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1. INTRODUCTION 

Large scale dynamic system models are plagued by problems of dimen- 
sionality and limitations of measurement. It is common practice in 
applications to lump similar system state components together to get a 
reduced number of aggregate states. An example of this approach is the 
PONA scheme for modelling catalytic cracking of oil. The thousands of 
chemical species involved in this process are lumped into four groups: 
paraffins. olefins, naphthenes, and aromatics (PONA). For a survey of the 
use of lumping in the cracking problem, the reader is referred to Weekman 
[ 14971. 

Attention has focused on conditions under which such lumping preserves 
structural properties of the system dynamics. In particular, when do the 
lumped states of a linear system satisfy linear dynamics? If this occurs, the 
system is said to be exactly lumpable. For finite dimensional systems, this 
issue has been resolved [2, 1.51, but in practice the conditions specified are 
almost never satisfied. 

In this paper, we show that it is fruitful to consider the lumped variables 
as observations of the original system. To our knowledge, this viewpoint has 
not been taken previously. We establish a relationship between lumpability 
and observability of the lumped observation system for both finite and 
infinite dimensional linear systems. This relationship allows us to deduce the 
existence of a minimal size system which gives a true representation of the 
dynamics of the lumped variables. Definitions of observability and 
lumpability are given in Sections 2 and 3, including extensions to infinite 
dimensional systems. The relationship between these two concepts is 
discussed and we establish the main result concerning lumpability in 
Section 4 in the case of finite dimensional systems. In Section 5 this 
discussion is carried over to infinite dimensional systems. A summary and 
discussion follow in Section 6. 
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Notation and Conventions 

Briefly, R(T) and N(T) will denote the range and nullspace. respectively. 
of an operator T. L(X, Y) is the space of linear maps T: X- Y, where X and 
Y are vector spaces; B(X, Y) is the space of continuous linear operators. 
X = U @ V indicates that U and V are topological complements, i.e.. CT and 
V are closed? U + V = X, and CJn V = (O}. T’ denotes the topological 
generalized inverse of T. Specifically, if X and Y are Banach spaces, T in 
B(X, Y) is surjective, and if N(T) @ U = X (for some U), then Tt: Y--t X is 
continuous and is characterized as the unique solution of 

TTtT = T, 

T+T=I,-P, 

TT’= I,, 

where P is the projector (P’ = P) on N(T), relative to U (see Nashed [ 10. 
P* 591). 

2. OBSERVABILITY 

An unforced linear dynamic system is specified by the pair (A, C) of linear 
transformations representing the time invariant differential system 

i(t) = Ax(t), x(t,) = -yg 7 

y(t) = Cx(t). 
(1) 

Here x(t) is in X and y(t) is in Y for each t: X and Y are vector spaces, 
called the state and observation spaces, respectively. A : X -+ X and C: X--t Y. 
The system is n dimensional if X = R”. 

A system is said to be completely observable if any initial state x0 can be 
reconstructed from knowledge of the observations Cx(t) on a finite interval 
[t,, 7(x,)]. A state x0 is nonobservable if or is identically zero when 
x(to) = x,,. The following result is well known (e.g., (8, 91). 

THEOREM 2.1. An n-dimensional linear time invariant system (I) is 
completelq, observable if and only if its observability matrix F has rank n, 
where 

. 
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The nonobservable states form a subspace of X which coincides with the null 
space of F. 

The observability criterion of Theorem 2.1 has been generalized to the 
case where X, and hence the system (A, C), is infinite dimensional. The rank 
condition on the observability matrix /r of a finite dimensional system is 
equivalent to a statement about the null spaces N(CA’), 

rank fT’ = n ej n N(CAk) = (O,r}. 
k=O 

The extended result given below is due to Triggiani [ 121. Further 
generalizations are available in [ 131. 

THEOREM 2.2 (Triggiani). Let X be a Banach space. Let A: X-, X and 
C: X + Y be bounded linear operators. The linear time invariant system (1) 
is completely observable if and only if 

6 N(CAk) = {o,y}. 
k=O 

If the system is not completely observable, then OF==, N(CAk) is the set of 
nonobservable states. 

3. LUMPABILITY 

Consider the partially determined system (K, -), 

i(t) = Kx(t), x( to) = x0. (2) 

When it is not possible or desirable to observe the entire state vector x(t), 
there may be a collection of measurement operators (M: X + Y,,} which are 
feasible. We will assume that dim Y,w < dim X for each M in the collection. 
For a particular choice of measurement operator M, we introduce 
Definition 3.1. 

DEFINITION 3.1. The system (K, -) is exactly lumpable by the linear 
transformation M: X --* Y,M if the lumped vector y(t) = Mx(t) satisfies an 
unforced linear differential equation 

j(t) = I?y(t), 

for some K: Y.,, -+ Y,,, . 
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Wei and Kuo give necessary and sufficient conditions for exact lum- 
pability. 

THEOREM 3.2 (Wei and Kuo 1151). An n-dimensional sysfem (K. -) is 
exactly lumpable by M if and only if there exists a matrix k such that 
MK = ItM. 

The equation MK = &I4 expresses the rows of MK as linear combinations 
of the rows of M. This simple observation leads to an equivalent formulation 
of Theorem 3.2, which seems to have been overlooked in the existing 
literature. 

THEOREM 3.3. An n-dimensional sJ?stem (K, -) is exactly lumpable bJ9 M 
if and only if 

rank = rank M. (3) 

This condition clearly suggests that there is an intimate relationship 
between the notions of lumpability and observability. We return to this point 
in Section 4. We remark here only that this rank condition is particularly 
easy to apply when the matrix M has columns which are canonical unit 
vectors (e.g., (010)‘). Such a matrix is called a proper lumping matrix. It 
corresponds to the case where the components of the state vector are 
partitioned into groups and each new component is simply the sum of the 
values in one group. The PONA scheme mentioned in the Introduction 
represents a proper lumping. Other examples arise in economics, where 
proper lumping matrices are called grouping mappings (Chipman [ 5 ] ). The 
following examples illustrate the application of Theorem 3.3. 

EXAMPLE 3.4.a. 

M= K= 

The system (K, -) is exactly lumpable by M if and only if the row vectors of 
MK have the form (a a b); 

MK= 

Clearly the system is not exactly lumpable. 
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EXAMPLE 3.4.b. 

This time the rows have the right format and the system is shown to be 
exactly lumpable. 

The algebraic criterion of Theorem 3.2 is easily seen to be necessary for 
exact lumpability in an infinite dimensional system, but it does not guarantee 
the existence of a continuous system operator k. We shall show that a 
continuous map k can be found whenever M satisfies suitable hypotheses. In 
particular, we require that R(M) is closed and N(M) is complemented in X. 
Both conditions are satisfied if Y is finite dimensional, i.e., if the number of 
measurements at each time I is finite, which is the situation in many 
applications. It can be assumed without loss of generality. that Y = R(M). 

THEOREM 3.5. If X and Y are Banach spaces, K is in B(X, X), and ifM 
in B(X, Y) satisJies (i) R(M) = Y, and (ii) N(M) has a topological 
complement in X, then the following are equivalent: 

(a) (K, -) is exactly lumpable by M. 

(b) There exists E in B(Y, Y) such that MK = l?M. 

(c) There exists 2 in L( Y, Y) such that MK = I?M. 

(d) N(M) is contained in N(MK). 

Proof: (a) is equivalent to (b) follows the proof of Theorem 3.2; (b) 
implies (c) is immediate. To show (c) implies (b), let Mt be a topological 
generalized inverse of M. Existence of Mt and uniqueness up to the choice of 
complement of N(M) follow from the hypotheses (Nashed [ 10, p. 591). As 
indicated in the Introduction, Mt is continuous and satisfies among other 
things, MM+ = I,.. If MK = I?M, then MKMt = ifMMt = I? and k is seen to 
be continuous. (c)e (d); there exists k in L(X, Y) such that MK = kM if 
and only if the following commutes: 

By the induced function theorem [6], Z? exists if and only if N(M) is 
contained in N(MK). 1 
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Rernarh-. Since the constraints on AI were required only to shoal 
(c) 5 (b), we still have (a) 2 (b) z- (c) * (d) when they are omitted. Notice 
that condition (d) is the analogue in the infinite dimensional setting of the 
rank condition of Theorem 3.3. 

4. OBSERVABILITY AND LUMPABILITY IN FINITE DIMENSIONS 

As remarked above, condition (3) of Theorem 3.3, and Theorem 3.5d 
suggest a fundamental relationship between lumping and observability. In 
particular, it suggests that we consider the lumped variables as observations 
of the original system. This is the viewpoint mentioned in the Introduction. 
Thus we consider the lumped observation system (K, M), 

i(t) = Kx(t), x(&J = X0) 

y(t) = Mx(t). 

THEOREM 4.1. Let M, rank M = m c n, determine an exact lumping of 
an n-dimensional system with system matrix K. Then the lumped observation 
system (4) is not observable and its nonobservable subspace coincides with 
the null space of M, N(M). 

Proof: Let k satisfy MK = kM. Multiplying the equation by K’- ’ on the 
right gives MKj = I&lKj~’ = I?jM. Thus, 

rank F = rank = rank M < n. 

N(P) = N(M), and the result follows from Theorem 2.1. 1 

Exact lumpability is clearly more restrictive than nonobservability of (4). 
In an observable system, the entire state vector x(tO) can be reconstructed 
from the measured values 4’(t), t > t,. In a nonobservable system, it is only 
possible to get a partial reconstruction, but the reconstructed values may 
include components which are not directly observed. 

EXAMPLE 4.2. 

‘1 
i(t) = t 0 

1 0 
1 0 1 x(t). y(t) = [ 1 0 O] X(f). 

0 0 2 
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Here, only one component of the state is measured directly. 

/l 0 o\ 

441 

/r= i 
1 1 

0 1 2 0 1 
; 

N(F) is spanned by (0 0 l)T, so the only component that cannot be deter- 
mined is the third component. The state (0 1 O)T is not observed since 
MY = 0, but it is observable (i.e. not nonobservable). 

From Theorem 4.1 we see that for the lumped observation system arising 
from an exact lumping, a state which is not observed is not observable. 

The next result, attributed to Balakrishnan, is cited several places without 
proof (e.g., Aoki [2]). The version given here is appropriate to the present 
discussion and, for the sake of completeness, we supply a proof. We will use 
this result to assert the existence of a reduced order system which is 
completely observable by the lumped observations Mx. 

THEOREM 4.3. If an n-dimensional linear dynamic system (K, M) is not 
observable, then the partial system (K, -) is exactly lumpable by a matrix N 
with rank N equal to the rank of P, the observability matrix. 

Prooj Let r = rank P. Let N be constructed from r independent rows of 

The rows of PK, and hence the rows of NK, lie in the rowspace of N. Thus 
the existence of R satisfying NK = RN is assured. 1 

We assume that M has full rank (otherwise, there are redundant 
measurements which can be eliminated). If the system (K, M) is exactly 
lumpable, then rank r” = rank M = m and we can let N = M in Theorem 4.3. 
Even if (K, M) is not exactly lumpable, the rowspace of N still contains the 
rows of M. In this case, there exists an m x r matrix L such that M = LN. 

A09 99’2 I@ 
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Thus we can formulate a new system with state space Z = NX. and with 
observed variables LNX that coincide with the lumped variables MX. 

i(t) = zcz(t,, z(r”) = Nx(r,,). 

y(t) = Lz(t). 

It is easily verified that the system (i, L) is completely observable. 
System realization procedures such as the Kalman-Ho algorithm ]S] or 

stochastic techniques developed by Akaike [ I] can be invoked to identify g 
and L given input data (initial states) and measurements for (K, M). This 
does not require knowledge of K, which is important since K is generally not 
available, as indicated in [ 151. In the exactly lumpable case where L = M, &? 
can be identified in a straight forward manner as suggested in Wei and Kuo 
[ 151. The procedures mentioned provide a natural extension of the method of 
Wei and Kuo to the case where (K, M) is not exactly lumpable. 

5. INFINITE DIMENSIONAL SYSTEMS 

Infinite dimensional system models have been used to represent systems in 
which the natural physical state has a very large number of closely packed 
components. By closely packed we mean that adjacent components are 
difficult to distinguish by measurements. Seinfeld [ 1 1 ] takes this approach in 
a model of aerosol dynamics, where the state gives the distribution of 
particles by size. The ith component xi = X(LJ~) of the discrete state is the 
number of i-mers (particles composed of i molecules) having volume L’~. For 
large i. i-mers, and (i + I)-mers are very close in size. Seinfeld fixes a k 9 1 
after which state components are described by a function of volume ?s(l’), 
where c ranges over [LJ,, co). 

Aris and Gavalas [3] showed how infinite dimensional systems could be 
used to model chemical reactions involving large numbers of chemical 
species. They considered systems (K. -) given by integrodifferential 
equations, 

r 

; x(u, t) = 1” K(u, c) x(u. t) du. (5) 
‘Cl 

The infinite dimensional state is called a continuous mixture. The use of 
lumping in continuous mixture models is investigated by Bailey [4]. 

In this section, we consider dynamic systems (K, M) for which the state 
space X is a Banach space and the system operators K and M are linear and 
continuous. Lumped variables are determined by a bounded transformation 
M: X+ Y, Y= cl@(M)). If Y= R”, n < co. we will say that M is finite with 
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finite representation Mx(t) = [M,x(r),..., M,x(t)lT. As in the finite dimen- 
sional case, the more practical notion is of a proper lumping in which the 
state is partitioned into a finite number of sets and the components in each 
set are lumped. If X is a space of integrable functions (e.g., LP[a, b]) we 
write 

DEFINITION 5.1. Let X be a Banach space of functions integrable on s2 
and for each fixed t, x(., t) is in X. An operator M: X+ R” is a proper 
lumping of X if Mkx(t) = .J’12xx(~, t) du, where R is the disjoint union of 
Iai 1. 

Our first result removes the finite state space condition in Theorem 4.1, 
extending the result to systems with Banach state space. 

THEOREM 5.2. Let M in B(X, Y) satisfy N(M) # {O). Zf M determines an 
exact lumping of the partial system (K, -), then the lumped observation 
system (K, M) is not observable and its nonobservable subspace coincides 
with N(M). 

ProoJ Exact lumpability assures the existence of a bounded k satisfying 
MK = Z&f. It follows that MK’ = J?M and thus N(MK’) is contained in 
N(M) for every i. Since n,“_O N(MK”) = N(M) # {O}, the system (K, M) is 
not observable and the nonobservable subspace is N(M), as claimed. 1 

Theorem 4.3, which facilitated the identification of a system completely 
observable by the measurements Mx, can be generalized to include infinite 
dimensional systems if the space of nonobservable states has a topological 
complement. Many practical choices of lumping operators M fulfill this 
requirement. In particular, it holds if X is a Hilbert space or if the nonobser- 
vable space has finite codimension. 

THEOREM 5.3. Zf the dynamic system (K, M) is not completely obser- 
vable, and the set of nonobservable states is complemented in X, then there is 
a linear transformation T defined on X such that 

(a) (K, -) is exactly lumpable by T, and 

(b) the system with states TX and observations Mx is completely 
observable. 

Proof: (a) Let T be the canonical projection 

CT 
T: X+ X n N(MK’). 

i=O 
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We see that N(T) c N( TK) since, 

Tk = 0 =+- MK’x = 0 vi = 0. 1. 2 . . . . . 

*MK’-‘(K-u)=0 vi=1 7 * L,.... 

* T(Kx) = 0. 

where N(T) is the space of nonobservable states of (K, M); R(T) is closed. 
By Theorem 3.5, (K, -) is exactly lumpable by T if N(T) is complemented in 
x. 

(b) With T as above, let I? satisfy TK = RT. Since N(M) c N(T). 
there exists L: TX- Y such that A4 = LT. We note that TX is in N(Lk’) Vi 
if and only if x is in N(T). Thus the system (i, L), with states TX and obser- 
vations Mx, is completely observable. 

6. SUMMARY AND DISCUSSION 

The lumped state variable Mx of a system (K, -) which is exactly 
lumpable by A4 satisfies a linear differential equation 

(Mi) = IqMx), (Mx)o = Mx(t,). (6) 

This reduced system can be used to study (simulate, control, etc.) the 
behavior of the lumped variables. However, when Y = MX is small relative 
to X, exact lumpability is unlikely. 

If the system (K. -) is not exactly lumpable by M, the lumped variable A4.u 
does not satisfy an equation of the form (6). Its evolution depends on the 
distribution of the state components within lumps over time. The imprac- 
ticality of measuring this distribution is one of the motivations for lumping. 
We clearly do not want to use the original state vector to study the lumped 
variable. One possible approach is to search for a linear system of dimension 
m = dim R(M) which approximates the dynamics of Mx (e.g., let 
k: MX+ MX be defined by I? = MKM+). 

In this paper a different approach has been taken. The lumped variable 
Mx is viewed as the observation vector of the system (K, M). If (K, M) were 
completely observable, it would be theoretically possible to reconstruct all of 
the original state values x(t) from the observations M-x(t). However. the 
technique of lumping is introduced to avoid such a reconstruction in systems 
with a large number of state variables. The extra effort required to unravel 
the values of the original state (and, more to the point, to identify the system 
matrix K) is again subject to the problem of dimensionality. Thus, maximal 
observability is not the goal. In fact, it was pointed out in Section 4 that 
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exact lumpability is in some sense equivalent to minimal observability. The 
exactly lumped variable cannot be used to reconstruct any other components 
of the original state. If (K, M) is not exactly lumpable and not completely 
observable, Theorems 4.3 and 5.3 guarantee the existence of a reduced order 
system (Kr, Lr-), K,: TX-+ TX and L,T = M, which is completely obser- 
vable. (KT, LT) is the system which is important to the lumping problem. It 
is the smallest linear system with outputs that coincide with the lumped state 
MY of (K, -). If M represents an exact lumping, then T = M, K, = MKMt 
and L,=I,. 

Usually the choice of M is open, constrained only by the feasibility of 
measurement and the goals of the model (M = 0 is an exact lumping but 
does not lead to a model: M = I is not feasible). We have not addressed the 
question of how to choose M. The conventional wisdom that similar physical 
variables should be lumped together has a basis in theory, but it does not 
settle the question of what and how much to lump. Once M is fixed, K, and 
L, can be identified by way of a realization scheme, as discussed in 
Section 4. 
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