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Abstract: The diffusion of a drug through a skin-like membrane which tends to partially absorb the drug, was
modelled by means of a system of strongly coupled nonlinear parabolic differential equations. We present a method of
computing the parameters in the model characterizing a particular drug and membrane by an optimization procedure.
This method consists of minimizing a quantity measuring the correspondence between the predictions of the model
and experimental data, as a function of the parameters In the method the solution of the differential equations for

different sets of parameters is used repeatedly. The equations are solved by an implicit finite difference method
employing an iterative procedure at every time step.
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In diffusion experiments made in the pharmaceutical sciences, various researchers have found
behaviour that could not be explained by the existing mathematical models [3,1,4]. One such
experiment, which clearly exhibits this anomalous behaviour, is one where non-stationary
diffusion of a drug from a donor cell, through a membrane, to a receiver cell is considered. This
type of experiment was used by various authors (7,5]. As it has also been applied to obtain the
data used in this paper, we briefly describe the experiment.

A high concentration of a drug in a saline solution is put in a small cell, the donor cell, divided
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is free of the drug, and the receiver cell contains only a saline solution. Both cells are stirred
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rises, and, after a small delay, so does the concentration in the receiver cell. The concentrations
in both cells are measured regularly, so that a set of values for the concentration in the donor cell
is obtained, decreasing with increasing time, as well as a set of values for the concentration in the
receiver cell. The concentration in the receiver cell initially increases as time increases, but after a.
while it starts decreasing due to the absorption of the drug in the membrane.

It has been mentioned above that the existing mathematical models for diffusion, based on
Fick’s laws, do not apply to certain cases. These cases include membranes of hairless mouse skin,
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for example 1 octanol For these cases it has been found [8] that the drug is absorbed in the
membrane by a process that is modelled very well on the assumption that the rate of absorption
at any point in the membrane is proportional to the concentration of the drug at the point. If the
x-axis of a coordinate system is taken in the direction of the normal on the membrane, and if it is
assumed that no diffusion takes place through the edges of the membrane, the concentration in
the membrane can be considered as a function of time and of the x-coordinate, ignoring the y-
and z-coordinates. It is further assumed that the rate of transfer of diffusant in the membrane,
per unit area, is proportional to the gradient of the concentration across the membrane. In the
cases mentioned above it has been found that the coefficient of proportionality is not constant. It
is not only a functlon of concentration, a case which occurs relatively often, but it is also a

o ahearhed in tha mﬂm“\f‘nﬂa
1“5 AUIVL UVAL 111 WLV dvilivialiv.

2. A mathematical model

Let c(x, t) be the concentration of the drug at a distance x from one face of the membrane at
an instant of time ¢, with z(x 1) denoting the concentration of absorbed drug As the cells are
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the donor and receiver cells respectively. If the membrane has a thickness a, both cells a volume
of V, and if g 1§ the coefficient that determines the rate of absorntion of drug in the membrane
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the assumptions made above lead to the following equations,
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z,, U<x<a, >4,

z,= gc, O<x<a, >0,

where P(z, ¢) is the function determining the coefficient of diffusion, and which could be best
described in the following form, with P, and b constants (8, pp. 152-192]:

P(z,¢c)=P, e~ blz/0+a)
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two equations above yields the following system, in which the same symbols have been retained
for the transformed variables, with g = a’g/P,:

=[P(z,¢)/Pycy) s — 2z, O0<x<1, >0, (1)

z,= gc, O<x<i, >0. 2)

The boundary conditions as discussed by various authors (for example {2, pp. 3-4 and p. 57})
have been found to be applicable in the present circumstances. We denote the area of the
membrane in contact with the cells by 4 and the coefficient of partition by k. The following

boundary conditions are obtained, where the transformation mentioned above have been applied
(here, D= Aa/V):

c(07F, t)=ke(t), t>0, (3)
c(17, t) =key(2), >0, (4)
dc,/dt=(D/P,)Pc (07, 1), t>0, (5)
de,/dt= —(D/P))Pc (17,¢), t>0. (6)
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With the above-mentioned experimental procedure, the followin

. N 5 7N
SERRRREL R MRS R 5 = = = s = 5 0

denoting the initial drug concentration in the donor cell:

a1(0) = G, (7)
¢,(0) =0, (8)
c(x,07)=0, 0<x<l. (9)

Existence theorems for a system of strongly coupled differential equations which includes (1) and
(2), for a few types of boundary conditions, were derived by [6], but in the absence of such
theorems for the present type of boundary condition, the system (1)—(9) was solved numerically.

In this system there are a number of unknown parameters for a given membrane and drug,
namely the initial value of the diffusion coefficient, P,, the coefficient of partition, k, the
constant determining the rate of absorption, g, the constant b in the function P, as well as the
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be accurately determined beforehand. In the next section we will discuss the numerical method
that was found to be the most efficient, an iterative implicit method. A method for determining

these parameters for a particular drug and membrane will be considered in Section 4 and, finally,
in Section 5, we will discuss the results.

3. A numerical method for solving the equations

We place a rectangular grid over the region {(x, #): 0 <x <1, ¢ > 0} with grid spacings f and
h respectively. We denote values of the grid functions, corresponding to values of dependent
variables in the grid points, by subscripted uppercase symbols with subscripts (n, m) where
n=-1,0,1,...,N+1 and where m=0,1,2,..., with the values n=—-1 and n=N+1
corresponding to points outside the region, distant f from the boundaries of the region. We
discretise the differential equations by using points halfway between points on the grid. If we set
H = 3, we can denote these points by the subscripts (n + H, m+ H), (n+ H, m— H), etc. In
discretizing the differential equation, the values in such ‘halfway’ points are taken as the
averages of the values in nearby points.

In the discretization process the Values of the variables at two time levels will be needed, and
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approximations to the correct values at the next time level, where they occur in P. We use the

notation B for such an approximation to C,_ .. and Y, for su ..h an annroximauon to
n,m+ i f ol o “n.m+1 n,m+ i il of

Zy i1 These approximations are iteratively refined in the method as will be shown. We define

the operator d, by
d{ +Hm} { +1m-l]n,m}/f,

and set

P +Zy i}/ 2 { G,

n+Hm+H  * \\U%n+im+H " “nm+HJ/*>

S+ C 1\ /2) /P,
+1,m+ ! vnm~+—l'lJ/“//‘U

where, in the light of the above remarks, values of the dependent variables in a point, j, m + H,
halfway between j, m and j, m + 1, is taken to be the average of the value of the function at j,
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m and of the approximation to the function at j, m + 1. We now have the following as the
discrete analogue to the equation (1):

Cn,m+1 - Cn,m _ Pn+H,m+de{ n+H, m+H} n H, m+Hd { H,m+H} —aC
h POf q n.m+H*
By using averages for the (m + H }-values, we obtain:
f2

-Pn—H,m+HCn—l,m+l +

+P H,m+H+P +H, m+H+Qf Cn,m+1

—Pn+H,m+HCn+1,m+l

212 2|
=Pn—H,m+HCn—l,m+[ h — LYy _Hm+H P+Hm+H Qf Cn,m

+Pn+H,m+HCn+1,m' (10)

Equation (2) can be discretized to yield the two relations:

Zymen=Zymt (ah/8}[3C, o+ Cpminls (11)

Zymir=Zy min+ {qh/8}[C,.,+3C, ,,s1] forn=0,1,2,...,N. (12)
The initial values (7), (8) and (9) give the following results, using (4):

Coo= kG, (13)

C,o=0, n=0,1,2,...,N, (14)

Z,o=0, n=-1,0,1,...,N+1. (15)
Standard arguments applied to the boundary value (5) yield,

2f? 2, 8 Poimin
[ +P~Hm+H+PH,m+H+‘Zf + th PHm+H+P Homashl CO,m+1

- [P—H,m+H + PH,m+H] Cl,m+1

3 2f2 2 8f P—H,m+H
—[ h P-H,m+H Hm+H —aqf"+ khD PH’m+H+P—H,m+H Co’m

—[P-H,m+H+PH,m+H]C1,m (16)
and a similar relation is obtained from (6).

As a first approximation to the concentration at any new time level, (B, ,,), we use the values
for C, ,, obtained at the previous time level. First approximations for the values of Z, , (i.e.

n,m

Y, ), may be obtained by using these approximations in the relations (11).

The tridiagonal system of linear equations consisting of (16), (10) and the relation similar to
(16), contains the (known) values at one time level, the approximations B and Y to the values at
the next time level, and the (unknown) values at the following time level, and can therefore be
solved for the values of C and Z at the m + 1 time level. If the approximations B and Y to these
values are sufficiently close to the values now obtained, these values are accepted as the solution
at the new time level. Otherwise, these values are substituted for the B and Y values, and the
process repeated. In practice, convergence occurred in two or three iteration steps, except at the
first one or two time levels, where, due to the discontinuity in the initial values, more than ten
steps were sometimes required.
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4. Computing the parameters in the model

For any choice of the parameters, the values of the concentrations in the donor and in the
receiver cell, as predicted by the model, can be obtained for the instants at which the
experimental data are known, and the differences between the predicted values and the data at
corresponding instants can be determined. These differences may be due to experimental errors,
an erroneous model or a bad choice of the parameters. We henceforth call the sum of the squares
of these differences the sum of the squares of the errors (between model and experiment), denoted
by SSQ.

The parameters for a given experiment are computed as that choice of parameters which
minimizes the sum of the squares of the errors. The Levenberg—Marquard method, as imple-
mented in the IMSL subroutine ZXSSQ, was found to be effective in minimizing this sum of
squares as a function of the five parameters P,, k, g, b and G,.

Table 1 shows a typical result of these computations for three experiments. The unit of
concentration, ¢.p.m., is radioactive counts per minute, as the experiments were made with a
radioactively marked drug. The same membrane and drug were used in all three the experiments,
with the initial concentration differing markedly.

The parameters do not show a great variation, except for b (and of course the initial
concentration (), and no great dependence on concentration. Nevertheless, to simply take the
average of the values of each parameter in the set, would not give reliable results. The reason for
this lies in the fact that the complete set of parameters simultaneously determine the minimum of
the sum of squares. If the value for P, in experiment B were, for example, to be fixed on 8.031
(the value for experiment A) the minimum might then be achieved for k much higher than the
value computed in the above table, without necessarily increasing the SSQ significantly.

To compute an average set of parameters that apply to the drug and membrane under
consideration and not to a specific experiment alone, a technique of successive minimization was
used.

In this technique, the parameter showing the least percentage variation over the various
experiments is selected from among the four parameters P,, k, ¢ and b. Denote this parameter
by x,. In the example above, this would be the parameter k. The average value for x; is
computed, and henceforth considered as valid for each experiment. Referring to the example, we
get the average k = 81.95. With x, fixed, the sum of the squares of the errors is minimized as a

Table 1
Parameters minimizing the sum of squares of the errors
Parameter Experiment Units
A B C
P, 8.031 7.295 9.227 cm?/min x 10 ¢
k 83.25 83.97 78.62
b 1.220 2.038 1.292
q 1.255 1.037 1.185
G 210280 102878 197556 c.p.m.

SSQ 160.3 27.9 101.5 (c.p.m.)? x10°
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Table 2
Computing average values of the parameters
Experiment Units
A B C
(k =81.95)
P, 8.139 7.444 8.878 cm?/min X 107°
b 1.168 1.885 1.447
q 1.268 1.061 1.150
o 209769 102494 198713 c.p.m.
SSQ 160.5 28.0 102.4 (c.p.m.)? x10°
(k =81.95, ¢ =1.160)
P, 8.175 7.438 8.876 cm?/min x 1074
b 1.317 1.666 1431
G, 209163 102800 198773 c.p.m.
SSQ 166.0 29.1 102.5 (c.p.m)? x10°

(k =81.95, g =1.160, P, =8.163 cm’/min X 10~ %)

b 1.315 1.788 1.368
G, 209103 104620 195461 c.p.m.
$SQ 166.0 33.9 117.3 (c.p.m.)? x10°

(k =81.95, g =1.160, P, = 8.163 cm’/min X 10 %, b =1.490)
Co 208699 104942 195198 cp.m.

SSQ 170.0 36.2 119.1 (c.p.m.)? x10°

function of the remaining parameters. As is shown in Table 2, the changes in the sum of squares
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parameters have also shown a decrease. The parameter exhibiting the least variation among the
remaining ‘free’ narameters. sav x-. i1s then chosen. The average of the different values of X5 is
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then computed and used as the new fixed value of x,. In the example, this is ¢, and its average is
1.160. This process is repeated until only C, remains as parameter in the minization process. The
whole process applied to the previous example is shown in Table 2.

5. Results

The model was also solved with two other numerical methods, a direct implicit method as well
as an iterative Crank—Nicolson method. All these methods were applied with a large number of
different grid spacings, and the solutions of all three methods apparently converged to the same
limit as the grid spacings decreased. The method discussed in Section 3 was found to be the most
efficient, regarding speed and reliability. Numerical experimentation indicated that the best
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results were obtained with mesh ratio #/f?=1, and a grid spacing f= 3 was found to give a
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Fig. 1. The correspondence between model and data with average values for the parameters, for experiment A.

more than sufficiently high accuracy. To obtain the same accuracy with the Crank-Nicolson
method took approximately twice as long. As the method for computing the parameters called
for repeated solutions to the system with different sets of parameters, the method of Section 2
was preferred for solving the system, and the explicit and Crank—Nicolson methods were merely
used as controls at different stages of evaluating the model.

Th n atarcg tad £ ™ A mantec A R 40 nnr\rr];nn f
l.lle param\ubel 523 COmPULeu 1rGlll prerllllelllb Ly LI anu ~ a\/\/Ul 15

been substituted in the model and applied to various other experiments. The fi
and model obtained, was consistently as close as illustrated in Fig. 1. From t
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between data
ese results we

concluded that the method of determining the parameters described here, was a reliable method
to determine the values characterizing the diffusion process for a given drug and membrane.
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