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Abstract 
Monitoring tool wear in machining processes is one of the critical factors in reducing downtime and 
maximizing profitability and productivity. A worn out tool can deteriorate the surface finish or 
dimensional accuracy of the part. Due to the uncertainties that originate from machining, workpiece 
material composition, and measurement, predicting tool wear is a challenging task in modern 
manufacturing processes. Low cost sensing technology for measuring spindle current is commonly 
deployed in the CNC machine to measure spindle power consumption for predicting tool wear. In this 
study, spindle power information was integrated into a Kalman filter methodology to predict tool flank 
wear in cutting hard-to-machine gamma-prime strengthened alloys. Results show a maximum of 18% 
error in estimation, which indicates a good potential of using Kalman filter in predicting tool flank 
wear.  
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1 Introduction 
Tool Condition Monitoring (TCM) is gaining more attention in automated manufacturing processes 

in recent times (Yen et al., 2004). 20% of machining downtime is reported to be due to tool wear, 
which causes surface deterioration and can be detrimental to machine health (Vallejo et al., 2005). The 
history of studying tool wear goes back almost a half century, and various models have been proposed 
to measure tool wear that can be categorized into two major classes: Offline (direct) methods and 
online (indirect) methods. 

Offline methods of tool wear measurement require direct access to the process that needs to be 
interrupted: The machine is stopped, and the tool is taken out of the machine for measurement using a 
pre-installed device (Ertunc et al., 2001). Because of direct measurement of tool wear, these methods 
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are relatively more accurate for tool wear monitoring, but impractical in automated manufacturing 
systems due to the tedious nature of the required work. In addition, when the whole process is stopped, 
machining downtime is increased and the rate of productivity is decreased. Optical microscope and 
vision systems are two examples of measurement devices that have been used in the literature (Jeon 
and Kim, 1988; Pedersen, 1990). 

An alternative for offline methods of studying tool wear is online methods, which require 
measuring external signals such as Acoustic Emission (AE), machining forces, spindle power 
consumption, and vibration, and relating them to tool wear (Cuppini et al., 1990; Li, 2002; Lin and 
Yang, 1995; Wang et al., 2002). The advantage of online methods over offline methods is that there is 
no need to interrupt the process, so online methods can be incorporated in automated machining 
processes without the loss of productivity. The main disadvantage is the existence of noise in signals, 
which requires some additional signal processing for extracting the related features of the signal to 
relate to tool wear. Another challenge is to find a suitable model for estimation. There are various 
models proposed by researchers which are categorized as (i) empirical models that characterize tool 
wear through running multiple experiments in different cutting conditions and fitting an appropriate 
function (Li, 2002), (ii) mechanistic models that relate cutting force or power through mechanically 
derived equation to tool wear (Cuppini et al., 1990; Fu et al., 1984; Xu et al., 2011), and (iii) dynamic 
models that characterize the progress of tool wear in state space time series (Danai and Ulsoy, 1987a; 
Danai and Ulsoy, 1987b). 

Recently, tool wear studies in frequency and time-frequency domains gained some attention. 
Machine learning techniques such as Neural Network have been widely used by researchers to predict 
tool wear (Wang et al., 2002; Xu et al., 2011). Support Vector Method (SVM), Hidden Markov Model 
(HMM), and Self-Organizing Map (SOM) are some other methods that have been used for predicting 
or categorizing tool wear in various machining processes such as drilling, micro-milling, and milling 
(Ertunc et al., 2001; Owsley et al., 1997; Zhu et al., 2009). Kalman filter is another method that shows 
good noise suppression characteristic and it has been used by some researchers in machining process 
control (Möhring et al., 2010).  

The objective of this study is improving the tool wear estimation using low cost sensing technology 
in machining hard to machine alloys. Accurate estimation of tool wear is of great importance in 
automated machining processes because of decreasing machining idle time and improving 
productivity. The organization of this work is as follows: theoretical background of Kalman filter and 
proper mechanistic model are discussed in section 2. In section 3, the experimental setup is explained 
and selected cutting conditions for experiments are given. The proper method for identifying state 
noise covariance, measurement noise covariance and initial estimations for Kalman filter are explained 
in section 4. Results and conclusions are provided in sections 5 and 6. 

2 Theoretical Background 

2.1 Kalman Filter 
Bayesian estimation was introduced by Thomas Bayes who proposed the basic formulation, known 

as the Bayes rule, in the 18th century (Hoff, 2009). According to this rule, the probability of an event x 
(i.e. p(x|y)) can be derived by multiplying the initial (i.e. a priori) belief of x (i.e. p(x)) with the 
observed data set p(y|x), and dividing by the marginal distribution of observed data p(y). This marginal 
distribution p(y) can be derived as shown in Eq. (1). 

 
 ( ) ( | ) ( )p y p y x p x dx  (1) 
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Bayesian estimation is extensively used in the context of data mining where batches of 
observations (i.e. measurements) are available to estimate state x. Rudolf Kálmán coined a recursive 
estimation method in 1960 (Kalman filter), which estimates the states of a system at each time step 
and updates the estimation when a new measurement is available (Kalman, 1960). Since then, the 
Kalman filter has been widely used in the area of target tracking and navigation, where a linear 
behavior of system is valid. The Extended Kalman filter (EKF) and unscented Kalman filter (UKF) are 
also proposed for tracking states in nonlinear systems (Haykin, 2001). For state estimation of x, 
Kalman filter uses a discrete linear state space equation (Eq. 2): 

 
 1 1 1k k k kx Ax Bu w  (2) 

 
where k shows the time step, A is a matrix that relates the states at the previous time step (k-1) to the 
current time step (k), B is a matrix that relates inputs u at the previous time step to the current states, 
and w is the noise (uncertainty) for state estimation. This noise is assumed to have a normal 
distribution with zero mean and covariance Q (Eq. 3). The measurement equation is described as a 
discrete stochastic model that relates current state to measured signals (Eq. 4), where zk is the 
measured signal, H is a matrix that relates current states of system to the most recent measurements 
and vk is the measurement noise which is assumed to have a normal distribution with zero mean and 
covariance R. 

 
 ~ (0, )kw N Q  (3) 
 k k kz Hx v  (4) 

 
Kalman filter starts with a priori at time k, which is updated based on the previous knowledge at 

time k-1. As soon as the measurements become available, a priori will be updated to find a posteriori 
of states. The first update in the algorithm to find a priori is called time update and the second update 
to find a posteriori is called measurement update.  Because the process is recursive, there is no need to 
wait for the batch of measurements to be available. Time and measurement updates are described as 
below: 

(1) Time update:  
 

 
(2) Measurement update: 
 

 1
1 1( )T T

k k k k k k kK P H H P H R  (7) 
 ˆ ˆ ˆ( )k k k k k kx x K z H x  (8) 
 ( )k k k kP I K H P  (9) 

 
where Pk

-  is a priori error covariance of states, Pkʹ is a posteriori error covariance of states, xk
-  is a 

priori estimation of states, xk is a posteriori estimation of states and Kk is the Kalman gain derived by 
minimizing the a posteriori error covariance, and Rk is the measurement error covariance (Haykin, 
2001). 

 
1 1 1ˆ ˆk k k kx A x Bu  (5) 

 
1 1 1 1

T
k k k k kP A P A Q  (6) 
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2.2 Mechanistic Tool Wear Model 
It was shown by researchers that the tangential component of the machining force in milling can be 

formulated as Eq. (10), where Kʹ and c are constants, is the mean chip thickness, ap is the depth of 
cut, f is the feedrate, φ is the instantaneous angle of rotation and Ft is tangential force. (Altintas and 
Yellowley, 1989). 

 
 sinc

t pF K h a f  (10) 
 
Unlike turning where the uncut chip thickness h can be considered constant, milling induces 

changing chip thickness with angle of rotation so that h can be written as a function of the rotational 
angle, using Figure 1 as schematic of milling. Then, the mean chip thickness  can be written in terms 
of the entrance and exit immersion angles (ψ1 and ψ2, respectively) as shown in Eq. (11). In 
conventional milling tests, these two angles are usually constant, so Eq. (11) reduces to Eq. (12), 
where C1 is a constant. 

 
 

1 2
1 2 1 2

1
( ) (sin sin )out

in

f
h h  (11) 

 
1h C f   (12) 

 
It was shown that with an increase in tool wear, the magnitude of force increases as well 

(Choudhury and Rath, 2000). It was shown that the change in magnitude of tangential force Ft
wear is a 

function of the material hardness Hh, the friction coefficient μ, the tool flank wear VB (Waldorf et al., 
1992), and the tool wear length s represented by Eq. (13), where s is assumed to be equal to the depth 
of cut ap (Shao et al., 2004). All the parameters in Eq. (13) can be assumed constant in milling except 
for VB, which changes relative to the volume of material removed in the process. Then, adding Eq. 
(13) to Eq. (10), the resultant tangential force can be written as Eq. (14), where C2 is a constant that 
summarizes the constant variables in Eq. (13). 

 
 wear

t hF VBH s  (13) 
 1

1 2sinc
t pF K C f a C VB  (14) 

 
Figure 1: Milling Schematic (Shao et al., 2004) 

It was also shown by (Waldorf et al., 1992) that the constant Kʹ is dependent on cutting conditions 
including feedrate, and depth of cut (Eq. 15), where C3 is a constant, and α1 and α2 are the feedrate and 
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depth of cut exponents, respectively. Plugging Eq. (15) into Eq. (14), the tangential force is derived as 
a function of cutting conditions (Eq. 16). Multiplying the tangential force Ft with the cutter diameter D 
and spindle speed N yields to instantaneous cutting power P shown in Eq. (17). 

 
 1 2

3 pK C f a  (15) 
 1 21 1

1 3 2sinc
t pF C C f a C VB  (16) 

 1 21 1
1 3 2sinc

pP C C Df Na C DNVB  (17) 
 
Note that the average power can be simply determined by integrating Eq. (17) from entering angle 

to exiting angle of the block. Assuming constant depth of cut, spindle speed and feedrate, average 
power is simplified as: 

 
 

1 2P K K VB   (18) 

3 Experimental Setup 
Rene-108 (R-108) was chosen to explore the performance Kalman filter for in-process estimation 

of tool wear. An OKUMA GENOS M460-VE 3-axis CNC machine was used to end mill (in down-
milling direction) rectangular blocks of size 60 x 80 x 25 mm, using a water-soluble coolant. A 2-flute 
indexable tool holder with a diameter of 15.875 mm was used, and the width of cut was chosen to be 
9.5 mm that corresponds to 60% tool engagement, as this was the maximum manufacturer 
recommendation for the particular tool holder. Full length of the blocks (60 mm) was utilized for 
machining, which was considered as a “pass”. At the chosen width of cut, 24 tests were conducted on 
the block: 8 tests with 3 replications. Depth of cut, cutting velocity and feedrate for each pass are kept 
constant at 0.5 mm, 25 m/min and 0.1 mm/rev respectively. The cutting conditions are determined 
based on the industrial applications targeted by this study, and keeping the cutting conditions constant 
is due to the fact that a change in the cutting conditions can induce abrupt changes in the behavior of 
hard-to-machine alloys. Therefore, in order to duplicate the same machining conditions as in industrial 
applications, these conditions were kept constant. A data acquisition device (DAQ) was programmed 
to capture the spindle power consumption while cutting with high sampling rate. To measure spindle 
power in high sampling frequency, the output of the TMAC transducer (Figure 2) was fed into the 
NI9215 analog input module mounted on NI-cRIO9103 chassis programmed with LabVIEW. Data 
was collected in voltage at sampling frequency of 10.24 kHz.  

Inserts used in this work were Sandvik Coromill (R390-11 T3 08M-PM 1030). The 1030 grade 
(TiAlN PVD coated) is recommended by Sandvik for milling R-108 due to its resistance to material 
build-up on the cutting edge and plastic deformation (Sandvik, 2006). Fresh unworn inserts were used 
at the beginning of each set of tests which contain 8 passes. Taking out the insert from tool holder for 
measurement and installing it back can induce additional error due to the radial and axial insert run 
outs. To avoid taking out the inserts, tool holder was taken out of the machine and flank wear on the 
bottom edge of insert was measured using an Olympus optical microscope and average flank wear was 
calculated. The progress of tool flank wear is shown on Figure 3 for test 1.2, 1.4, 1.6 and 1.8 (first 
replication). Spindle power consumption was measured for each pass. The mean value of cutting 
power in the 42-48 mm cutting distance was selected as the average cutting power affected by tool 
flank wear at each test, since this region typically is reflective of the peak value of power consumption 
with worn tool. In Figure 4, an exemplified description of the spindle cutting power is shown for test 
1.3. Measured power and tool flank wear for all the tests are shown in Table 1. 
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Figure 2: Data Acquisition with NI-cRIO9103 

Table 1: Spindle power and flank wear measurement  
Replication 1 Replication 2 Replication 3 

Test P VB Test P VB Test P VB 
# (10-3 hp) (μm) # (10-3 hp) (μm) # (10-3 hp) (μm) 

1.1 29 84 2.1 32 83 3.1 32 81 
1.2 32 89 2.2 36 87 3.2 33 87 
1.3 24 100 2.3 38 103 3.3 35 99 
1.4 33 108 2.4 37 107 3.4 34 103 
1.5 36 111 2.5 44 109 3.5 39 109 
1.6 41 116 2.6 30 116 3.6 38 115 
1.7 37 119 2.7 41 125 3.7 36 116 
1.8 36 125 2.8 44 127 3.8 42 120 

 

 
Figure 3: Measured flank wear for (a) Test 1.2, (b) Test 1.4, (c) Test 1.6, (d) Test 1.8 

4 Stochastic Modeling of Tool Flank Wear 
The dynamic behavior of tool wear is nonlinear at the initial stages, linear at intermediate stages, 

and nonlinear at the final stages before catastrophic failure (Koren et al., 1991). Due to the high 
strength and hardness of R-108, the progress of tool wear was relatively fast, and the first stages of 
tool wear were not captured while testing. Hence, tool wear progress was considered as a linear 
function of volume of material removed (MR) while machining. 

(a) 
  

(b) 
  

(c) 
  

(d) 
  Scale: 1.0 mm 
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Figure 4: Cutting power for Test 1.3 

 
Linear regression was used to find the slope of tool wear curves for each replication of tests as shown 
in Figure 5. Radj

2  values of 96%, 94%, and 95% for the three replications of the tests validate the 
aforementioned linear tool wear assumptions.  
 

 
Figure 5: Linear regression results of (a) replication 1 (b) replication 2, and (c) replication 3 

Considering a linear region for tool wear and assuming flank wear and slope of tool wear growth 
(VB') as the states of the system, discretized state space equation can be written as Eq. (19), where Δt 
is the time-step size, which is constant and equivalent to the volume of removed material (MR). 
Because the cutting conditions are kept constant in this work, VB'can be defined as Eq. (20). 

 
 ( ) ( 1)

( ) ( ) ( 1) ( )
VB k VB k

VB k VB k VB k VB k t
t

 (19) 

 ( ) ( 1)VB k VB k  (20) 
 
The state error should be added to Eq. (19) and Eq. (20) as normally distributed noise. Note that 

error variances for tool wear and tool wear rate are assumed to be independent of each other. The 
stochastic state space equation is described in matrix format in Eq. (21-22). 
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The variance Q1=13 μm2 was calculated based on the maximum variance in tool flank wear 

measurements between replications of tests. The variance Q2 = 1.4×10-7 μm2/mm6 was calculated as 
the variance between slopes of linear regression curves. Using Eq. (18), a linear relation was 
considered between the observed signal (i.e. spindle power consumption) and tool flank wear when 
cutting conditions are constant.  
A linear regression is used for each set of tests as shown in Figure 6, and average values for K1 and K2 
were calculated. The measurement error covariance was calculated the same way as Q1. The value of 
K1, K2 and the measurement noise variance R are 13.1 hp, 0.22 hp/μm and 18.7 hp2

, respectively. Note 
that, it is possible to tune the measurement error covariance based on the performance of the filter. By 
decreasing R, the effect of a priori will strengthen on the estimations. Eq. (18) can be written in 
discrete format to run the Kalman filter as given in Eq. (23), where the measurement error v(k) can be 
defined as a normal distribution with zero mean and R variance. 

 
 2( ) ( ) ( )P k C VB k v k  (23) 

 
Figure 6: Linear fit of spindle power vs. flank wear for (a) replication 1, (b) replication 2, and (c) replication 3 

To run the Kalman filter, an initial point and an initial covariance for states are required. The initial 
point (x0) was calculated simply as the mean of predicted flank wear from test 1.1, 2.1, and 3.1. To 
find the initial error of the flank wear, the error between the mean of measured flank wear for first 
tests of each replication which appears as expected value of VBi,1 in Eq. (24) and estimated flank wear 
based on measured power which appears as expected value of ΔPi,1/C2 was calculated.  The error of 
flank wear rate was calculated as the difference between the slope of measured flank wear (first term 
in Eq. (25)) and predicted flank wear using tests 1 and 2 for each replication (second term in Eq. (25)). 
Combining these two errors together and using Eq. (26), the initial error covariance of tool wear and 
tool wear was calculated as 1.74 μm and 130.2 μm2/mm3. 
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5 Results 
The results of the tool flank wear estimation and the corresponding 95% confidence intervals 

calculated from the estimated covariance (Pcov) are shown in Figure 7. Note that, measurement error 
covariance (R) was tuned to get the least relative error between the estimation and measurements. The 
least error was observed in replications 1 and 3. However, it was observed that the Kalman filter 
estimated tool flank wear with relatively constant error in replication 2, where the maximum error was 
observed at 18%. The average percent error of estimation for each replication is 5.4, 9.4 and 4.8% 
respectively. As shown in Figure 7, Kalman filter performed with less than 20% estimation error when 
cutting power is used as the measurement signal; it is able to suppress the fluctuation of measured 
spindle power. However, the filter was unable to estimate relatively smooth flank wear growth. 

 
Figure 7: Flank wear estimation and its error for (a&b) Test Series 1, (c&d) Test Series 2, (e&f) Test Series 3 

The comparison of tool flank wear estimation with and without the Kalman filter is shown in 
Figure 8. The black line represents the predicted flank wear based on deterministic equation (i.e. linear 
equation relating flank wear to consumed spindle power). The red dashed line represents the Kalman 
filter estimation. It was observed that the Kalman filter was able to compensate the offset between the 
deterministic estimation and the actual measurement. To quantify the performance of the Kalman filter 
and the deterministic approach, Root Mean Square Error (RMSE) of each method was calculated and 
compared in Table 2. Kalman filter reduced the RMSE 41% for the 1st replication, and 25% for the 3rd 
replication; however, a slight increase in the error was observed for the 2nd replication. This can be due 
to several factors such as radial or axial run out error that is uncontrollable and may happen when 
installing the insert, and subsurface damage (smearing of grains along the direction of cut) which 
increases work hardening of the block (Figure 9). Moreover, linear model is assumed for the process 
and implemented in Kalman filter framework (Eq. 18), but tool wear is a complex non-stationary 
dynamic process and linear models may not fully represent the complex dynamics of tool wear. 
Measurement error (i.e. high signal to noise ratio) in power signal and human induced error while 
measuring tool wear with microscope are other sources of error. 

2
0 0 0 0

0 0 0 2
0 0 0 0

e e e e
P e e
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Figure 8: Comparison of estimated flank wear with and without use of Kalman filter to actual measurement 

 
Figure 9: Subsurface damage due to machining 

Table 2: Comparison of the stochastic and deterministic estimations 

Replication RMSE(μm) 
deterministic 

RMSE (μm) 
Kalman filter Change (%) 

1 12 7 -41 
2 12 13 +8 
3 8 6 -25 
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6 Conclusions 
In this study, an adaptive tool flank wear estimation method was proposed in end milling of 

gamma-prime strengthened alloys. Tracking tool wear in modern manufacturing processes is critical 
due to the fact that it can reduce downtime of the machine and increase productivity simultaneously. 
Spindle power consumption was used as the observed signal due to the low cost and easy 
implementation of Eddy current sensors in CNC machines. The main conclusions of this study are 
given as below: 

 A discrete linear model of mechanistic tool wear was formulated to be used with Kalman 
filter. A design of experiment with relatively mild cutting conditions was used along with 
high frequency DAQ system to capture spindle power consumption. 

 Proper variances of state and measurement error were identified and the Kalman filter was 
tuned to have the least possible error in estimation. It was shown that the Kalman filter can 
predict tool flank wear with a maximum average error of 10%. The performances of the 
Kalman filter and the deterministic estimation were compared and it was shown that the 
Kalman filter could estimate tool wear with 7, 13 and 6% RMSE in replications 1-3. Low 
estimation error is beneficial in automated machining process where proper action should be 
taken before catastrophic tool failure occurs. 

To increase the performance of estimation, more experiments with different cutting conditions can 
be used. Furthermore, other signals such as cutting force and vibration can be fused with spindle 
cutting power, and nonlinear models that better capture the dynamic behavior of tool wear can be used 
instead of the linear models for relating flank wear to observed signal. 
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