On the K-Uniform Rotund and the Fully Convex Banach Spaces

BOR-LUH LIN

Department of Mathematics,
The University of Iowa,
Iowa City, Iowa 52242

AND

YU XIN-TAI

Department of Mathematics,
East China Normal University,
Shanghai, China

Submitted by Ky Fan

Let X be a real Banach space. If X is uniformly convex then it is known that X is 2-uniformly rotund [5] and fully 2-convex [2]. Furthermore, if a Banach space X is either k-uniformly rotund or fully k-convex for some k, then X is reflexive. In this paper, we show that if X is strictly convex and k-uniformly rotund, then X is fully \((k + 1)\)-convex. However, there exists a superreflexive space which is fully 2-convex but is not 2-uniformly rotund and for each \(k \geq 2\), there exists a strictly convex space which is k-uniformly rotund but is not fully k-convex. Thus for each \(k \geq 2\), there exist fully k-convex Banach space which is not fully \((k - 1)\)-convex.

For \(x_1, x_2, ..., x_{k+1}\) in X, let

\[
V(x_1, x_2, ..., x_{k+1}) = \sup \left\{ \left| \begin{array}{c} 1, \ldots, 1 \\ f_1(x_1), \ldots, f_1(x_{k+1}) \\ \vdots \\ f_k(x_1), \ldots, f_k(x_{k+1}) \end{array} \right| : f_i \in X^*, \| f_i \| \leq 1, i = 1, 2, ..., k \right\}.
\]

DEFINITION. Let \(k \geq 1\) be an integer. A Banach space X is said to be k-uniformly rotund (k-UR) if for any \(\epsilon > 0\), there exists \(\delta(\epsilon) > 0\) such that for any \(x_i \in X, \| x_i \| \leq 1, \ i = 1, 2, ..., k + 1, \) with \(\| 1/(k + 1) \sum_{i=1}^{k+1} x_i \| \geq 1 - \delta(\epsilon)\) then \(V(x_1, ..., x_{k+1}) < \epsilon\).
Definition. Let \(k \geq 2 \) be an integer. A Banach space \(X \) is said to be fully \(k \)-convex (\(kR \)) if for any sequence \(\{x_i\} \) in \(X \) such that \(\lim_{n \to \infty} \|x_{n+k} - x_n\| = 1 \), then \(\{x_i\} \) is a Cauchy sequence in \(X \). \(X \) is said to be fully convex if it is fully \(k \)-convex for some \(k \geq 2 \).

Lemma 1. Let \(\{x_i\} \) be a sequence in a \(k \)-UR space \(X \) such that \(\{x_i\} \) converges weakly to an element \(x \) in \(X \). If \(\lim_{n \to \infty} \|1/(k+1) \sum_{i=1}^{k+1} x_n\| = 1 \), then \(\|x\| = 1 \) and \(\lim_{i \to \infty} \|x_i - x\| = 0 \).

Proof. Observe that \(\lim_{i \to \infty} \|x_i\| = 1 \). Since \(X \) is \(k \)-UR and \(\lim_{n \to \infty} \|1/(k+1) \sum_{i=1}^{k+1} x_n\| = 1 \), it follows that \(\lim_{n \to \infty} \|x_n + x\| = 0 \). Let \(y_i = x_i - x, i = 1, 2, \ldots \). Suppose that \(\lim_{i \to \infty} \|y_i\| \neq 0 \). By choosing a subsequence if necessary, there exists \(\varepsilon > 0 \) such that \(\|y_i\| \geq \varepsilon, i = 1, 2, \ldots \). Since \(\{y_i\} \) converges weakly to 0, again by choosing a subsequence if necessary, we may assume that \(\{y_i\} \) is a basic sequence in \(X \). Let \(K \) be the basis constant of \(\{y_i\} \) and let \(f_i \in X^* \) such that \(f_i(y_j) = \delta_{i,j}, i, j = 1, 2, \ldots \). Then \(\|f_i\| \leq 2K/e, i = 1, 2, \ldots \). Hence for any \(n_1, \ldots, n_{k+1} \), we have \(V(y_{n_1}, \ldots, y_{n_{k+1}}) \geq (e/2K)^k \). Thus

\[
(e/2K)^k \leq \lim_{n_1, \ldots, n_{k+1} \to \infty} V(y_{n_1}, \ldots, y_{n_{k+1}}) = \lim_{n_1, \ldots, n_{k+1} \to \infty} V(x_{n_1}, \ldots, x_{n_{k+1}})
\]

which is impossible. Q.E.D.

Theorem 2. Every strictly convex \(k \)-UR space is \((k + 1)R\).

Proof. Let \(\{x_i\} \) be a sequence in a \(k \)-UR space \(X \) such that \(\lim_{n \to \infty} \|1/(k+1) \sum_{i=1}^{k+1} x_n\| = 1 \). Since every \(k \)-UR space is reflexive, \(\{x_i\} \) has a weak sequential cluster point \(x \) in \(X \). By Lemma 1, it suffices to show that \(x \) is the unique weak sequential cluster point of \(\{x_i\} \). Suppose \(y \) is a weak sequential cluster point of \(\{x_i\} \). Then there exist \(n_1 < m_1 < n_2 < m_2 < \cdots \), such that \(\{x_{m_i}\} \), respectively, \(\{x_{n_i}\} \), converges weakly to \(x \) (resp. to \(y \)). By Lemma 1, \(\|x\| = \|y\| = 1 \) and \(\lim_{i \to \infty} \|x_{n_i} - x\| = \lim_{i \to \infty} \|y_{m_i} - y\| = 0 \). Since \(\lim_{n \to \infty} \|1/(k+1) \sum_{i=1}^{k+1} x_n\| = 1 \), by triangle inequality, it is easy to see that \(\lim_{n \to \infty} \|1/2(x_n + x_m)\| = 1 \). Apply Lemma 1 to \(\{1/2(x_n + x_m)\} \), we conclude that \(\|1/2(x + y)\| = 1 \). However, since \(X \) is strictly convex, it follows that \(x = y \). This completes the proof of Theorem 2. Q.E.D.

Remark. Since every \(k \)-UR space is superreflexive [5], however, there exist \(2R \) spaces which are not superreflexive [1, 2]. Hence there exist fully convex Banach spaces which are not \(k \)-UR for any \(k \geq 1 \).

Example. There exists a \(2R \) space \(X \) which is isomorphic to \(l_2 \) but \(X \) is not \(k \)-UR for all \(k \geq 1 \).
Let \(E = (l_2, \| \cdot \|) \), where
\[
\| x \|^2 = \| a_1 \| + (a_2^2 + a_3^2 + \cdots)^{1/2} + \left\{ \frac{(a_2^2)}{2} + \cdots + \left(\frac{(a_n^2)}{n} \right) + \cdots \right\}^2
\]
for all \(x = (a_1, a_2, \ldots) \) in \(E \). In [3], it is proved that \(E \) is 2R. Let \(X = (\Sigma \oplus E)_K \). Then \(X \) is 2R [2]. We claim that \(X \) is not \(k \)-UR for all \(k \geq 1 \). Fix an integer \(k \geq 1 \). Let \(\{ e_i \} \) be the usual unit vector basis of \(l_2 \). For \(n = 1, 2, \ldots \), let
\[
x_i^n = \left(\frac{e_1 + e_n}{2}, e_{n+1}, e_{n+2}, \ldots, e_n, 0, 0, \ldots \right),
\]
where the last nonzero vector is at the \((k+1)\)-coordinate. Then
\[
\lim_{n \to \infty} \| x_i^n \| = \sqrt{k + 1}, \quad i = 1, 2, \ldots, k + 1 \quad \text{and} \quad \lim_{n \to \infty} \| x_1^n + \cdots + x_{k+1}^n \| = (k + 1)^{3/2}.
\]
However, if \(f_1 = (e_1, 0, 0, \ldots), \ f_2 = (0, e_1, 0, \ldots), \ldots, \ f_k = (0, \ldots, 0, e_1, 0, \ldots) \), then \(V(x_1^n, x_2^n, \ldots, x_{k+1}^n) \geq 1/2^{k+1} \| f_1 \| \cdots \| f_k \| > 0 \) for all \(n = 1, 2, \ldots \). This completes the proof that \(X \) is not \(k \)-UR.

The following examples show that in some sense, Theorem 2 is the best possible result. The examples are modifications of the reflexive Banach space given by Smith [4] which is 2R but is not LUR.

Example 2. For each \(k \geq 2 \), there exists a strictly convex Banach space \(X_k \), isomorphic to \(l_2 \), which is \(k \)-UR but is not \(kR \).

Let \(k \geq 2 \) be an integer and let \(i_1 < i_2 < \cdots < i_k \). For each \(x = (a_1, a_2, \ldots) \) in \(l_2 \), define \(\| x \|_{i_1, \ldots, i_k} = (\sum_{j=1}^k |a_j|^2 + \sum_{i \neq i_1, \ldots, i_k} a_i^2) \). It is clear that
\[
\| x \|_{i_1, \ldots, i_k} \leq \| x \|_{i_1, \ldots, i_k, \ldots, i_k} \leq \sqrt{k} \| x \|_{i_1, \ldots, i_k} \quad \text{for all} \ x \ \text{in} \ l_2.
\]
Let \(X_{i_1, \ldots, i_k} = (l_2, \| \cdot \|_{i_1, \ldots, i_k}) \). Then \(X_{i_1, \ldots, i_k} \) is clearly isometrically isomorphic to \((l_2 \oplus l_2)_K\). Hence the spaces \(X_{i_1, \ldots, i_k} \) are \(k \)-UR but is not \((k-1)\)-UR for all \(i_1, \ldots, i_k \). Furthermore, the family \(\{ X_{i_1, \ldots, i_k} \} \) has the same module of \(k \)-rotundity, i.e., for each \(\varepsilon > 0 \) the same \(\delta(\varepsilon) \) can be used in \(X_{i_1, \ldots, i_k} \) for all \(i_1, \ldots, i_k \). For \(x \in l_2 \), let \(\| x \|_k = \sup_{i_1 < \cdots < i_k} \| x \|_{i_1, \ldots, i_k} \) and let \(E_k = (l_2, \| \cdot \|_k) \). Then \(\| x \|_{i_1, \ldots, i_k} \leq \| x \|_k \leq \sqrt{k} \| x \|_{i_1, \ldots, i_k} \) for all \(x \in X_{i_1, \ldots, i_k} \). We claim that \(E_k \) is \(k \)-UR but is not \(kR \).

To see that \(E_k \) is not \(kR \), let \(\{ x_i \} \) be the usual unit vector basis of \(l_2 \). Then it is easy to see that \(\| x_i \|_k = 1 \), \(i = 1, 2, \ldots \), \(\lim_{m \to \infty} \| 1/k \sum_{j=1}^k x_{i_j} \|_k = 1 \) and \(\| x_i - x_j \|_k \geq 2 \) for all \(i \neq j \).
To show that E_k is k-UR, for x_1, \ldots, x_{k+1} in l_2, let $V_k(x_1, \ldots, x_{k+1})$ be the volume determined by x_1, \ldots, x_{k+1} in E_k. Similarly, let $V_l(x_1, \ldots, x_{k+1})$, respectively, $V_{i_1, \ldots, i_l}(x_1, \ldots, x_{k+1})$, be the corresponding volume in l_2, respectively, in X_{i_1, \ldots, i_l}. It is easy to see that for any x_1, \ldots, x_{k+1}, $V_{i_1, \ldots, i_l}(x_1, \ldots, x_{k+1}) \leq V_{i_1, \ldots, i_l}(x_1, \ldots, x_{k+1}) \leq V_k(x_1, \ldots, x_{k+1})$. Given $\varepsilon > 0$, let $\delta(\varepsilon/k^{k/2}) > 0$ be such that for any $i_1 < \cdots < i_k$, if $\|x\|_{i_1, \ldots, i_k} \leq \varepsilon / k^{k/2}$, then $V_{i_1, \ldots, i_l}(x_1, \ldots, x_{k+1}) < \varepsilon$. Suppose $\|x\|_{i_1, \ldots, i_k} \leq \varepsilon / k^{k/2}$, then $V_{i_1, \ldots, i_l}(x_1, \ldots, x_{k+1}) < \varepsilon$. This completes the proof that E_k is k-UR.

Finally, let $X_k = (l_2, \|\cdot\|)$, where $\|x\|^2 = \|x\|^2 + \sum_{i=1}^\infty \frac{a_i^2}{2^i}$ for all $x = (a_1, a_2, \ldots)$ in l_2. It is easy to see that X_k is isomorphic to l_2 and is strictly convex. It is straightforward to show that X_k is k-UR but is not kR. Finally, let us remark that it is easy to show that if X_i is k_i-UR, $i = 1, 2$, then $(X_1 \oplus X_2)_{l_2}$, $1 < p < \infty$, is $(k_1 + k_2 - 1)$-UR (however, the l_2-sum of two 2-UR spaces need not be 2-UR, see [6] for details).

Remark. By Theorem 2, the space X_k is $(k+1)$-UR but is not kR. Furthermore, let $X = (\sum_{k=1}^\infty X_k)_{l_2}$. Then X is isomorphic to l_2 but X is not fully convex.

REFERENCES