = {e1, e2, . . . , e7}, new parameters need

be added. Without loss of generality, let {ē1, ē2, ē3} be added parameter set. The soft set (F , {ē1, ē2, ē3}) with the tabular
representation is displayed in Table 3.
Combing original soft sets Table 1 with the added parameters Table 3 into a new Table 4. We can see h1 is the optimal

choice. While combing Table 2 with Table 3 into a new Table 5, we note that h3 is the optimal choice. Thus the two optimal
choices are inconsistent.
In order to overcome the above problems, we introduce the definition of normal parameter reduction in soft sets.

Table 1
Original table

U e1 e2 e3 e4 e5 e6 e7 f (·)

h1 1 0 1 1 1 0 0 4
h2 0 0 1 1 1 1 1 5
h3 0 0 0 0 0 1 1 2
h4 1 0 1 0 0 0 0 2
h5 1 0 1 0 0 0 0 2
h6 0 1 1 1 0 1 0 4

Table 2
Parameterization reduction table of original table (Table 1)

U e3 e6 f (·)

h1 1 0 1
h2 1 1 2
h3 0 1 1
h4 1 0 1
h5 1 0 1
h6 1 0 1

Table 3
Added parameters table

U ē1 ē2 ē3

h1 1 0 1
h2 0 0 0
h3 1 1 1
h4 0 0 1
h5 1 1 0
h6 1 0 0

Table 4
Combing original table (Table 1) and added parameter table (Table 3)

U e1 e2 e3 e4 e5 e6 e7 ē1 ē2 ē3 f (·)

h1 1 0 1 1 1 0 0 1 0 1 6
h2 0 0 1 1 1 1 1 0 0 0 5
h3 0 0 0 0 0 1 1 1 1 1 5
h4 1 0 1 0 0 0 0 0 0 1 3
h5 1 0 1 0 0 0 0 1 1 0 4
h6 0 1 1 1 0 1 0 1 0 0 5

Table 5
Combing parameterization reduction table (Table 2) and added parameter table (Table 3)

U e3 e6 ē1 ē2 ē3 f (·)

h1 1 0 1 0 1 3
h2 1 1 0 0 0 2
h3 0 1 1 1 1 4
h4 1 0 0 0 1 2
h5 1 0 1 1 0 3
h6 1 0 1 0 0 2
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3.2. Normal parameter reduction of soft sets

SupposeU = {h1, h2, . . . , hn}, E = {e1, e2, . . . , em}, (F , E) is a soft setwith tabular representation. Define fE(hi) =
∑
j hij,

where hij are the entries in the table of (F , E).

Definition 3.1. With every subset of parameters B ⊆ A, a indiscernibility relation IND(B) is defined by

IND(B) = {(hi, hj) ∈ U × U : fB(hi) = fB(hj)}.

For soft set {F , E}, U = {h1, h2, . . . , hn}, denote CE = {{h1, h2, . . . , hi}f1 , {hi+1, . . . , hj}f2 , . . . , {hk, . . . , hn}fs} as a
partition of objects in U which partitions and ranks the objects according to value of fE(·) based on the indiscernibility
relation, and CE = {{h1, h2, . . . , hi}f1 , {hi+1, . . . , hj}f2 , . . . , {hk, . . . , hn}fs} is called decision partition, where for subclass
{hv, hv+1, . . . , hv+w}fi , fE(hv) = fE(hv+1) = · · · = fE(hv+w) = fi, and f1 ≥ f2 ≥ · · · ≥ fs, s is the number of subclasses.
Objects with the same value of fE(·) are partitioned into a same subclass. In Table 1, CE = {{h2}f1 , {h1, h6}f2 , {h3, h4, h5}f3},
where f1 = 5, f2 = 4, f3 = 2.

Definition 3.2. For soft set {F , E}, E = {e1, e2, . . . , em}, if there exists a subset A = {e′1, e
′

2, . . . , e
′
p} ⊂ E satisfying

fA(h1) = fA(h2) = · · · = fA(hn), then A is dispensable, otherwise, A is indispensable. B ⊂ E is a normal parameter reduction
of E if B is indispensable and fE−B(h1) = fE−B(h2) = · · · = fE−B(hn), that is to say E − B is the maximal subset of E that the
value fE−B(·) keeps constant.

In Definition 3.2, fA(h1) = fA(h2) = · · · = fA(hn) implies CE = CE−A. E − A is the minimal subset of E that keeps the
classification ability invariant. Clearly, after the normal reduction of the parameter set E, we have fewer parameters, and
the partitions of objects have not been changed. In the following discussion the pseudo parameter reduction is proposed.

Definition 3.3. For soft set {F , E}, G = {e′′1, e
′′

2, . . . , e
′′
m} ⊂ E, if CE−G = CE , E − G is called a pseudo reduction of E.

Note that in both Definitions 3.2 and 3.3, two equalities CE = CE−A are all satisfied. However, in Definition 3.2, there
exists a subset A = {e′1, e

′

2, . . . , e
′
p} ⊂ E, fA(h1) = fA(h2) = · · · = fA(hn). While in Definition 3.3, generally, the condition

fA(h1) = fA(h2) = · · · = fA(hn)may not hold.
In order to better understand the two Definitions 3.2 and 3.3, let us consider a simple example. In Table 1 fe1,e2,e7(h1) =

fe1,e2,e7(h2) = · · · = fe1,e2,e7(h6) = 1, Table 1 has a normal parameter reduction {e3, e4, e5, e6} as displayed in Table 6. Table 1
shows fE(h2) = 5, fE(h1) = fE(h6) = 4, fE(h3) = fE(h4) = fE(h5) = 2, so CE = {{h2}5, {h1, h6}4, {h3, h4, h5}2, }, which
means that h2 is the optimal choice, h1 or h6 is the suboptimal choice and h3, h4 or h5 is the inferior choice. CE−{e1,e2,e7} =
{{h2}4, {h1, h6}3, {h3, h4, h5}1, }, the results are same with decisions in Table 6. If e4 is deleted from {e3, e4, e5, e6}, then the
partition CE−{e1,e2,e4,e7} = {{h2}3, {h1, h6}2, {h3, h4, h5}1, }. CE = CE−{e1,e2,e4,e7}, so the partition of objects can not be changed.
Thus we have the pseudo parameter reduction {e3, e5, e6} in Table 7.
Considering the normal parameter reduction Table 6, clearly, h2 is the optimal object, h1 or h6 is the suboptimal object,

and so on. Combing the Table 6 with Table 3 into a new table Table 8, the optimal choice is h1, which is identical to the
optimal choice by combining Table 1 with Table 3 (see Table 4). Therefore, the normal parameter reduction overcomes the
problems of the suboptimal choice and updated parameter set.
From the definitions of normal parameter reduction and pseudo parameter reduction, we know normal parameter

reduction is the special case of pseudo parameter reduction.
Table 6
Normal parameter reduction table of original table (Table 1)

U e3 e4 e5 e6 f (·)

h1 1 1 1 0 3
h2 1 1 1 1 4
h3 0 0 0 1 1
h4 1 0 0 0 1
h5 1 0 0 0 1
h6 1 1 0 1 3

Table 7
Pseudo parameter reduction of original table (Table 1)

U e3 e5 e6 f (·)

h1 1 1 0 2
h2 1 1 1 3
h3 0 0 1 1
h4 1 0 0 1
h5 1 0 0 1
h6 1 0 1 2
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Table 8
Combing added parameter table (Table 3) and normal parameter reduction table (Table 6)

U e3 e4 e5 e6 ē1 ē2 ē3 f (·)

h1 1 1 1 0 1 0 1 5
h2 1 1 1 1 0 0 0 4
h3 0 0 0 1 1 1 1 4
h4 1 0 0 0 0 0 1 2
h5 1 0 0 0 1 1 0 3
h6 1 1 0 1 1 0 0 4

3.3. Algorithm of normal parameter reduction

For soft set {F , E}, E = {e1, e2, . . . , em} is the parameter set, U = {h1, h2, . . . , hn} is the object set,
CE = {{h1, h2, . . . , hi}f1 , {hi+1 . . . , hj}f2 , . . . , {hk, . . . , hn}fs} as a decision partition of objects in U . If the pa-
rameter ei is deleted from set E, then the decision partition is changed and it can be denoted as CE−ei =
{{h1′ , h2′ , . . . , hi′}f1′ , {hi+1′ , . . . , hj′}f2′ , . . . , {hk′ , . . . , hn′}fs′ }. For the sake of convenience we use CE and CE−ei to denote
CE = {Ef1 , Ef2 , . . . , Efs} and CE−ei = {E − eif1′ , E − eif2′ , . . . , E − eifs′ }, respectively. Where Ef1 = {h1, h2, . . . , hi}f1 ,
Ef2 = {hi+1, . . . , hj}f2 , . . . , Efs{hk, . . . , hn}fs ; E − eif1′ = {h1′ , h2′ , . . . , hi′}f1′ , E − eif2′ = {hi+1′ , . . . , hj′}f2′ , . . . , E − eifs′ =
{hk′ , . . . , hn′}fs′ .

Definition 3.4. For soft set {F , E}, with parameter set E = {e1, e2, . . . , em}, and object set U = {h1, h2, . . . , hn}. Decision
partition and decision partition deleted ei are CE = {Ef1 , Ef2 , . . . , Efs} and CE−ei = {E − eif1′ , E − eif2′ , . . . , E − eifs′ },
respectively. The importance degree of ei for the decision partition is defined by

rei =
1
|U|
(α1,ei + α2,ei + · · · + αs,ei)

where | · | denotes the cardinality of set,

αk,ei =

{
|Efk − E − eifz′ |, if there exist z ′ such that fk = fz′ 1 ≤ z ′ ≤ s′, 1 ≤ k ≤ s.
|Efk |, otherwise.

Definition 3.5. For soft set {F , E}, with parameter set E = {e1, e2, . . . , em}, A = {e′1, e
′

2, . . . , e
′
p} ⊂ E and object

set U = {h1, h2, . . . , hn}. Decision partition and decision partition deleted A are CE = {Ef1 , Ef2 , . . . , Efs} and CE−A =
{E − Af1′ , E − Af2′ , . . . , E − Afs′ }, respectively. The importance degree of A for the decision partition is defined by

rA =
1
|U|
(α1,A + α2,A + · · · + αs,A)

where

αk,A =

{
|Efk − E − Afz′ |, if there exist z ′ such that fk = fz′ 1 ≤ z ′ ≤ s′, 1 ≤ k ≤ s.
|Efk |, otherwise.

In order to understand the Definition 3.4 better, the following example is shown. We have a soft set (F , E)
with the tabular representation displayed in Table 1, CE = {{h2}5, {h1, h6}4, {h3, h4, h5}2}. s = 3. CE−ei =
{{h2}5, {h6}4, {h1}3, {h3}2, {h4, h5}1}. α1,e1 = |{h2} − {h2}| = 0, α2,e1 = |{h1, h6} − {h6}| = |{h1}| = 1. α3,e1 =
|{h3, h4, h5} − {h3}| = |{h4, h5}| = 2. Therefore re1 =

1
6 (0+ 1+ 2) = 0.5.

The important degree of parameter has the following properties.

Property 3.1. For soft set {F , E}, parameter set E = {e1, e2, . . . , em}, 0 ≤ rei ≤ 1.

Proof. Let rei =
1
|U| (α1,ei + α2,ei + · · · + αs,ei), we have αk,ei = |Efk − E − eifz′ | ≤ |Efk | (if there exist z

′ such that fk = fz′ ,
1 ≤ z ′ ≤ s′, 1 ≤ k ≤ s). Note that |Ef1 | + |Ef2 | + · · · + |Efs | = |U|, therefore

rei =
1
|U|
(α1,ei + α2,ei + · · · + αs,ei)

≤
1
|U|
(|Ef1 | + |Ef2 | + · · · + |Efs |)

= 1.

It is easy to obtain 0 ≤ rei . Therefore we have 0 ≤ rei ≤ 1. �
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Property 3.2. rei = 0 if and only if value fei(·) = 0; rei = 1 if and only if value fei(·) = 1.

Proof. Let rei =
1
|U| (α1,ei + α2,ei + · · · + αs,ei), decision partition CE = {Ef1 , Ef2 , . . . , Efs}, decision partition deleted

eiCE−ei = {E − eif1′ , E − eif2′ , . . . , E − eifs′ }.
Let rei = 0, it means that αk,ei = 0 (1 ≤ k ≤ s), namely, |Efk − E − eifz′ | = 0 (if there exist z

′ satisfying fk = fz′ ,
1 ≤ z ′ ≤ s′, 1 ≤ k ≤ s). It is that Efk − E − eifz′ = ∅, obviously, Efk = E − eifz′ . It implies that the choice value of each
object is not changed after deleting parameter ei. Hence fei(·) = 0. While if fei(·) = 0, for any hi ∈ Ek, then hi ∈ E − ei. So
Efk − E − eifz′ = ∅, |Efk − E − eifz′ | = 0 (fk = fz′ , 1 ≤ k ≤ s, 1 ≤ z

′
≤ s′). So we have αk,ei = 0, (1 ≤ k ≤ s). Therefore

rei = 0.
Similarly, if rei = 1, we have |Efk − E − eifz′ | = |Efk |(fk = fz′ , 1 ≤ k ≤ s, 1 ≤ z

′
≤ s′). Obviously, the choice value

of each object is changed after deleting parameter ei. Hence fei(·) = 1. For fei(·) = 1, we have |Efk − E − eifz′ | = |Efk |,
(fk = fz′ , 1 ≤ k ≤ s, 1 ≤ z ′ ≤ s′), so rei = 1. �

Property 3.3. If the number of value fei(·) = 1 on the column ei labeled by the parameter ei is larger than the number of value
fej(·) = 1, rei > rej .

Proof. For |Efk − E − eifz |, |Efk − E − ejfz′ |, (fk = fz, 1 ≤ k ≤ s, 1 ≤ z ≤ s
′, 1 ≤ z ≤ s′′). According to the Definition 3.4, the

more the number of fei(·) = 1 we have, the more the number of changed choice value we have. So the sum of |Efk − E − eifz |
is larger than that of |Efk − E − ejfz′ |, 1 ≤ k ≤ s. Thus rei > rej . �

Definition 3.6. For soft set {F , E}, with parameter set E = {e1, e2, . . . , em}, and object set U = {h1, h2, . . . , hn}. Decision
partition and decision partition deleted ei and ej are CE = {Ef1 , Ef2 , . . . , Efs} and CE−ei = {E − eif1′ , E − eif2′ , . . . , E − eifs′ },
CE−ej = {E − ejf1′′ , E − ejf2′′ , . . . , E − ejfs′′ } respectively. The importance degree of ei ∨ ej and ei ∧ ej are defined by

rei∨ej =
1
|U|
(α1,ei∨ej + α2,ei∨ej + · · · + αs,ei∨ej),

rei∧ej =
1
|U|
(α1,ei∧ej + α2,ei∧ej + · · · + αs,ei∧ej),

where | · | denotes the cardinality of set,

αk,ei∨ej = |(Efk − E − eifz′ ) ∪ (Efk − E − ejfv′ )|,

αk,ei∧ej = |(Efk − E − eifz′ ) ∩ (Efk − E − ejfv′ )|,

if there exist z ′v′ such that fk = fz′ = fv′1 ≤ z ′ ≤ s′, 1 ≤ v′ ≤ s′′, 1 ≤ k ≤ s.

Property 3.4. rei∨ej ≥ max{rei , rej}; rei∧ej ≤ min{rei , rej}.

Proof. From the Definition 3.6, we can easily get

|(Efk − E − eifz′ ) ∪ (Efk − E − ejfv′ )| ≥ |(Efk − E − eifz′ )|,

and

|(Efk − E − eifz′ ) ∪ (Efk − E − ejfv′ )| ≥ |(Efk − E − ejfv′ )|.

Obviously, αk,ei∨ej = |(Efk − E − eifz′ ) ∪ (Efk − E − ejfv′ )|, αk,ei = |(Efk − E − eifz′ )|, αk,ej = |(Efk − E − ejfv′ )|. So we have
αk,ei∨ej ≥ max{αk,ei , αk,ej}. Therefore

rei∨ej =
1
|U|
(α1,ei∨ej + α2,ei∨ej + · · · + αs,ei∨ej)

≥
1
|U|
(max{α1,ei , α1,ej} + · · · +max{αs,ei , αs,ej})

≥ max{rei , rej}.

Similarly, we can obtain rei∧ej ≤ min{rei , rej}. �

Theorem 3.1. For soft set {F , E}, E = {e1, e2, . . . , em}, U = {h1, h2, . . . , hn}, if there exists a subset A = {e′1, e
′

2, . . . , e
′
p} ⊂ E,

such that E − A is the normal parameter reduction of E, then rA = 1 or rA = 0 and re′1 + re′2 + · · · + re′p = fA(·).
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Proof. E − A is the normal parameter reduction of E, so we get fA(h1) = fA(h2) = · · · = fA(hn). Obviously, fA(·) = natural
number or fA(·) = 0.
Let fA(·) = 0, then fe′1(·) = fe′2(·) = · · · = fe′p(·) = 0. So for any Efk ⊆ CE , E − Afz′ ⊆ CE−A, Efk = E − Afz′ (fk = f

′
z ), it is

that αk,A = 0. Therefore rA = 0. From Property 3.2 we get re′1 = re′2 = · · · = re′p = 0. Therefore re′1 + re′2 + · · · + re′p = 0.
Thus re′1 + re′2 + · · · + re′p = fA(·).

Let fA(·) = natural number, CE = {Ef1 , Ef2 , . . . , Efs}, and CE−A = {E − Af1′ , E − Af2′ , . . . , E − Afs′ }. Since fA(·) =
natural number, we can easily get s = s′ and f1 = f1′+ natural number, . . . , fs = fs′+ natural number, subclass Ef1 =
E − Af1′ , . . . , Efs = E − Afs′ . Therefore αi,A = |Efi − E − Afz′ | = |Efi | (1 ≤ i ≤ s, 1

′
≤ z ′ ≤ s′, if there exists z ′ such that

fi = fz′ ). Thus rA = 1.
Let Ek = {hi1 , hi2 , . . . , hiv }, i1, i2, . . . , iv < n. Since E − A is normal parameter reduction, fA(hj) = natural number. For

each hj ∈ Ek, there exist natural number parameters in A to make fel(hj) = 1, el ∈ Ā, where Ā is the subset of A, |Ā| = natural
number, and fĀ(·) = fA(·) = natural number. For different object, the subset Ā is different. So αk,e′1 + αk,e′2 + · · · + αk,e′p =
natural number × |Ek|. Therefore,

re′1 + re′2 + · · · + re′p =
1
|U|

(
s∑
i=1

αi,e′1
+

s∑
i=1

αi,e′2
+ · · · +

s∑
i=1

αi,e′p

)

=
1
|U|

(
p′∑
j=1

α1,e′j
+

p′∑
j=1

α2,e′j
+ · · · +

p′∑
j=1

αs,e′j

)

=
1
|U|
× fA(·)× (|E1| + |E2| + · · · + |Es|)

= fA(·).

This completes the proof. �

Example 3.2. Suppose we have a soft set (F , E) with the tabular representation displayed in Table 9, E = {e1, e2, . . . , e10},
U = {h1, h2, . . . , h6}. {e3, e4, e7, e10} and {e1, e2, e3, e4, e5, e8, e10}, {e2, e3, e5, e7, e10}, are the normal parameter reductions
of soft set. Namely, A = {e1, e2, e5, e6, e8, e9} or A = {e6, e7, e9}, A = {e1, e4, e6, e8, e9}.

CE = {{h1}6, {h5}5, {h2, h4, h6}4, {h3}3}, CE−e1 = {{h1}5, {h2, h5, h6}4, {h3, h4}3}, CE−e2 = {{h1}6, {h5}5, {h2, h4}4, {h3, h6}3},
CE−e3 = {{h1}5, {h5}4, {h2, h3, h4, h6}3}, CE−e4 = {{h1, h5}5, {h4}4, {h2, h3, h6}3}, CE−e5 = {{h1, h5}5, {h4, h6}4, {h2, h3}3},
CE−e6 = {{h1}6, {h5}5, {h4}4, {h2, h6}3, {h3}2}, CE−e7 = {{h1}5, {h2, h4, h5, h6}4, {h3}3}, CE−e8 = {{h1}6, {h2, h4, h5, h6}4,
{h3}2}, CE−e9 = {{h1}6, {h5}5, {h2, h6}4, {h3, h4}3}, CE−e10 = {{h1}5, {h2, h5, h6}4, {h4}3, {h3}2}.

re1 =
1
6 × (1+1+1+0) =

3
6 , re2 =

1
6 × (0+0+1+0) =

1
6 , re3 =

1
6 × (1+1+3+0) =

5
6 , re4 =

1
6 × (1+0+2+0) =

3
6 ,

re5 =
1
6 × (1+0+1+0) =

2
6 , re6 =

1
6 × (0+0+2+1) =

3
6 , re7 =

1
6 × (1+1+0+0) =

2
6 , re8 =

1
6 × (0+1+0+1) =

2
6 ,

re9 =
1
6 × (0+ 0+ 1+ 0) =

1
6 , re10 =

1
6 × (1+ 0+ 1+ 1) =

3
6 .

From the Table 9, {e3, e4, e7, e10} and {e1, e2, e3, e4, e5, e8, e10}, {e2, e3, e5, e7, e10} are the normal parameter reductions
of soft set, we can calculate re1 + re2 + re5 + re6 + re8 + re9 = 2, re6 + re7 + re9 = 1, re1 + re4 + re6 + re8 + re9 = 2, which
satisfied the Theorem 3.1. Note that re4+ re6 = 1, but fe4,e6(h1) 6= fe4,e6(h2), so {e1, e2, e3, e5, e7, e8, e9, e10} is not the normal
parameter reduction of soft set (F , E). Thus the converse proposition of thesis does not hold. Theorem 3.1 implied that for
parameter subset A = {e′1, e

′

2, . . . , e
′
p} ⊂ E, if the value re′1 + re′2 + · · · + re′p are nonnegative integers, E − A may be the

normal parameter reduction; otherwise, E − A is certainly not the normal parameter reduction. Therefore, constructing a
feasible parameter reduction set and excluding redundant parameters, the algorithm of normal parameter reduction based
on Theorem 3.1 can be proposed as follows:

Table 9
Soft set table

U e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 f (·)

h1 1 0 1 1 1 0 1 0 0 1 6
h2 0 0 1 1 1 1 0 0 0 0 4
h3 0 0 0 0 0 1 0 1 0 1 3
h4 1 0 1 0 0 0 0 0 1 1 4
h5 1 0 1 0 0 0 1 1 0 1 5
h6 0 1 1 1 0 1 0 0 0 0 4
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1. Input the soft set (F , E);
2. Input the parameter set E;
3. Compute parameter importance degree rei (1 ≤ i ≤ m);
4. Select maximal subset A = {e′1, e

′

2, . . . , e
′
p} in E which satisfying that sum of re′i (1 ≤ i ≤ p) is nonnegative integer, then

put the A into a feasible parameter reduction set;
5. Check A, if fA(h1) = fA(h2) = · · · = fA(hn), then E − A is the normal parameter reduction and A is saved in the feasible
parameter reduction set, otherwise A is deleted from the feasible parameter reduction set.

6. Find the maximum cardinality of A in feasible parameter reduction set.
7. Compute E − A as the optimal normal parameter reduction.

4. Normal parameter reduction of fuzzy soft sets

In real life, many problems are imprecise in nature. The classical mathematical tools are not capable of successfully
dealing with such problems. Fuzzy set theory has been used quite extensively to deal with such imprecision [1,10]. Most
results of fuzzy soft sets may be found in [11]. Roy et al. [12] presented a method of object recognition from an imprecise
multiobserver data. And Maji [6] et al. considered the reduction of weighted soft sets. In this section, the reduction of fuzzy
soft sets is discussed.

Definition 4.1 (See [12]). Let Ψ (U) denote the set of all fuzzy sets of U . Let Ai ⊂ E. A pair (Fi, Ai) is called a fuzzy soft set
over U , where Fi is a mapping given by Fi : Ai → Ψ (U).

Definition 4.2 (See [12]). For two fuzzy soft sets (F , A) and (G, B) over a common universe U , (F , A) is a fuzzy soft set subset
of (G, B) if (i) A ⊂ B, and (ii) ∀ε ∈ A, F(ε) is a fuzzy subset of G(ε). We write (F , A)⊂̃(G, B). (F , A) is said to be a fuzzy soft
super set of (G, B), if (G, B) is a fuzzy soft subset of (F , A). We denote it by (F , A)⊃̃(G, B).

The tabular representation of fuzzy soft set is given in Table 10. hij is the membership degree of hi in a parameter set {ej},
hij ∈ [0, 1].
Suppose U = {h1, h2, . . . , hn}, E = {e1, e2, . . . , em}, (F , E) is a fuzzy soft set with tabular representation. Define

fE(hi) =
∑
j hij where hij are the entries in the fuzzy soft set table of (F , E).

Definition 4.3. For fuzzy soft set {F , E}, E = {e1, e2, . . . , em}, if there exists a subset A = {e′1, e
′

2, . . . , e
′
p} ⊂ E satisfying∑

ek∈A
h1k =

∑
ek∈A
h2k = · · · =

∑
ek∈A
hnk, A is dispensable, otherwise, A is indispensable. B ⊂ E is a normal parameter

reduction of E if B is indispensable and
∑
ek∈E−B

h1k =
∑
ek∈E−B

h2k = · · · =
∑
ek∈E−B

hnk, that is to say E− B is the maximal
subset of E that the value fE−B(·) keeps constant.

Example 4.1. Let U = {h1, h2, h3, h4, h5, h6}, be the set of objects having different colors, size and surface texture features.
The parameter set, E = {blackish, dark brown, yellowish, reddish, large, small, very small, average, very large, course,
moderately course, fine, extra fine} = {e1, e2, . . . , e14}.

The fuzzy soft set (F , E) is defined as follows, which is illustrated by a tabular representation in Table 11.
We can obtain A = {e1, e2, e5, e7, e8, e9, e12},

∑
ek∈A
h1k =

∑
ek∈A
h2k =

∑
ek∈A
h3k =

∑
ek∈A
h4k =

∑
ek∈A
h5k =∑

ek∈A
h6k = 2.7. Thus {e3, e4, e6, e10, e11, e13, e14} is the normal reduction of fuzzy soft set (F , E).

Table 10
Fuzzy soft set table

U e1 · · · em

h1 h11 · · · h1m
· · · · · · · · · · · ·

hn hn1 · · · hnm

Table 11
Example of fuzzy soft set table

U e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14

h1 0.1 0.2 0.3 0.1 0.5 0.4 0.2 0.8 0.3 0.1 0.4 0.6 0.1 0.5
h2 0.3 0.2 0.3 0.3 0.7 0.5 0.3 0.2 0.1 0.3 0.1 0.9 0.1 0.5
h3 0.2 0.3 0.4 0.3 0.2 0.5 0.9 0.4 0.5 0.3 0.1 0.3 0.1 0.6
h4 0.7 0.1 0.7 0.4 0.2 0.2 0.5 0.5 0.1 0.2 0.1 0.5 0.1 0.3
h5 0.5 0.3 0.2 0.5 0.6 0.2 0.1 0.7 0.4 0.5 0.3 0.1 0.5 0.4
h6 0.4 0.4 0.3 0.5 0.3 0.2 0.2 0.3 0.5 0.4 0.2 0.6 0.3 0.3
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5. Conclusions

In this paper, the problemsof suboptimal choice and addedparameter set are discussed in the reduction of soft sets. A new
definition of normal parameter reduction is introduced. The data of optimal objects can be deleted directly from the normal
parameter reduction, and the next optimal choice can be obtained exactly from the normal parameter reduction inwhich the
data of optimal objects are deleted. Furthermore, by adding new parameters to the parameter set of the normal parameter
reduction, the exact optimal choice can be obtained. In addition, the heuristic algorithm of normal parameter reduction of
soft sets is presented. The algorithm excludes unnecessary parameters and searches for suitable parameters in the feasible
sets using the decision partition and parameter importance degree. Thus this algorithm performs more efficiently.
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