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1. Introduction

The Gromoll-Meyer splitting theorem and the Poincaré—Hopf theorem are very funda-
mental tools in critical point theory. However, they usually hold under strong assumption
that / € C2(E, R) (see[2,7]). When we study the existence of multiple solutions for
jumping nonlinear elliptic equations, the potential functioddk:) for such an equation
belongs only toC%-C% (E, R). So the usual critical point theorems such as the splitting
theorem, the shifting theorem, the Poincaré—Hopf theorem cannot be used in this case.
In order to attack the existence of multiple solutions for jumping nonlinear elliptic
equations, it is necessary to establish these theorems at leasf6f 0 (E, R).

Consider the following problem:

{ —Au = f(x,u), XEQ’ (11)

u=>0, x €0Q,

where  is a smooth bounded domain R'.
Suppose thatf € C1 (Q x R\ {O}) and lim_.o, L2 = b, lim,_o_ L2 = g,

13
uniformly in xe€Q. Let J(u) = 3 [o|Vul®> — [o F (x,u) dx, where F (x,1) =
Jo f (x,5)ds. TakeE = H} (Q) andX = C} (5) It is well known that/ € C2C (E, R).
Assume thatg # O is a critical point of/ (u). By partial regularity of the zero set of the
solution of linear and super-linear elliptic equations, we can prove .thatC! (D, E)
andd?J (ug) is a bounded linear operator fro¥to E, whereD is a neighborhood of
ug in X topology. By using the bootstrap argument we can still prove a splitting theorem
and the shifting theorem faf e C2=0 (E, R). We can prove tha€, (J, ug) =5,1G and
ind (df, ug) = —1 for J € C29(E, R), whereug is a mountain pass point of (x).

The paper is organized as follows. In Section 2 we build up a Gromoll-Meyer split-
ting theorem and shifting theorem fdre €2-9 (E, R). By using the finite-dimensional
approximation, mollifiers and Morse theory we generalize the Poincaré—Hopf theorem
to C! case in Section 3. Finally, Section 4 is devoted to the existence of multiple
solutions for jumping nonlinear elliptic equations.

2. Gromoll-Meyer theory for J € C>°(E, R)

The Gromoll-Meyer splitting theorem and shifting theorem are very fundamental
tools in critical point theory. However, they usually hold under strong assumption
that J € C2(E, R) (see[2,7]). Let E be a Hilbert space an& c E be a Banach
space densely embeddedfn Let J € C279(E, R), which implies that/’ () is local
Lipschitz in E. Assume thatsg is the only critical point of] in a neighborhood of
uo in X. Here J' e C1(D, E) and A = d?J (uo) is a bounded linear operator frod
to E. The kernelN of A is finite dimensional. Let: —ug = w+ v be the corresponding
decomposition ofu —ugeE. Let K = K (J) = {u €E|J (u) = O}. Assume thatJ
satisfies the following propertyJ):
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V : E — E is a pseudo-gradient vector field df V (x) = x — KG (x), whereK
and G satisfy the following assumptions.
(1) There are two sequences of Banach spaces
Ey— Eny_1> -+ E1 < Ej,

Xy 19Xy, = Xp

such that

E — Eg, Eny — X.
Denote||[l; = [Ilg- It is no loss of generality to assume that; < |[l;4+1, i =
0,1....,N—-1.

(2) G; : E; — X; is bounded and continuous; it satisfies the local Lipschitzian. For
each neighborhoodl in E; there existsM; = M;, such that

G x) =G Wlx, <Millx —yllg ., Vx,yeU.
K : X; — E; is a linear bounded operator. We dendte = || K|, (x, g, | =
0,1,...,N -1
(3) The critical setk of Jis in X.
Now we have the following.
Theorem 2.1 (Splitting theorem Under the above assumptions there exists a ball

Bs (ug) in X, 0 > 0 centered atup, a ug-preserving local homeomorphism h from
Bs (uo) into D and aC! mappingg : Bs (0) N N — N+ N X such that

J (h(u) = % (Av,v) +J (wo+w + g (w)) . (2.1)

Proof. Let P : E — E be the orthogonal projection onté-. By the implicit function
theorem, there is a mapping: B; (0)N N — NN X such thatg (0) =0, ¢/ (0) =0
and

PJ' (uo+w+ g (w)) =0. (2.2)
Let us defineJ on Bs (0) N N by
T (w) = (wo+w+g w)).
From 2.2

T (wy=(I—P)J (uo+w+gw))
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and
T (wy=(I=P)J" wo+w+gw) (I +¢ ).
In particular,
J©=U—-P)J" (ug) =0
and

J" ()= —P)J" (uo) = — P)A =0.

Let us define, neaf0, 1] x {up} the function
~ 1
F,v,wy=>1A-1) (J(w)—i—E(Av,v)) +t-J(Wo+v+w+ g(w))

and the vector field

Dt vw |0 if v=0,
U W)= —F,(t,v,w)-Fv(f,v,w)/”Fv(f,va)”z If U;éo,

where ||-|| denotes the norm ifE. By a standard argument (s¢2,7]) we can prove
that the Cauchy problem

M = d)(ti ’/I? w) ’
{17?0) — v, veB; (0). 23

has a solutiony (r, v, w) for ve X. In fact, by direct computation we know that
@ (¢, v, w) is with the formv— K G (v) and K, G satisfy the propertyJ). In particular,

from the property(J) we havey (¢, v, w) € D as o > 0 small enough (sef8]). It is
easy to see that

4 =F F dn
Z (t,l/](t),lU)— l(t’”(t)’w)+ U(t’n(t)’w)va
=0
and then
JN(w)+%(Av, v)=F (0, v, w)

=F (L nLv,w),w)
=J(wo+nLv,w)+w+gWw)).
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The local homeomorphisrh is given by
h(w)=hw,w)=ug+w+gw)+nlvw).
The local invertibility ofh follows from the local invertibility ofy (1, -, w). The proof

is complete. [

We can also establish the shifting theorem. Note thawif W_) is a Gromoll-Meyer
pair in E with respect to the negative gradient vector field-eVJ (x), where J (x)
satisfies all assumptions in Theorerl, then (W N X, W_N X) is also a Gromoll—-
Meyer pair inX. Similar to the case/ € C2 (E, R) we call ug a nondegenerate critical
point if A has a bounded inverse frofto X. We call the dimension of the negative
space ofA the Morse index ofug.

Theorem 2.2 (Shifting theorem Assume that the Morse index of Jaf is j. Then we
have

Cq (JIx,ug) = Cy—; (J.0).
To prove Theoren®.2 we need the following:

Lemma 2.3. Suppose thatt = E; & Ez, X; C E; is a Banach space densely em-
bedded inE;, gi € C>°(E;, R), 0; is an isolated critical point ofg;, i = 1,2. As-
sume thatg; satisfies the property/) and that(W; N X;, (W;)_ N X;) is a Gromoll—
Meyer pair of 0; with respect to the gradient field of; in X;, i = 1,2. Then
(A x B, (C x BYU(A x D)) is a Gromoll-Meyer pair of the functiod = g1 + g2

at 0 = 01 + 02 with respect to the gradient vector field ®f/ in X = X1 + X, where
A=WiNX1y, B=WoNXy C=(W1)_NX1, D= (W2)_NXo, if 0 is an isolated
critical point of J

This lemma is easy to check.

Lemma 2.4. Under the hypothesis of Lemn2a3 we have
Cx (J1x, 0) = Cx (g1lx1, 01) ® Cx (g21x,, 02) .
Proof. Note that
Ci (J1x.0) = He (Wx, W_|x)
and combining Lemma&.3 and the Kunneth formula we get the lemmal

Proof of Theorem 2.2 This is a combination of Theore®.1 and Lemma2.4 From

Theorem2.2 and the Palais theorem (s¢#]) we have:
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Corollary 2.5.
Cy (J,u0) = Cy—j (7, o).
Definition 2.6. We call up a mountain pass point i€'1 (J, ug) # O.
The following theorem provides more precise information on mountain pass point
without the assumptiolf € C? (E, R). It is very useful in semilinear elliptic problems

in which the nonlinear term loses the differentiability at some point.

Theorem 2.7. Assume thal € C>~°(E, R) and satisfies the assumptions given in The-
orem 2.1. Assume thatg is a mountain pass point and that

dim ker(A) =1

if 0c o (A), where A = d?J (ug) is a bounded linear operator from X to E amd(A)
denotes the spectrum of Ahen

Cy (J, uo) ;541G.

Since we already have Theore?2, the remains of the proof are quite similar to
the case/ € C? (E, R) (see[2]). We omit the proof.

3. Poincaré—Hopf theorem for f € C1 (E, R)

The Poincaré—Hopf theorem shows us the relationship between the indices of a
smooth vector field on a manifol¥ and the Euler Characteristic of thd. If f e
C2(E, R) the following result is true.

Proposition 3.1 (see Chand2]). Let E be a real Hilbert space and € C? (E, R) be
a function that satisfies theéPS) condition. Assume that

df ) =u—K (u),
where K is a compact mapping ang is an isolated critical point of f. Then we have

ind (df, ug)=deg(ly — K, B, (uo) , 0)

:Z (=17 rankCy (f, uo) (3.1)

q=0
for ¢ > 0 sufficiently small

We generalize the result as follows.
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Theorem 3.2. The conclusion of PropositioB.1 is still true if f € C1(E, R).

Proof. Let
f )= % lul® — G () (3.2)
and
G () =K (u). (3.3)
Then
df ) =u—K (u). (3.4)

Take ¢ > 0 small enough such thdtonly has unique critical pointg in Bz, (ug)
and there exist$ > O such that|f’ ()| >4 as u € Ba: (uo) \B: (ug). Construct a
Gromoll-Meyer pair(W, W_) by

W=ft—r+er+cdng, (3.5)
W_=fY(=r+onw, (3.6)

where
gu=1{uek, g <u}, (3.7)
g ) =A(f ) = f o)) + lull® = lluol, (3.8)
¢ = f (uo) (3.9)

and /, u, y are positive numbers to be determined by the following conditions:

Be )N fH[~y+ey+c]CWC Brwo)N fH[-p+ep+c].  (3.10)
FH=r+ey+e]ng ™t (w C Bae (o) \Be (o) . (3.11)
(dg (), df (W) > O, Vu € Boe (uo) \Be (uo), (3.12)

wherep is small such that = f (ug) is the unique critical value dfin [—p +c,p+ c].
It is easy to check thatW, W_) is a Gromoll-Meyer pair with respect to a negative
pseudo-gradient vector field ¢f(see[2]).
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Setv = u — ug. We could find a finite-dimensional approximatidh K (P,v) such
that Vv € B3, (ug) asn large:

IK (v) = P.K (Pyv)ll g < min (g é) , (3.13)

where E, is the eigenspace spanned by the eigenfunctieps. ., ¢, of K’ (up) and
P, is the projection ontat,,. Define

1
G, (v) :/ P,K (tP,v)vdt + G (0),
0
1 2
Jn () = > lvl© = Gpn (v).
We have

sup  [f (v) = fu (V)]

v € B3 (10)
1 1
= sup S II* =G @) = S vI*+ Gy ()
v € Bz:(uo)
1 1
= sup /PnK(tan)vdt—/ K (tv)vdt
v € B3 (ug) 1/0 0

(v O
<min(L,2).

By using the mollifier we can find &,cC® (B3 (ug) N E,, E,) such thavu € By, (uo)

~ . 0
|P.K (P,v) — K, (P,,v)”En < min <% é) (3.14)
and therefore
~ (7 O
SUR, € . gy | £ () = fo ()] < min{ &, <) (3.15)

where
~ 1 s o~
f(v)=§||vll -G, (v),

1
G, (W) = / K, (tP,v)vdt + G (0).
0
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Combining 8.13—-(3.15 we get

~ [y 0
SURJEBzg(uo) |f (U) - f (U)| < min <%1 é) s (316)

SUR, ¢ By, (ug) [|4f (v) — df(v)“E

= SUR, ¢ By, (up) 1K (V) — K (Puv)llg, < (3.17)

wl >

Since || f' ()| =6 asu € Bae (uo) \B: (uo), we get that f|s,, (e ONly has criti-
cal points in B (up). As a matter of fact, if it is not true, then there must exist a
il € Bo. (10) \Be (o) such thatf ' (#) = 0, but

! o ]~ T~ )~ 5
sslr@al<|ram-ral+|r]<3

a contradiction! B ~
By the Smale—Sard theorem we can requfresuch that all critical points off in
Bz (ug) are nondegenerate, say, j =1,2,...,m (see[9,2]).
For f we obtain immediately
Wo=fppeNWC f,%Hc NWCf i eNW,

Cfyee MW C f2, 0 NW C fryeNW = W. (3.18)

However, there are strong deformation retracts
fHCﬂW—)f%JrcﬂW
and
f7%+c NW— fo.NW
provided by the Gromoll-Meyer property. We have
H, (W, W_) = H, (f%ﬂ nW.f 2N W) (3.19)
due to the exactness of the homological group sequence. Thus,

ind (df, ug) = deg(df, W, 0). (3.20)
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From @.17 and the homotopy invariance of degree we get

deg(df, W, 0) = deg(d f, W, 0) = Zlnd df,u;) (3.21)

For fe C* (E, R) we have the local result of the Poincaré—Hopf formula

Y ind(df.uj) =YY (=DrankC, (f.u;). (3.22)
=1 j=1¢g=0
Since
ZZ( 1) rankC, (. u;) Z( 1)¢ rankH, (f@, f:%ﬂﬂW)
j=14=0

=Z (=17 rankH, (W, W_)
q=0

=> (=D rankC, (f.uj). (3.23)
q=0

Combining 8.20—(3.23 we have
ind (df, ug) = Z (—1)7 rankC, (f, uo) -
q=0

The theorem is proved. [
Using Theorem2.7 we have the following.
Corollary 3.3. Assume thatf € C>°(E, R) and satisfies the assumption given in

Proposition 3.1. If ug is a mountain pass point and if the smalleist of d2f (1)
is simple whenevei; = 0, then 11 <0 and

ind (dfv “0) = -

Remark 3.4. For f € C? (E, R), Corollary 3.3 has been studied by H. Hofer (sg§).

From Theorem3.2 we can generalize the Poincaré—Hopf theorem as follows.
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Theorem 3.5. Suppose thatf € C! (E, R) and that O is a bounded domain in E on
which f is bounded and only has isolated critical point in O

(@ o_ = {u €d0|n(t,u) ¢ 0,¥t >0} = 0n f~1(a) for some awheren (t,u) is
the negative gradient flow of f emanating from u

(b) -df points inward atocO\O_, then we have

deg(df. 0.0) =Y (~1)? rank Hy (0, 0-).
q=0

Proof. Note thatf only has finite critical points IO, sayu;, i =1,2, ..., m. For each
u; following the argument given in Theore@.2 we can construct a Gromoll-Meyer
pair (W;, (W;)_) of f and f; € C> (B (u;) , R) such that

5
SUR, ¢ B, (uy) | f (V) — fi )] < min <g 3> (3.24)
~ 5
SUR, e B,y | df ) —dfi W), < 3 (3.25)
He (Wi W) = He (R 2,0 O Wie (F) 2, N W) (3:26)

whereeg, 7, 6 were given in Theoren3.2
Define

o _[fi@, veBew),

F= { f ), veO\U By (u;),

where f; (v) € C*® (Bs (u;), R), f (v) eC1(0, R) and f (v) only have critical points
in UjL; Wi. Then we have

deg(df, 0, 0)=deg(df, Uw. o) = deg(df. Wi.0)

i=1 i=1

_ZX Wi, (W)_) = > > (=D rankH, (W;, (Wi)_)
i=1 i=1¢=0

=> > (=D?rank¢, (fl,u)_Z( 1)7 rankH, (W, W_).
i=1¢=0 g=0

The theorem is complete. O
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Corollary 3.6. The conclusion of Theorer®.5 is still true if O is a finite bounded
domain in E and f only has finitely many critical points in O

4. Applications

We consider the semilinear elliptic boundary value problems of the form

{—Au = f(x,u), xeQ, (4.1)

I/l=0, xe@Q,

where Q is a smooth bounded domain R*. We make the following assumptions on

f(x,0): o

(f1) lim;_q, @ = bo, lim,_o_ @ = ag, uniformly in x € Q;

(f2) ag > A2, bg > A2, (ag, bo) er, where A C R?\X is the connected component
of R?\X containing (4;, Zi+1), i = 2,3,..., X denotes the set of those points
(a, b) € R? such that

—Au=au= +but, x e,
{ u=20, x €0Q 4.2)
has a nontrivial solution, where™ = max{u (x), 0}, u~ = min{u (x), 0}.
(f3) There existM1 > 0, M, < 0 such thatf (x, My) <0, f (x, M2) > 0 for x € Q;
(fa) feCt(Qx RY(0));
(f5) There existsx > 0 andC; > 0 such that

2
|fl/(x,t)‘ <C1(1+|t|a_l)’g{< Z_—fz, as n>3,\7’(x,t) OB (R\{O})

Theorem 4.1. Under assumptions f1)—(f4), (4.1) admits at least four nontrivial so-
lutions

Proof. Takes > 0 so small thatp, < M1, M2 < —e@q, and{e@q, M1}, {M1, —e@q)

are two pairs of sub- and super-solutions 4flj, where ¢, is the first eigenfunction
of the —4 under the Dirichlet boundary value condition. It is well known that there
existu, uy such thatep, < uf < M1, Mo < uj < —eqq, and bothu], u; are local
minimizers of the following functional:

1
J(u):—/ |Vu|2dx—/ F (x,u)dx,
2 Ja Q
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where F (x, 1) = [y f (x,s)ds. Consider
- 1 ) -
J () = —/ |Vul dx—/ F(x,u)dx,
2 Ja Q

where F (x, 1) = fé f(x,s)ds and

~ f&x, Mp), t < Mp,
fx,)y=1 f&x, 1), Mx<t< My,
fx, M), t > M.

By the Mountain Pass Theorem in Order Intervals (K8 J has a mountain pass
point ug € [M2, M1]\ ([M2, —e@1] U [e@1, M1]), u] < uo < uj, where

pvowii—ve ﬁi{wecg(§)|w>o,‘;—w|m<o}
v

andyv is the outward normal direction. Froiyz) we know thatug %= 0. Now we claim
that

Cy (7, Mo) Eéqu'

Now we only need to check that satisfies all the assumptions of Theorént:
(1) JeC¥O(E,R), E = H} (Q);

(2) J 'eCY(D, E), where D is a neighborhood ofig in Xicé (5) and A =
d?f (uo) is a bounded linear operator frogg (5) to H} (Q);
(3) 7 satisfies the property/).
In order to prove Theorerd.l, we also need the following Lemmak2, 4.3 and
4.6
Lemma 4.2. Under assumptions f1)—(f4), J € C>9(E, R).

Proof. Sincef(x, t) is global Lipschitz continuous iy there existsl, > 0 such that
|ft) = f(x12)| < Ll =1l Ven, 12€ R
Therefore,

|7 () = T u2)| = lus — w2 — K f (x,u1) + K f (x.u) ||,

Sllua —uzllp + | K F (xoun) — K f (xu2)|
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=llu1 —uallp + | f (. u1) — F (x, u2) 2
<llug —uzllg + Lllus —uzll;2

<Clug —u2llg -

The proof is complete. [

Lemma 4.3. Under assumptionsfi) — (fa), J'ect (D, E), where D is neighborhood
of ug in X.

Proof. Sinceug # 0 andug is a solution of 4.1), by the partial regularity of the
zero set of the solution of linear and super-linear elliptic equations [(§¢eug only
vanishes on a set of measure zero, Shy and it is sufficient to show that

1
~ ~ ~ 2
lim 0 (K f (x,uo+v) — K f (x,u0), w), = <fg J'(x, ug) vw dx) . (43)

\ Q0
Note thatf/(x, up) make sense if2\Qp since
|F @ uo+v) = £ (x,u0)| < Clo )], v (x) € L2 (Q\Q0).
By the Lebesgue dominated convergence theorem we have
IimHUHX_>0(Kf(x, ug +v) — Kf(x, uo) , w)E

= |im|\v\|x_>o/ (f(x,uo—i—v) —f(x,uo))wdx
O\ Qo

_ / 7 (x, uo) vw dx. (4.4)
Q\Qo

To show thatJ ' is continuous, let, — ug in X. It is easy to see that
17" ) = T o) || p < | K (F xoun) = F (xou0))|| 5 + llun — uoll g
1
~ ~ 2\ 2
= |f" (. un) — f (x, uo)|
Q\(QOUQn)
+ llup, — uollg — 0,asn — +o0,

where Q,, = {u, (x) = 0} is a set of measure zero singg — ug in Ccl, (ﬁ)
The proof is complete. [
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Remark 4.4. Under the following assumption: there exists a monotone increasing func-
tion M : R} — R and constanC, > 0 such that

M) <Ca (1+7771),r 20
and
lfe.—fx ) <M@)|t—1| as t,i'e[-rr].
Lemma4.2 is still true for J (1) (see[3]).

Remark 4.5. Under assumptiorif5) Lemmas4.2 and 4.3 are true forJ (u).

Lemma 4.6. Under assumptior(fs), or f is Lipschitz continuouysJ (1) satisfies the
property (J).

Proof. From (fs) Jis €?7% on H} (Q) and
J'w)=u—Kf (x,u),

where K = (—4)~! is an operator with the Dirichlet boundary condition. We may
choosed > 0 such that

n—+2

0 1-9). 4.5
o< +n—2( ) (4.5)
Define go = -2 (n>3) and

L2 012,

qi+1 qi n
From @.5 we have an integeN such that
4o <q1 < g2 <--- <{gN,4gN > Un.

Denote P, = 4, Eiyq = Wg%o (@), X; = LP(Q),i =0,1,....,N—1 and
Eo = L9 (Q). By applying the embedding theorem and assumptii) we have

. K .
oy & W3 0 (Q) = L+
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and
A 1 4 2
E=Hy < Eo, X=Ey =W, 0(Q).

Thus, K, f satisfy assumptiori$)—(3) of property (J). O

Remark 4.7. T satisfies the property/).
This is becausef is Lipschitz continuous.

Now we continue the proof of Theoredhl We have checked thai satisfies all
conditions of Theoren?.7. Therefore,

C, (J uo) =041G.
From (f2) we have that
Cq (‘7’ 0) ;561611 G,

where d; is the dimension of the subspa¢é spanned by the eigenfunctions corre-
sponding toly, ..., 4;. This implies thatug # 0 and mdd] 0) = (=% If J only
has three critical pomts ifiM2, M1], from Theorem2.7 and Corollary3.3, we have

1=deg(7, [M2, M1], 0)
=ind (dJ, 0) +ind (dJ, uo) +ind (d7, uf) +ind (d7, u7)
=% + (- +1+1

a contradiction! The proof of Theoredhl is complete. O

Now we consider problenv(1) with jumping nonlinearities both at zero and infinity.
We make more assumptions gh(x, t).
(fo) iMoo @ = boo, lIM;_oo f(f”) = das uniformly in x € Q;
(f7) oo > A2, boo > A2, (Ao, boo) € X, where A was given in assumptid@ify);
(fg) 30 > 2 and M > 0 such that

OF (x,t) <tf (x,1),Vxe€Q for |t|>M.

Theorem 4.8. Under assumptions f1)—(fa), (fe), (f7), (4.1 has at least seven non-
trivial solutions

Theorem 4.9. Under assumptions f1)—(fa), (fs), (fg), (4.1 has at least seven non-
trivial solutions.

Since we have Theorera.7 and Corollary3.3, the argument is similar t¢5].
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