
Computers and Mathematics with Applications 59 (2010) 2393–2402

Contents lists available at ScienceDirect

Computers and Mathematics with Applications

journal homepage: www.elsevier.com/locate/camwa

A numerical study of temporal shallow mixing layers using
BGK-based schemes
Hongwei Liu, Man Yue Lam, Mohamed S. Ghidaoui ∗
Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong

a r t i c l e i n f o

Keywords:
Mixing layer
Shallow water equations
BGK-based schemes
Large eddy simulation

a b s t r a c t

A numerical study of the temporal shallow mixing layers is performed. The depth-
averaged shallow water equations are solved by the finite volume method based on the
Bhatnagar–Gross–Krook (BGK) equation. The filtering operation is applied to the governing
equations and the well-known Smagorinsky model for the subgrid-scale (SGS) stress is
employed in order to present a large eddy simulation (LES). The roll-up and pairing
processes are clearly shown and the corresponding kinetic energy spectra are calculated.
The effects of the Froude number and the bottom friction are numerically investigated. It is
shown that the growth rate of the mixing layer decreases as the Froude number increases,
which is very similar to the compressible mixing layers when considering the effects of the
Mach number. The numerical results also indicate that the increase in bottom friction can
enhance the stability of the flows, which is physically reasonable and consistent with the
theoretical and experimental findings.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Mixing layer flows can be encountered in aerodynamic, atmospheric, oceanic and hydraulic engineering, where the
transverse gradient in the stream-wise velocity makes the flows unstable. The study and understanding of such flows are
both theoretically and practically important. According to the Fjortofts theorem [1], instability of the flow is reached in the
case of an inflection point in the transverse profile of the stream-wise velocity. Kelvin–Helmholtz instabilities can therefore
develop leading to horizontal vortical structures. The wavenumber of the most unstable mode and the growth rate could
be predicted to some extent by linear stability analysis; see for example [2,3]. During the past decades, many experimental
investigations (for example [4–7]) and numerical studies (such as [8–10]) ofmixing layer flows have been carried out, which
give more insights into the flows.
Open-channel flows are the turbulent wall flows with a free surface extending over the full water depth; see for example

[11] for a review of such flows. A shallow mixing layer can be characterized as a combination of a plane mixing layer flow
and an open-channel flow. The flow domain is bounded by a bottom and a free surface and the width of the mixing region
is large compared with the water depth. Physically, the bottom of shallow flows gives two-fold effects, one is the drag force
which tends to damp the flows, and the other is the small-scale turbulence generated near the bottom. Both of them will
affect the horizontal coherent structures. In [12], the spatial shallowmixing layer flowwas studied in detail by experiments,
analytical modeling and numerical simulation.
A two-dimensional temporal mixing layer was numerically studied and analyzed in [13]. In this paper, the temporal

shallow mixing layer flow is investigated by solving the depth-averaged shallow water equations. The filtering operation is
applied to the governing equations and the well-known Smagorinsky model [14] for the subgrid-scale stress is employed
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in order to present a LES. The numerical method used is the BGK-based finite volume method [15,16], which is an explicit
scheme with the second-order accuracy in both time and space.
The rest of the paper is organized as follows. In Section 2, the numerical methodology and the set-up of the problem are

described. The numerical results are discussed in Section 3, and the concluding remarks are given in Section 4.

2. Numerical methodology and problem set-up

The filtered shallow water equations can be written as [17,18]

∂ h̄
∂t
+
∂(h̄ ¯̂ui)
∂xi

= 0, (1)

∂(h̄ ¯̂ui)
∂t
+
∂(h̄ ¯̂ui ¯̂uj + δijgh̄2/2)

∂xj
= −gh̄Sbi +

∂

∂xj
[h̄(ν2 ¯̂S ij − Tij)] −

τ̄ bi

ρ
, (2)

where the hat denotes the depth-averaging operator and the bar represents the filtering operator, i = 1, 2 and j = 1, 2with
1 indicating the streaming direction and 2 indicating the cross-stream direction. h is the water depth and ui is the velocity in
xi direction. g is the gravitational acceleration, Sbi is the slope of the flow bed along xi direction. ν is the kinematic viscosity

of the fluid, δij = 1 when i = j and 0 otherwise. The resolved strain rate tensor
¯̂S ij is defined as

¯̂S ij = (∂ ¯̂ui/∂xj + ∂ ¯̂uj/∂xi)/2.
In Eq. (2), ρ is the fluid density, and τ̄ bi is the shear stress at the bed of the flow along xi direction, which can be modeled by
the quadratic friction law [14]

τ̄ bi = ρcf ¯̂ui
√
¯̂uj ¯̂uj, (3)

where cf is the bed friction coefficient. The subgrid-scale tensor Tij represents stresses acting on the vertical plane over the
entire depth due to the combined effects of filtering and depth integration, which can be expressed as

Tij = ûiuj − ¯̂ui ¯̂uj. (4)

A turbulence model is needed for Tij to close the governing equations. Among various SGS models [19], the simplest and
most widely used eddy-viscosity model is proposed by Smagorinsky in [20], where the eddy viscosity νt is defined by

νt = (Cs∆)2
(
2 ¯̂S ij
¯̂S ij
)1/2

. (5)

This model is employed in our numerical simulation, the Smagorinsky constant Cs is taken as Cs = 0.065 [21] and the filter
width∆ =

√
∆x1∆x2 is adopted.

The filtered shallow water equations are solved by a finite volume method based on the extended BGK equation [15,22].
In this method, the fluxes for the mass and momentum across the surface of the control volume are evaluated from the
solution of the BGK equation. The scheme is explicit and second-order in both time and space. It is well known that the
Navier–Stokes equations can be obtained from the BGK equation in conjunction with the Chapman–Enskog expansion for
low Knudsen number. The direct connection between the unfiltered shallow water equations and the extended BGK model
has been established in [15], where the viscous terms in the shallowwater equations are recovered from the collision term in
the BGKmodel by setting ν = σgh/2with σ the collision time. For the filtered shallowwater equations, if the eddy-viscosity
turbulence model is used for the SGS stress, then the filtered Eqs. (1) and (2) are mathematically equivalent to the classical
unfiltered shallowwater equations by replacing h, ui and ν by h̄, ¯̂ui and ν+νt , respectively. Thus the BGK-based finite volume
method can apply to solve the filtered shallow water equations directly [17]. Detailed derivation and an in-depth analysis
of the BGK model for shallow water flows can be found in [15,23].
It should be noted that the BGK-based schemes have beendeveloped and applied to awide range of flowproblems besides

the free surface flows, such as the compressible flows [24], near incompressible flows [25], rarefied gas [26] and microscale
gas [27] flows. One of the distinguished features for the BGK-based method is that it does not require the operator splitting
of the advection and diffusion (both molecular and turbulent) terms, which may be problematic in some circumstances, see
for example [28,29]. An interested reader may refer to [30] for a general review of the BGK-based schemes.
The set-up of the problem is given as follows. The gravitational acceleration is taken as g = 9.8 ms−2 and the slopes of

the flow bed are assumed to be zero, i.e. Sb1 = S
b
2 = 0. The initial mean velocity is given by

u1 = U tanh
(
2x2
δi

)
ms−1, u2 = 0, (6)

which yields u1 = U ms−1 for x2 = +∞ and u1 = −U ms−1 for x2 = −∞. The vorticity thickness δ at any time is defined
by

δ(t) = 2U/
[
∂ ũ1(t, x2)
∂x2

]
max

, (7)
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where ũ1 denotes the averaged value of u1 in x1 direction. The initial vorticity thickness δi and the velocity U are taken as
δi = 1 and U = 0.2. The initial water depth h0 is assumed to be a constant value, which is related to the Froude number Fr
by h0 = U2/(gFr2). The kinematic viscosity ν is determined from the Reynolds number Rewhich is defined by Re = Uδi/ν.
In our computation, we use Re = 104.
The initial perturbation superimposed upon the basic velocity field is similar to that in [13]. First, a white-noise

stream-function perturbation of small amplitudemultiplied by the Gaussian x2-filter exp(−x22/δ
2
i ) is superimposed. Second,

a further deterministic sine perturbation of wavelength λa modulated by the same filter is also superposed on the
stream function of the mean flow, where λa is the most amplified wavelength given by linear stability analysis, which is
approximately λa = 7δi [2,31]. The amplitudes of the two initial stream-function perturbations (random and deterministic)
relative to the stream function of the mean flow are 5× 10−4.
In this work we consider a temporal shallow mixing layer with periodic boundary conditions in x1 direction. The

computational domain is a square with the side D = 4λa in order to obtain four Kelvin–Helmholtz vortices in the stream-
wise direction. On x2 = ±D/2, we employ the free-slip wall boundary conditions. For all our computations, we use uniform
Cartesian grid with 2562 elements in the computational domain. It takes about two hours for a typical run on our desktop
(Intel Core 2 Duo E6750 2.67 GHz).

3. Numerical results and discussions

3.1. Evolution of vorticity and water depth fields

Fig. 1 gives the evolution of the vorticity andwater depth fields from t = 0 to t = 80δi/U , where the contour lines of each
field are shown. The Froude number is taken as Fr = 0.1 in this case, which results in the initial water depth h0 = 0.408m.
The bed friction coefficient cf is given the value cf = 10−3 here. The colors in Fig. 1 indicate the algebraic value from the
minimum (blue) to themaximum (red) for both vorticity andwater depth. The vorticity of the basic velocity field is negative,
so the regions of high vorticitymagnitude are given by the blue color and the regions ofweak vorticity strength are presented
with the red color. For the water depth the blue color corresponds to small h (i.e., low pressure) and the red color large h
(i.e., high pressure).
The evolution of the coherent structures are clearly exhibited in Fig. 1: such as the roll-up (t = 20δi/U), the first (t =

40δi/U) and second pairing (t = 80δi/U) processes. The roll-up is the first stage of instability in two-dimensional shear
layer. During this stage a dominant wavelength (λa here) seems to impose itself as the fastest-growing perturbation at
least temporally and to inhibit the growth of perturbations of neighboring wavelengths. The second stage is the successive
pairing processes, note that these processes are likely due to the existence of initial subharmonic modes (wavelengths
λa, 2λa, 4λa, etc.) in the white noise, as discussed in [9]. The subharmonic instability has been theoretically analyzed in [32]
andnumerically investigated in [33] based on the two-dimensionalNavier–Stokes equations. But it has not been investigated
for shallow water flows. For the current shallow mixing layers governed by the shallow water equations, we also observe
such pairings in our numerical results, which demonstrates the very close relation between these two types of flows.
Comparison of the vorticity and water depth fields at the same time (t > 0) indicates that the water depth near the center
of each eddy is always smaller than that in the outer regions.

3.2. Kinetic energy spectra and vorticity thickness

The statistical quantities such as spectra can provide more information about turbulent flows. Since the mixing layer
consideredhere is periodic in the x1 direction only, the one-dimensional longitudinal spectrumof the stream-wise fluctuated
velocity component u′1 would be more significant physically, which is defined as [13]

E1(k) =
1
2d

∫ d

−d

∣∣ŭ1(ωk, x2)∣∣2 dx2, (8)

where the longitudinal wavenumber ωk will be restricted to positive values ωk = 2kπ/D, k = 1, 2, 3, . . ., and 2d(≤ D)
corresponds to a x2-span on which the longitudinal spectrum is averaged, we choose 2d = D in our calculation. ŭ1(ωk, x2)
is the longitudinal Fourier transform of the stream-wise fluctuated velocity component u′1 at a given x2:

ŭ1(ωk, x2) =
1
D

∫ D

0
u′1(x1, x2) exp(−iωkx1)dx1, (9)

with u′1(x1, x2) calculated from

u′1(x1, x2) = u1(x1, x2)−
1
D

∫ D

0
u1(x1, x2)dx1. (10)

Fig. 2 shows the one-dimensional longitudinal spatial energy spectrum E1(k), which corresponds to the evolution with
time of the mixing layer shown in Fig. 1. The small peak (k = 4) of the energy spectrum at t = 0 represents the sine pertur-
bation (fundamental mode) superimposed upon the white noise (flat spectrum). At time t = 20δi/U , the eddies have been
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Fig. 1. Contours of vorticity (left) and water depth (right) as time t increases (from top to bottom); the colors indicate the algebraic value from the
minimum (blue) to the maximum (red) for both vorticity (negative value) and water depth (positive value). (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)
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Fig. 2. The one-dimensional longitudinal energy spectra during the evolution of the mixing layer shown in Fig. 1.

Fig. 3. Evolution of the kinetic energy spectra with time (left) for k = 1, 2, 4 and the vorticity thickness (right).

completely formed after the roll-up, which gives a sharp peak of the fundamental mode k = 4 and smaller local peaks at its
harmonics k = 8, 12, 16, and so on. As time increases to t = 40δi/U , the first pairing is happening, which makes the mode
k = 2 grow to a peak in the energy spectrum and the mode k = 4 decrease. At time t = 80δi/U , as the second pairing, the
mode k = 1 becomes the largest one in the energy spectrum. The spectral exponent found in our simulations is about−4.2,
close to the value of−4 presented in [13], but different from the−3 value found in the classical enstrophy cascade statistical
analysis, which is based on the assumption of homogeneous isotropic two-dimensional inviscid flow with no source/sink
and thermal effects [34].
Fig. 3 gives the time evolution of the kinetic energy spectra for modes k = 1, 2, and 4 and the vorticity thickness δ. From

the evolution of these energy spectra, it can be seen that the maximum of E1(4) happens at about t = 21δi/U , when the
coherent structures of wavelength λa are fully formed. The first pairing occurs at about t = 38δi/U , associated with the
maximum of E1(2). The second pairing becomes more complicated due to the confinement effects of the boundaries in x2
direction, as discussed in [13], which happens at about t = 70δi/U as checked from the vorticity field. From the vorticity
thickness evolution in Fig. 3 we can see that the first fundamental eddies have a vorticity thickness of about 2δi. During
the first pairing, the vorticity thickness exhibits a local maximum (t = 42δi/U) and a local minimum (t = 47δi/U), which
correspond to the moments when the alignment of eddies is along cross-stream and stream-wise directions, respectively.
The oscillations of vorticity thickness during the second pairing can be explained similarly.

3.3. Effects of the Froude number

In [35] the linear stability analysis of open-channel flows for various Froude numbers has been provided. In order to
investigate the effects of the Froude number Fr , we present the results with different Froude numbers Fr = 0.1, 0.2, 0.3, and
0.4. For different Froude numbers, we change the initial water depth by the relation h0 = U2/(gFr2), and the bed friction
coefficient cf is changed accordingly so that the initial bed friction parameter S, which is defined as [31]
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Fig. 4. Evolution of the kinetic energy spectra with time for k = 1, 2, 4, with different Froude numbers.
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Fig. 5. Evolution of the vorticity thickness with time, with different Froude numbers.

S = cfU/
(
2h0

∣∣∣∣∂u1∂x2
∣∣∣∣
max

)
= cf gFr2/

(
U
∣∣∣∣∂u1∂x2

∣∣∣∣
max

)
, (11)

keeps a constant for all these cases. This means the bottom friction effects, which will be discussed in the next section, are
equivalent for these cases and the only different condition is the Froude number Fr . The initial velocity field including the
two types of perturbations (random and deterministic) is same for all the calculations.
Fig. 4 gives the time evolution of kinetic energy spectra for k = 1, 2, 4 and Fig. 5 shows the vorticity thickness evolution.

From both figures, we can clearly see that the growth of the shallow mixing layer is delayed as the Froude number Fr
increases during the roll-up and first pairing processes (approximately t ≤ 45δi/U). The boundary confinement effects
become more and more important since the end of the first pairing and make the flows more involved. For compressible
temporal mixing layers numerical simulations indicate that the growth of the mixing layer is delayed as the convective
Mach numberMc increases [36,37], where the convective Mach numberMc is defined by [38]

Mc = (U1 − U2)/(c1 + c2), (12)

with U1 and U2 being the two free-stream velocities and c1 and c2 the sound speeds. Our numerical simulations for the
temporal shallow mixing layers also show that the delay of the layer growth is associated with the enhancement of Froude
number Fr . Comparison between compressible mixing layer and shallow mixing layer reveals that some strong analogies
exist between them. The detailed comparisons and exhaustive discussions between compressible gas flows and hydraulic
problems can be found in [39].
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Fig. 6. Contours of vorticity (left) and water depth (right) for the case Fr = 0.7.
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Fig. 7. Contours of vorticity for the case with bed friction parameter S = 0.0613.

Spatial mixing layer experiments show that δ(x) increases linearly with x. For temporal mixing layer the mixing-length
theory predicts that δ(t) ∝ t [9], and one can expect to have

dδ(t)
dt
= αU, (13)

where α is a constant, which corresponds to another constant β for spatial mixing layers

dδ(x)
dx
= β

U1 − U2
U1 + U2

, (14)

where U1 and U2 satisfy the relation U1 − U2 = 2U . We should have α = β if the two problems (temporal and spatial)
are exactly equivalent. However, from vorticity thickness evolution in Fig. 5 it is found that the mean slope α of the mixing
layer growth in our simulations is approximately 0.12, close to that (α = 0.1) in [13] but smaller than the value of 0.18 for
β observed in various spatial mixing layer experiments [4]. The reason for such difference is still not very clear as discussed
in [9].
Both linear stability theory and numerical simulation for compressible time-developing mixing layers [40] indicate that

at lowMach number (Mc < 0.6) the two-dimensional disturbance is the most unstable mode, while the three-dimensional
modes are dominant whenMc > 0.6. In our numerical simulations of temporal shallowmixing layer, we also found that the
flow develops shockwaves embedded around the large-scale vortical structures as the Froude number exceeds some critical
value Frc , see Fig. 6 for a typical examplewith Fr = 0.7. This phenomena is quite similar to that of compressiblemixing layer
reported in [41]. Moreover, the critical Froude number Frc found in our simulations is approximately Frc = 0.6. Compared
with the compressible flow, again we observe the strong analogies between them.

3.4. Effects of the initial bed friction parameter

For shallow water flows, the bed friction usually tends to suppress the transverse turbulent motion and smooth the
flows. In the following, we will study the effects of the initial bed friction parameter S. For the problem considered, we have
S = 0.25cf /h0 from Eq. (11). We consider the case Fr = 0.1 (h0 = 0.408 m), then we get the relation S = 0.613cf . By
changing the value of cf , we can vary the initial bed friction parameter S. Figs. 7 and 8 show the vorticity contours for cases
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Fig. 8. Contours of vorticity for the case with bed friction parameter S = 0.1226.

Fig. 9. Evolution with time of the kinetic energy spectra for k = 4 with different bed friction parameters.

Fig. 10. Evolution of the kinetic energy spectra with time for k = 2, with different bed friction parameters.

with S = 0.0613 and S = 0.1226, respectively. From these figures it can be clearly seen that the flows are more stable
with larger bed friction parameter S. Figs. 9–11 give the evolution of kinetic energy spectra with various initial bed friction
parameters for k = 1, 2, and 4, respectively. These results also indicate that when the initial bed friction parameter exceeds
some critical value Sc (around 0.1 in our simulations), the flows are unconditionally stable. This fact was also proved by the
theoretical work in [31,35].

4. Conclusions

In this paper, the temporal shallow mixing layers are numerically studied. The BGK-based finite volume method is
employed to solve the filtered shallow water equations, and the subgrid-scale dissipation is modeled by the Smagorinsky
model. The set-up of the problem is similar to the plane mixing layer investigated in [13]. The numerical results indicate
that at the low Froude number, for example Fr = 0.1, the shallow mixing layer behaves very similarly to the plane mixing
layer shown in [13]. The results of the temporal shallow mixing layers computed with different Froude numbers are also
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Fig. 11. Evolution of the kinetic energy spectra with time for k = 1, with different bed friction parameters.

presented. It is shown by numerical results that the growth rate of the mixing layer decreases as the Froude number
increases. Similar phenomena are observed for compressible mixing layer flows when considering the effects of the Mach
number. The effects of the bed friction parameter S are also numerically investigated. Our numerical results indicate that
the stability of the flows is enhanced as the parameter S increases. When it exceeds some critical value Sc (around 0.1 for
our simulations) the flows are unconditionally stable, which is consistent with the theoretical work in [31,35].
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