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Let F denote an algebraically closed field and let V denote a finite-

dimensional vector spaceoverF. Recently Ito andTerwilliger consid-

ered a system of linear transformations A+, A−, A∗+, A∗− on V which

generalizes the notions of a tridiagonal pair and a q-inverting pair. In

their paper theymentioned some open problems about this system.

In this paper we solve Problem 1.2 with the following results. Let

{Vi}di=0 denote the common eigenspaces of A+, A− and let {V∗
i }di=0

denote the common eigenspaces of A∗+, A∗−. We show that each of

A+, A−, A∗+, A∗− is determined up to affine transformation by the

sequences {Vi}di=0; {V∗
i }di=0. We also show that the following are

equivalent: (i) there exists a nonzero bilinear form 〈 , 〉 on V such

that 〈A+u, v〉 = 〈u, A+v〉 and 〈A∗+u, v〉 = 〈u, A∗+v〉 for all u, v ∈ V ;

(ii) there exist scalars α, α∗, β, β∗ in F with α, α∗ nonzero such

that A− = αA+ + βI and A∗− = α∗A∗+ + β∗I; and (iii) both A+, A∗+
and A−, A∗− are tridiagonal pairs.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Throughout the paper F denotes an algebraically closed field and V denotes a vector space over F

with finite positive dimension.

By a decomposition of V , we mean a sequence {Vi}di=0 consisting of nonzero subspaces of V such

that V = ∑d
i=0 Vi (direct sum). For notational convenience we set V−1 := 0, Vd+1 := 0.

Let {Vi}di=0 denote a decomposition of V . By the shape of this decomposition wemean the sequence

{ρi}di=0, where ρi is the dimension of Vi for 0 � i � d.

By a linear transformation on V , we mean an F-linear map from V to V . Let End(V) denote the

F-algebra consisting of all linear transformations on V .
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Let A denote a linear transformation on V . By an eigenspace of A, we mean a nonzero subspace W

of V of the form

W = {v ∈ V |Av = θv},
where θ ∈ F. In this case,we call θ the eigenvalueofA associatedwithW .We say thatA isdiagonalizable

whenever V is spanned by the eigenspaces of A.

Definition1.1 [5,Definition9.1]. Let {Vi}di=0 denote adecompositionofV . For 0 � i � d letEi : V → V

denote the linear transformation that satisfies

(Ei − I)Vi = 0, EiVj = 0, if i �= j (0 � j � d).

We observe that Ei is the projection from V onto Vi. We note that EiV = Vi and

I =
d∑

i=0

Ei, EiEj = δijEi for 0 � i, j � d. (1)

Therefore, the sequence {Ei}di=0 is a basis for a commutative subalgebra D of End(V).

Ito and Terwilliger proposed the following problem.

Problem 1.2 [5, Problem 9.2]. Let {Vi}di=0 and {V∗
i }δi=0 denote decompositions of V. LetD andD∗ denote

the corresponding commutative algebras from Definition 1.1. Investigate the case in which (i)–(v) hold

below:

(i) D has a generator A+ such that

A+V∗
i ⊆ V∗

0 + · · · + V∗
i+1 (0 � i � δ). (2)

(ii) D has a generator A− such that

A−V∗
i ⊆ V∗

i−1 + · · · + V∗
δ (0 � i � δ). (3)

(iii) D∗ has a generator A∗+ such that

A∗+Vi ⊆ V0 + · · · + Vi+1 (0 � i � d). (4)

(iv) D∗ has a generator A∗− such that

A∗−Vi ⊆ Vi−1 + · · · + Vd (0 � i � d). (5)

(v) There does not exist a subspace W ⊆ V such that DW ⊆ W and D∗W ⊆ W, other than W = 0

and W = V.

Remark 1.3 [5, Note 9.3]. Let A, A∗ denote a tridiagonal pair on V , as in [4, Definition 1.1]. Then the

conditions (i)–(v) of Problem 1.2 are satisfied with

A+ = A, A− = A, A∗+ = A∗, A∗− = A∗.

Remark 1.4 [5, Note 9.4]. Let K, K∗ denote a q-inverting pair on V , as in [5, Definition 4.1]. Then the

conditions (i)–(v) of Problem 1.2 are satisfied with

A+ = K−1, A− = K, A∗+ = K∗, A∗− = K∗−1.



2112 B. Hou, S. Gao / Linear Algebra and its Applications 437 (2012) 2110–2116

Referring to Problem1.2,wehave d = δ [3, Proposition 2.3],we call this commonvalue the diameter

of A+, A−, A∗+, A∗−. For 0 � i � d, the dimensions of Vi and V∗
i coincide [3, Theorem 3.6]; we denote

this commonvalue byρi. The sequence {ρi}di=0 is symmetric andunimodal, i.e.ρi = ρd−i for 0 � i � d

and ρi−1 � ρi for 1 � i � d/2 [3, Theorems 3.6 and 3.12]. We call the sequence {ρi}di=0 the shape of

A+, A−, A∗+, A∗−.

In this paperwe solve Problem 1.2with the following results.We show that each of A+, A−, A∗+, A∗−
is determined up to affine transformation by the sequences {Vi}di=0; {V∗

i }di=0. We also show that the

following are equivalent: (i) there exists a nonzero bilinear form 〈 , 〉 on V such that 〈A+u, v〉 =
〈u, A+v〉 and 〈A∗+u, v〉 = 〈u, A∗+v〉 for all u, v ∈ V ; (ii) there exist scalars α, α∗, β, β∗ in F with α, α∗
nonzero such that A− = αA+ + βI and A∗− = α∗A∗+ + β∗I; and (iii) both A+, A∗+ and A−, A∗− are

tridiagonal pairs.

2. The split decompositions

Referring to Problem1.2,wenote that bothA+, A− are diagonalizable onV with eigenspaces {Vi}di=0

and both A∗+, A∗− are diagonalizable on V with eigenspaces {V∗
i }di=0. For 0 � i � d, let θi (resp. ξi)

denote the eigenvalue of A+ (resp. A−) associated with Vi and let θ∗
i (resp. ξ∗

i ) denote the eigenvalue

of A∗+ (resp. A∗−) associated with V∗
i . Assume that Ei (resp. E

∗
i ) is the projection from V onto Vi (resp.

V∗
i ) for 0 � i � d. By elementary linear algebra, we have the following equations:

Ei = ∏

0�j�d,j �=i

A+ − θjI

θi − θj
= ∏

0�j�d,j �=i

A− − ξjI

ξi − ξj
; (6)

E∗
i = ∏

0�j�d,j �=i

A∗+ − θ∗
j I

θ∗
i − θ∗

j

= ∏

0�j�d,j �=i

A∗− − ξ∗
j I

ξ∗
i − ξ∗

j

. (7)

Referring to Problem 1.2 and by [1, Definitions 1.1 and 1.4], the pair A+, A∗+ is irreducible and Hes-

senbergwith respect to the orderings ({Vi}di=0, {V∗
i }di=0); the pairA+, A∗− is irreducible andHessenberg

with respect to the orderings ({Vd−i}di=0, {V∗
i }di=0); the pair A−, A∗+ is irreducible andHessenbergwith

respect to the orderings ({Vi}di=0, {V∗
d−i}di=0) and the pair A−, A∗− is irreducible and Hessenberg with

respect to the orderings ({Vd−i}di=0, {V∗
d−i}di=0). For more information on Hessenberg pairs, see [1,2].

For the irreducible Hessenberg pair A+, A∗+, define

Ui = (V0 + V1 + · · · + Vd−i) ∩ (V∗
0 + V∗

1 + · · · + V∗
i ) (8)

for 0 � i � d. By [1, Lemma 2.5] the sequence {Ui}di=0 is a decomposition of V , which is called the

split decomposition of V associated with A+, A∗+. Moreover, by [1, Lemmas 2.3 and 3.1] the following

hold for 0 � i � d,

(A+ − θd−iI)Ui ⊆ Ui+1, (A∗+ − θ∗
i I)Ui ⊆ Ui−1; (9)

U0 + · · · + Ui = V∗
0 + · · · + V∗

i , Ui + · · · + Ud = V0 + · · · + Vd−i. (10)

3. A subalgebra of End(V)

Referring to Problem 1.2, D is viewed as the subalgebra of End(V) generated by A+ (or A−). In

what follows we often view D as a vector space over F. The dimension of D is d + 1 by construction.

Moreover, {Ai+|0 � i � d} is a basis for D. There is another basis for D that is better suited to our
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purpose. To define it we use the following notation. Let F[λ] denote the F-algebra of all polynomials

in an indeterminate λ that have coefficients in F. For 0 � i � d we define

ηi = (λ − θd)(λ − θd−1) · · · (λ − θd−i+1). (11)

We note that ηi is monic with degree i. Therefore {ηi(A+)|0 � i � d} is a basis forD. Applying (9) and

(11) to the split decomposition {Ui}di=0 of V associated with the irreducible Hessenberg pair A+, A∗+,

we find

ηi(A+)U0 ⊆ Ui (0 � i � d). (12)

Extending the argument of [6, Lemma 3.1], we get the following lemma.

Lemma 3.1. Referring to Problem 1.2, for all nonzero u ∈ V∗
0 and for all nonzero X ∈ D, we have Xu �= 0.

Proof. It suffices to show that the vector spaces D and Du have the same dimension. We saw earlier

that {ηi(A+)|0 � i � d} is a basis for D. We show that {ηi(A+)u|0 � i � d} is a basis for Du. By

(10) and (12) and since U0 = V∗
0 , this will hold if we can show ηi(A+)u �= 0 for 0 � i � d. Let i

be given and suppose ηi(A+)u = 0. We will obtain a contradiction by displaying a subspace W of V

that violates Problem 1.2(v). Observe that i �= 0 since η0 = 1 and u �= 0. So i � 1. By (11) and since

ηi(A+)u = 0 we find u ∈ Vd−i+1 + · · · + Vd−1 + Vd. Therefore

u ∈ V∗
0 ∩ (Vd−i+1 + · · · + Vd−1 + Vd). (13)

Define

Wr = (V∗
0 + V∗

1 + · · · + V∗
r ) ∩ (Vd−i+r+1 + · · · + Vd−1 + Vd) (14)

for 0 � r � i − 1 and put

W = W0 + W1 + · · · + Wi−1. (15)

We show W violates Problem 1.2(v). Observe that W �= 0 since the nonzero vector u ∈ W0 by (13)

and since W0 ⊆ W . Next we showW �= V . By (14), for 0 � r � i − 1 we have

Wr ⊆ V∗
0 + V∗

1 + · · · + V∗
r ⊆ V∗

0 + V∗
1 + · · · + V∗

i−1.

By this and (15)

W ⊆ V∗
0 + V∗

1 + · · · + V∗
i−1 ⊆ V∗

0 + V∗
1 + · · · + V∗

d−1.

Combining this with the decomposition

V = V∗
0 + V∗

1 · · · + V∗
d (direct sum) (16)

and using V∗
d �= 0 we findW �= V . We now showDW ⊆ W . Since A+ is a generator ofD, it suffices to

show that (A+ − θd−i+r+1I)Wr ⊆ Wr+1 for 0 � r � i − 1, where Wi := 0. Let r be given. From the

construction we have

(A+ − θd−i+r+1I)
d∑

h=d−i+r+1

Vh =
d∑

h=d−i+r+2

Vh. (17)

By Problem 1.2(i) we have

(A+ − θd−i+r+1I)
r∑

h=0

V∗
h ⊆

r+1∑

h=0

V∗
h . (18)
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Combining (17) and (18) we find (A+ − θd−i+r+1I)Wr ⊆ Wr+1 as desired. We have shownDW ⊆ W .

We now showD∗W ⊆ W . Since A∗− is a generator ofD∗, it suffices to show that (A∗−−ξ∗
r I)Wr ⊆ Wr−1

for 0 � r � i − 1, where W−1 := 0. Let r be given. From the construction we have

(A∗− − ξ∗
r I)

r∑

h=0

V∗
h ⊆

r−1∑

h=0

V∗
h . (19)

By Problem 1.2(iv) we have

(A∗− − ξ∗
r I)

d∑

h=d−i+r+1

Vh =
d∑

h=d−i+r

Vh. (20)

Combining (19) and (20) we find (A∗− − ξ∗
r I)Wr ⊆ Wr−1 as desired. We have shown D∗W ⊆ W .

We have now shown that W �= 0,W �= V,DW ⊆ W,D∗W ⊆ W , contradicting Problem 1.2(v). We

conclude ηi(A+)u �= 0 and the result follows. �

4. Each of A+,A−,A∗+,A∗− is determined up to affine transformation by the eigenspaces

Referring to Problem 1.2, let {Ui}di=0 be the split decomposition of V associated with A+, A∗+. In

this section we show that each of A+, A−, A∗+, A∗− is determined up to affine transformation by the

eigenspaces Vi and V∗
i (0 � i � d).

Extending the argument of [6, Lemma 4.1], we get the following lemma.

Lemma 4.1. Referring to Problem 1.2, assume that d � 1. Then the following (i)–(ii) are equivalent for all

X ∈ End(V).

(i) X ∈ D and XV∗
0 ⊆ V∗

0 + V∗
1 .

(ii) There exist scalars r, s in F such that X = rA+ + sI.

Proof. (i)⇒(ii): Assume X �= 0; otherwise the result is trivial. Pick a nonzero u ∈ V∗
0 and note that

u ∈ U0 by (10). We have Xu ∈ V∗
0 + V∗

1 by assumption, so

Xu ∈ U0 + U1 (21)

in view of (10). Recall {ηi(A+)|0 � i � d} is a basis for D. We assume X ∈ D, so there exists

αi ∈ F(0 � i � d) such that

X =
d∑

i=0

αiηi(A+). (22)

We show αi = 0 for 2 � i � d. Suppose not and define j = max{i|2 � i � d, αi �= 0}. Wewill obtain

a contradiction by showing

0 �= Uj ∩ (U0 + U1 + · · · + Uj−1). (23)

Note that ηj(A+)u �= 0 by Lemma 3.1 and ηj(A+)u ∈ Uj by (12). Also by (22) we find ηj(A+)u is

in the span of Xu and η0(A+)u, η1(A+)u, . . . , ηj−1(A+)u; combining this with (12) and (21) we find

ηj(A+)u is contained in U0 + U1 + · · · + Uj−1. By these comments ηj(A+)u is a nonzero element

in Uj ∩ (U0 + U1 + · · · + Uj−1) and (23) follows. Line (23) contradicts the fact that {Ui}di=0 is a

decomposition of V and we conclude αi = 0 for 2 � i � d. Now X = α1η1(A+) + α0I. Therefore

X = rA+ + sI with r = α1 and s = α0 − α1θ0.
(ii)⇒(i): Immediate from Problem 1.2(i). �
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Theorem 4.2. Let A+, A−, A∗+, A∗− be linear transformations on V satisfying the conditions (i)–(v) of

Problem 1.2 for the orderings of {Vi}di=0 and {V∗
i }di=0. Let A

′+, A′−, A′∗+, A′∗− also be linear transformations

on V satisfying the conditions (i)–(v) of Problem 1.2 for the orderings of {V ′
i }di=0 and {V ′∗

i }di=0. Assume

Vi = V ′
i and V∗

i = V ′∗
i for 0 � i � d. Then Span{A+, I} = Span{A′+, I}, Span{A−, I} = Span{A′−, I},

and Span{A∗+, I} = Span{A′∗+, I}, Span{A∗−, I} = Span{A′∗−, I}.
Proof. Assume d � 1; otherwise the result is clear. Let D (resp. D′) denote the subalgebra of End(V)
generated by A+ (resp. A′+). Since Vi = V ′

i for 0 � i � dwe findD = D′. So A′+ ∈ D. Applying Lemma

4.1 to the linear transformations A+, A−, A∗+, A∗− on V (with X = A′+), there exist r, s ∈ F such that

A′+ = rA+ + sI. Note that r �= 0; otherwise A′+ = sI has a single eigenspace which contradicts d � 1.

It follows that Span{A+, I} = Span{A′+, I}. Similarly we find the other assertions. �

5. The bilinear forms

Throughout this section let V ′ denote a vector space over F such that dimV ′ =dimV .

A map 〈 , 〉 : V × V ′ → F is called a bilinear form whenever the following conditions hold for

u, v ∈ V, for u′, v′ ∈ V ′, and for α ∈ F: (i) 〈u + v, u′〉 = 〈u, u′〉 + 〈v, u′〉; (ii) 〈αu, u′〉 = α〈u, u′〉;
(iii) 〈u, u′ + v′〉 = 〈u, u′〉 + 〈u, v′〉; and (iv) 〈u, αu′〉 = α〈u, u′〉. Let 〈 , 〉 : V × V ′ → F denote a

bilinear form. Then the following are equivalent: (i) there exists a nonzero v ∈ V such that 〈v, v′〉 = 0

for all v′ ∈ V ′; (ii) there exists a nonzero v′ ∈ V ′ such that 〈v, v′〉 = 0 for all v ∈ V . The form is said

to be degeneratewhenever (i), (ii) hold and nondegenerate otherwise. By a bilinear form on V wemean

a bilinear form 〈 , 〉 : V × V → F.

By an F-algebra anti-isomorphism from End(V) to End(V ′) we mean an isomorphism of F-vector

spaces σ : End(V) → End(V ′) such that (XY)σ = YσXσ for all X, Y ∈ End(V). By an anti-

automorphism of End(V) we mean an F-algebra anti-isomorphism from End(V) to End(V).
Let 〈 , 〉 : V × V ′ → F denote a nondegenerate bilinear form. Then there exists a unique anti-

isomorphism σ : End(V) → End(V ′) such that 〈Xv, v′〉 = 〈v, Xσ v′〉 for all v ∈ V , v′ ∈ V ′ and
X ∈ End(V). Conversely, given an anti-isomorphism σ : End(V) → End(V ′), there exists a nonzero

bilinear form 〈 , 〉 : V ×V ′ → F such that 〈Xv, v′〉 = 〈v, Xσ v′〉 for all v ∈ V , v′ ∈ V ′ and X ∈ End(V).
This form is nondegenerate and uniquely determined by σ up to multiplication by a nonzero scalar in

F. We say the form 〈 , 〉 is associatedwith σ . For more information on bilinear forms, see [7].

Lemma 5.1. Referring to Problem 1.2, let 〈 , 〉 denote a nonzero bilinear form on V that satisfies

〈A+u, v〉 = 〈u, A+v〉, 〈A∗+u, v〉 = 〈u, A∗+v〉, for u, v ∈ V . (24)

Then 〈 , 〉 is nondegenerate.
Proof. It suffices to show that the space W = {w ∈ V |〈w, V〉 = 0} is zero. Using (24) and since A+
generatesD we routinely findDW ⊆ W . SimilarlyD∗W ⊆ W . ThereforeW = 0 orW = V in view of

Problem 1.2(v). ButW �= V since 〈 , 〉 is nonzero, soW = 0 as desired. �

Lemma 5.2. Referring to Problem 1.2, let 〈 , 〉 denote a nonzero bilinear form on V that satisfies (24). Then

we have

〈A−u, v〉 = 〈u, A−v〉, 〈A∗−u, v〉 = 〈u, A∗−v〉, for u, v ∈ V .

Proof. By the equation on the left in (24) and since A+ generates D we see 〈Xu, v〉 = 〈u, Xv〉 for all

X ∈ D and all u, v ∈ V . Now taking X = A− we get the equation on the left in Lemma 5.2. The equation

on the right in Lemma 5.2 is similarly proved. �
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Lemma 5.3. Referring to Problem 1.2, let 〈 , 〉 denote a nonzero bilinear form on V that satisfies (24). Then

there exist scalarsα, α∗, β, β∗ inFwithα, α∗ nonzero such that A− = αA++βI andA∗− = α∗A∗++β∗I.

Proof. Recall that the linear transformations A+, A−, A∗+, A∗− satisfy the conditions (i)–(v) of Problem

1.2 for the orderings of {Vi}di=0 and {V∗
i }di=0. By Lemma 5.1 the bilinear form 〈 , 〉 is nondegenerate and

letσ denote the anti-automorphismof End(V) associatedwith 〈 , 〉. Applying [3, Theorem4.1] toσ and

using Lemma 5.2 we see that the linear transformations A−, A+, A∗−, A∗+ satisfy the conditions (i)–(v)

of Problem 1.2 for the orderings of {Vi}di=0 and {V∗
i }di=0. We have shown that both A+, A−, A∗+, A∗− and

A−, A+, A∗−, A∗+ satisfy the conditions (i)–(v) of Problem 1.2 for the orderings of {Vi}di=0 and {V∗
i }di=0.

Thus there exist scalars α, α∗, β, β∗ in F with α, α∗ nonzero such that A− = αA+ + βI and A∗− =
α∗A∗+ + β∗I by Theorem 4.2. �

Lemma 5.4. Referring to Problem 1.2, if there exist scalarsα, α∗, β, β∗ inFwith α, α∗ nonzero such that

A− = αA+ + βI and A∗− = α∗A∗+ + β∗I, then both A+, A∗+ and A−, A∗− are tridiagonal pairs.

Proof. Assume the linear transformationsA+, A−, A∗+, A∗− satisfy the conditions (i)–(v) of Problem1.2.

Note that thepairA+, A∗+ is irreducible andHessenbergwith respect to theorderings ({Vi}di=0, {V∗
i }di=0)

and thepairA−, A∗− is irreducible andHessenbergwith respect to the orderings ({Vd−i}di=0, {V∗
d−i}di=0).

Since there exist scalars α, α∗, β, β∗ in F with α, α∗ nonzero such that A− = αA+ + βI and

A∗− = α∗A∗+ + β∗I, the irreducible Hessenberg pairs A+, A∗+ and A−, A∗− have the same orderings

of eigenspace sequences. So the pair A+, A∗+ is irreducible and Hessenberg with respect to the order-

ings of ({Vd−i}di=0, {V∗
d−i}di=0). We have shown that the pair A+, A∗+ is irreducible and Hessenberg

with respect to each of ({Vi}di=0, {V∗
i }di=0) and ({Vd−i}di=0, {V∗

d−i}di=0). By [1, Proposition 4.4] A+, A∗+ is

a tridiagonal pair. Similarly A−, A∗− is a tridiagonal pair. �

From [8, Theorem 1.4] and Lemmas 5.3 and 5.4 we have the following theorem.

Theorem 5.5. Referring to Problem 1.2, the following (i)–(iii) are equivalent:

(i) There exists a nonzero bilinear form 〈 , 〉 on V that satisfies (24).

(ii) There exist scalars α, α∗, β, β∗ in F with α, α∗ nonzero such that A− = αA+ + βI and A∗− =
α∗A∗+ + β∗I.

(iii) Both A+, A∗+ and A−, A∗− are tridiagonal pairs.
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