
NORrH- HOI_LAND

COMPLETENESS AND PROPERNESS OF
REFINEMENT OPERATORS IN INDUCTIVE
LOGIC PROGRAMMING

P A T R I C K R. J . VAN D E R LAAG AND S H A N - H W E I N I E N H U Y S - C H E N G

t> Within Inductive Logic Programming, refinement operators compute a set
of specializations or generalizations of a clause. They are applied in model
inference algorithms to search in a quasi-ordered set for clauses of a
logical theory that consistently describes an unknown concept. Ideally, a
refinement operator is locally finite, complete, and proper. In this article we
show that if an element in a quasi-ordered set (S, >_) has an infinite or
incomplete cover set, then an ideal refinement operator for (S, >_) does
not exist. We translate the nonexistence conditions to a specific kind of
infinite ascending and descending chains and show that these chains exist
in unrestricted sets of clauses that are ordered by 0-subsumption. Next we
discuss how the restriction to a finite ordered subset can enable the
construction of ideal refinement operators. Finally, we define an ideal
refinement operator for restricted 0-subsumption ordered sets of clauses.
© Elsevier Science Inc., 1998 <1

1. INTRODUCTION

1.1. Refinement Operators and Ideal Properties
One of the major tasks in Inductive Logic Programming (ILP) is model inference
(or concept learning), the induction of logical theories from examples. For a survey
of the theory and methods of ILP, we refer to [6]; the foundations of this field are
described in [8].

Address correspondence to Patrick R. J. van der Laag, Rabofacet, Teleservices, Datacentrum, P.O.
Box 80, 5680 AB Best, The Netherlands; Shan-Hwei Nienhuys-Cheng, Department of Computer
Science, Erasmus University of Rotterdam, P.O. Box 1738, 3000 DR Rotterdam, The Netherlands.

Received October 1995; accepted January 1997.

THE JOURNAL OF LOGIC PROGRAMMING
© Elsevier Science Inc., 1998
655 Avenue of the Americas, New York, NY 10010

0743-1066/98/$19.00
PII S0743-1066(97)00077-0

202 P . R . J . VAN D E R L A A G A N D S.-H. N I E N H U Y S - C H E N G

In 1981, Shapiro presented his famous Model Inference System, a milestone in
machine learning. In his report [15], he describes how a logical theory for an
unknown concept can be inferred by adapting a conjecture (a finite set of clauses)
to a sequence of examples of the unknown concept. Starting with a strong
conjecture, too general clauses are removed and specializations of removed clauses
can be added until a consistent theory is found. These specializations are computed
by a downward refinement operator. Instead of searching for more specific clauses
when necessary, we can also start with a weak conjecture and search for more
general clauses that are computed by an upward refinement operator [4, 5].

In this article we abstract from the learning systems in which they are used and
concentrate on refinement operators. Following Laird [4], we consider downward
and upward refinement operators that can be defined on any quasi-ordered set
(S, >). For every C in S, a refinement operator delivers a subset of the set of all
elements D of S such that C > D (downward) or D > C (upward). These elements
are called the one-step refinements of C.

Since refinement operators are usually used to search for clauses, most proper-
ties of refinement operators for quasi-ordered sets will be illustrated in terms of
generalizations and specializations of clauses. If S denotes a set of clauses in a
language of first-order logic, then > expresses a more-general-than relation
between the clauses in S. Whereas logical implication between clauses is the most
straightforward notion of generality, 0-subsumption, a weaker version of it, is
usually adopted because it is decidable and more efficient for incremental search.

We call a refinement operator ideal if it is locally finite, complete, and proper.
Local finiteness means that the set of one-step refinements of every clause in the
search space is finite and computable. Clearly, refinement operators that are not
locally finite are not of any practical use. A refinement operator is complete if (a
clause equivalent to) every specialization or generalization of a clause can be
connected to it by a finite chain of one-step refinements. When incomplete
refinement operators are used, it is not guaranteed that all clauses of a target
theory can be derived. If a refinement operator never returns a specialization or
generalization that is equivalent to the refined clauses, then it is called proper.
Properness is a nice property because we are not interested in refinements that are
equivalent to a formerly refuted clauses. Moreover, allowing refinements that are
equivalent to a formerly refuted clause (as, for example, FOIL [11] does) can cause
(infinitely) long chains of equivalent clauses to be generated during the search
process.

Our notion of ideality does not capture every desirable aspect of refinement. For
example, an ideal refinement operator may return both a proper specialization and
a proper specialization of this proper specialization in the same refinement step.
Furthermore, the second proper specialization may also be a one-step refinement
of the first. This behavior is often regarded as undesirable, because it causes the
same clause to be generated many times.

1.2. Nonexistence Conditions for Ideal Refinement Operators

To analyze ideal refinement operators carefully, we explore the mathematical
concepts that are related to quasi-ordered sets and relevant for ideal refinement
operators: covers and infinite ascending and descending chains. If we are searching

R E F I N E M E N T O P E R A T O R S IN ILP 203

for the clauses of a logical theory, refinement steps on one hand must be large
enough such that every specialization or generalization can be found in finitely
many steps. On the other hand, it is important that refinement steps are not too
big, because then a target clause might be skipped and a target theory will not be
derived. For a refinement operator, idealness implies that the one-step refinements
of a clause include all most general proper specializations or most specific proper
generalizations. The mathematical concept that resembles this is the concept of
covers. A natural way to define refinement operators then is to assign to each
clause its downward or upward cover set. We can, for example, use Reynolds' [13]
cover relation between atoms to define ideal downward and upward refinement
operators for substitution ordered sets of atoms. For clauses, however, this ap-
proach has some problems:

1. In practical generality orderings like 0-subsumption and logical implication, it
is hard to test whether a clause covers another clause. Generating downward
or upward covers constructively is even harder.

2. A cover set can be incomplete. We will give an example of a clause that has
infinitely many nonequivalent proper generalizations but has an empty up-
ward cover set.

3. A cover set can contain infinitely many nonequivalent clauses.
4. Even when every clause is known to have a finite and complete downward or

upward cover set, completeness of refinement operators that return such
cover sets is not guaranteed. Moreover, we will describe an abstract ordered
set in which every element has a finite and complete cover set, but for which
a complete refinement operator does not exist.

Despite all these problems, the concept of cover sets is important for ideal
refinement operators. As we will prove in Section 3, an ideal refinement operator
always returns a superset of a finite and complete cover set. Consequently, if an
element of S has an incomplete or infinite cover set in (S, > >, then this implies
nonexistence of an ideal refinement operator for (S, >). These nonexistence
conditions will be translated into so-called uncovered infinite ascending and descend-
ing chains. The related theorems will be applied to (~ , _~), where ~ refers to the
set of all clauses in a first-order language and ~ refers to 0-subsumption. We will
provide uncovered chains for concrete clauses to show the nonexistence of both
ideal upward and downward refinement operators for (~ , >-).

1.3. Ideal Refinement Operators for Finite Quasi-Ordered Sets

If we have a finite quasi-ordered set (S, >_), and C >_ D tests are decidable for all
elements of S, then we can theoretically define ideal refinement operators using
cover sets as a set of one-step refinements. However, to extract cover sets from S,
many tests are required, which does not yield efficient refinement operators. In
practice, refinements should be derivable from the refined element in a construc-
tive way. For example, Reynolds [13] has described simple and constructive down-
ward refinement operations for atoms. Each of these operations is a simple
substitution, for example, the unification of two variables. Shapiro [15] combined
these simple substitutions in a downward refinement operator that constructs
downward cover sets of atoms. This ideal refinement operator for atoms has been

204 P . R . J . VAN DER LAAG AND S.-H. NIENHUYS-CHENG

generalized to an ideal refinement operator for clauses with respect to the
so-called substitution ordering [9]. When these simple substitutions are applied to
clauses that are ordered by 0-subsumption, however, then the resulting clauses are
sometimes equivalent to the refined clause. To define an ideal refinement operator,
these improper refinements should be avoided. For a complete refinement operator
for 0-subsumption ordered clauses, we must also introduce an operation by which
we can add one or more literals. In Section 4, we describe how inverse reduction is
related to proper substitutions and the addition of one or more literals. The
applicability of substitutions, literal additions, and inverse reduction is also influ-
enced by the way in which the search space of clauses is restricted to a finite set.
We will restrict sets of reduced clauses ~ ' to finite s e t s ~newsize, using our
complexity measure newsize. In the end we will discuss our downward refinement
operator Pr, which is ideal for quasi-ordered sets (~,ewsize, ~).

1.4. Related Work

Shapiro [15] has defined a locally finite and proper downward refinement operator
for finite sets of reduced clauses (P0). This refinement operator returns proper
specializations only, and no one-step refinement of a clause C is a proper
specialization of another one-step refinement of C. P0 was probably intended to
compute downward cover sets. It was certainly intended to be what we call weakly
complete, but, as is shown in [1] and [7], it is not. In the first of these articles we
have first presented our inverse reduction algorithm, our complexity measure
newsize, and our downward refinement operator Pr.

In another article [3], we have proved the nonexistence of ideal upward and
downward refinement operators for unrestricted 0-subsumption ordered sets of
clauses (~ , ~-) and defined a locally finite, complete but improper upward
refinement operator for such sets. This upward refinement operator is a counter-
part of Laird's [4] downward refinement operator that is also locally finite, com-
plete, and improper for (~ , _~). In [2], the nonexistence conditions for ideal
refinement operators have been generalized by using cover sets and uncovered
infinite chains, and, using a logical framework of refinement operators, different
approaches to approximate ideal refinement operators have been discussed.

In the article [9] we have discussed five subsequent weakenings of logical
implication, and we have defined downward and upward refinement operators for a
finite set of clauses with respect to all of these orderings. Among the described
refinement operators are Pr and its upward dual, which is an ideal upward
refinement operator for finite 0-subsumption ordered s e t s (.~newsize, >.).

Ling and Dawes [5] have also defined an upward refinement operator for finite
0-subsumption ordered sets of clauses. This refinement operator is neither com-
plete nor proper. However, considering a variant of 0-subsumption where different
variables always refer to different objects, Ling and Dawes' upward refinement
operator for clauses becomes ideal. In this ordering (called 0-subsumption under
object identity [14]), q ~ p (X , Y) , p (Y , X) is not regarded as more general than
q ~ p (X , X), and hence cannot be derived from it.

In the case of downward refinement operators, our notion of idealness can be
contrasted with the notion of optimality [6]. Using an optimal downward refinement
operator, no clause in the search space can be generated more than once, which

REFINEMENT OPERATORS IN ILP 205

makes optimal refinement very efficient. Optimal refinement is particularly inter-
esting when the search starts with the top element (e.g., the empty clause), in which
case weaker notions of completeness are sufficient to guarantee the derivability of
all clauses in the search space. An example of such a weak notion of completeness
is global completeness [6], which means that there exists a chain of refinements
from the top element of the search space (e.g., the empty clause) to every other
clause, Van Laer [16] has defined a globally complete optimal downward refine-
ment operator for sets of function-free, range-restricted clauses that are ordered by
0'-subsumption (C 0'-subsumes D iff there exists some variable renaming 0 for
which CO c_ D).

So far, globally complete optimal downward refinement operators for 0-sub-
sumption ordered sets have not been defined. Moreover, if one-step refinements
must be covers (which is often included in the definition of refinement operators,
e.g., in [12] and [6]), then such an optimal refinement operator does not exist, as
will be shown at the end of Section 3.2.

In all cases of upward refinement and when downward refinement does not start
with the top element of the search space, global completeness and optimality are
less appropriate. In these cases local completeness [6] can be favored over global
completeness, and our notion of idealness can be favored over optimality.

2. NOTATION AND DEFINITIONS

2.1. Quasi-Ordered Set

Let S be a set and let C, D, E be elements of S.

• A binary relation > on S is called a quasi-ordering on S if it is reflexive
(C > C) and transitive (C > D and D > E imply C > E). We use C > D to
denote C > D and D ~ C. For every quasi-ordering > we can define an
equivalence relation ~ by C ~ D, if C > D and D > C.

2.2. Refinement Operators

Given a quasi-ordered set (S, _>), and C, D, E ~ S:

• I f C >_ D or D >_ C, then C and D are called comparable.

• p is called a downward refinement operator if VC ~ S: p(C) c_ {D ~ S[C >_ D}.

• 6 is called an upward refinement operator if VC ~ S: 6(C) c_ {D ~ S[D > C}.

• Given p (or 6), the sets of one-step refinements, n-step refinements, and
refinements of C are, respectively,

p l (C) = p (C)

p"(C) = {DI3E~ p" '(C) and D ~ p (E) }

p * (C) = pl(C) U p2(C) U- - -Up i (C) U " "

• Every sequence C=Co,C 1 C,,=D such that C i E p (C i 1) is called a
p-chain C to D.

206 P . R . J . V A N D E R L A A G A N D S.-H. N I E N H U Y S - C H E N G

2.3. Ideal Properties

Given a quasi-ordered set (S, >), and C, D, E ~ S, p (and dually 6) is called

• locally finite if VC ~ S: p(C) is finite and computable

• complete i f V C > D : 3 E ~ p * (C) such that E ~ D

• proper if VC ~ S: p(C) C {D ~ SIC > D}

• ideal if p is locally finite, complete and proper.

2.4. Cover Sets

Given a quasi-ordered set (S, >), and C, D, E ~ S:

• C c o v e r s D i f C > D a n d ~ E : C > E > D .

• If C covers D, then we call C an upward cover of D and D a downward
cover of C.

• Downward and upward cover sets are maximum sets of nonequivalent down-
ward and upward covers, respectively. They are denoted by dc(C) and uc(C).

• dc(C) is called complete if for every D ~ S such that C > D, 3E ~ dc(C)
such that E > D. Complete upward cover sets are defined dually.

Note that cover sets are only uniquely up to equivalence. When an element in a
cover set is replaced by an equivalent element, the result is also a cover set.

Ordered sets with incomplete cover sets are common in mathematics. For
example, consider the set of real numbers ordered in the usual way; then there is
no pair of numbers X, Y such that X > Y and Y is a downward cover of X.

2.5. Clauses

Given a language of first-order logic ~ with finitely many function, constant, and
predicate symbols, we use the following notation. Function symbols are denoted by
f , g; constants by a, b; variables by X, Y, Z; predicate symbols by p, q, r; literals by
L, M; clauses by C, D ; and sets of clauses by S. All of these symbols can occur
with subscripts.

A clause represents a (possibly empty) set of literals. The empty clause is
denoted by t~. By C \ D we denote the difference set of C and D that is obtained
by removing all literals in D from C.

Usually, clauses will be written in the usual logic programming style. For
example, the clause

{p(X, X) , ~ q(X, Y) , ~ q(Y , X)}

can be written as

p (X , X) ~ q (X , Y) , q (Y , X) .

Sometimes these notation styles will be mixed for convenience. Thus the clause

D n = q ~ {p(s,,g,)la < i , j <n , i ~ j } , n > 2

represents the set of literals {q} U { -1 p (X i, Xj)I1 < i, j < n, i ~=j}, n > 2.

R E F I N E M E N T O P E R A T O R S IN ILP 207

2.6. O-Subsumption and Reduction

Given a quasi-ordered set of clauses (S, >), and C, D, E ~ S:

• If C > D holds, then C is called a generalization of D and D a specialization
of C. If C > D, then generalizations and specializations are called proper.

• Clause C O-subsumes clause D, denoted by C >-D, if CO c_D for some
substitution 0.

• A clause C is Called reduced iff D ___ C and D ~ C imply C = D. In words, C
is reduced iff it is equivalent to no proper subset of itself.

• If D is a nonreduced clause and C is a reduced clause such that C c D and
C ~ D, then all literals in D \ C are called redundant.

For a given set of clauses, S, 0-subsumption is a quasi-ordering on S. I f we talk
about a quasi-ordering on the set of all clauses in a first-order language 2 , then we
use ~ to denote this unrestricted set of clauses. The set of all reduced clauses in a
first-order language ~ is denoted by J/'. Given a complexity measure for clause
size and some fixed upper bound for this complexity measure k, we denote the
subsets of ~ ' and ~ ' that contain all (reduced) clauses with a size..< k by ~size and
.9~ si~e. Throughout this article, clauses that differ only in variable names will be
regarded as the same.

3. NONEXISTENCE OF IDEAL REFINEMENT OPERATORS

3.1. Nonexistence Conditions

In this section we relate incomplete or infinite cover sets to the nonexistence of
ideal refinement operators for a quasi-ordered set (S, >_). All lemmas in this
section will be in terms of downward refinement operators, but will hold similarly
for upward refinement operators.

Lemma 3.1. Let p be an ideal downward refinement operator for (S, >); then every
element in S has a finite and complete downward cover set.

PROOF. Let p be an ideal refinement operator. For all C ~ S, the following
algorithm finds a subset dcc of p(C) that is a finite and complete downward cover
set of C.

dcc .'= p(C)
while 3D, E ~ dcc such that D v~ E and D > E do

dcc := dcc \ {E}.

Since p is locally finite, the algorithm terminates. From the completeness and
properness of O and the relation between D and E when E is removed from dcc,
we can deduce that after termination of the algorithm,

3 D, E ~ dcc such that D v~ E and D > E (1)

VE ~ S: C > E implies 3D ~ dcc such that C > D > E. (2)

First we prove that every clause in dcc is a downward cover of C: Assume that
E ~ dcc is not a downward cover of C. Then 3 F ~ S, such that C > F > E, and by
(2), 3 D ~ d c c such that C > D > F . But then D , E ~ d c c and D > E , which

208 P . R . J . VAN DER LAAG AND S.-H. NIENHUYS-CHENG

contradicts (1). Next, since p is locally finite, dcc is a finite cover set. By (1), no two
elements of dcc are equivalent, and finally, by (2), dcc is complete. Notice that, in
the proof above, to compute a complete cover set, it is required that D > E tests
be decidable. To prove the existence or nonexistence of such a set, however, >
need not be decidable. []

Corollary 3.1. Given a quasi-ordered set (S, >), if for some C in S, dc(C) is
incomplete or infinite, then an ideal downward refinement operator for (S, >) does
not exist.

At the end of this section we will give an example of a quasi-ordered set in which
the cover set of every element is finite and complete, but an ideal refinement
operator still does not exist. Although this might not be clear at first, incomplete
cover sets are closely related to infinitely ascending or descending chains. It is well
known that infinitely ascending and descending chains (infinite chains of proper
generalizations or specializations) exist for 0-subsumption ordered clauses, which
can cause termination problems in search algorithms (e.g., see [10]). The existence
of such infinite chains in a quasi-ordered set alone, however, does not imply that
ideal refinement operators cannot exist. Existence of the following, more specific
kind of infinite chains does imply the nonexistence of ideal refinement operators.

3.1.1. Uncovered Chains. Given (S, >) and C, D 1, D 2, D 3 ~ S,

• If D~ > D 2 > D 3 > ... >D~ >Dn+ 1 > .-- > C, and C has no upward cover
E ~ S such that D, > E > C for all n > 1, then D 1, D2, D 3 is called an
uncovered infinite descending chain of C.

• If C > --- > D n + l > D n > "'" > D 3 > D z > D l , a n d C h a s n o d o w n w a r d c o v e r
E ~ S such that C > E > D n for all n > l , then D 1,D 2 ,D 3 is called an
uncovered infinite ascending chain of C.

The following lemma relates uncovered chains to cover sets and thus, using Lemma
3.1, to the nonexistence of ideal refinement operators.

Lemma 3.2. Given (S, >), C in S and the following statements:

1. dc(C) is incomplete,
2. C has an uncovered infinite ascending chain,
3. dc(C) is infinite or incomplete,

then 1 implies 2 and 2 implies 3.

PROOF. (1 ~ 2) Let dc(C) be incomplete. Then for s o m e D 1 E S for which C > O l ,

there exists no E ~ dc(C) such that C > E >_ D 1. D 1 is not a downward cover of C,
otherwise D 1 or another element in S that is equivalent to D 1 would be in dc(C).
Hence, there must be an element D 2 c S such that C > D 2 > D 1 and ~ E ~ dc(C)
such that C > E >_ D 2 (the existence of such an E would also imply C > E > D1).
This line of reasoning can be repeated forever; hence C has an uncovered infinite
ascending chain C > ... > Dn+ a > Dn > ... > D 2 > D 1.

(2 ~ 3) By contradiction. Let C > ... >Dn+ 1 >D, > "'" > D z > D 1 be an un-
covered infinite ascending chain of C. Suppose dc(C)= {E 1, E 2 E m} is finite
and complete. Completeness of de(C) implies that for every D i there exists an Ej

R E F I N E M E N T O P E R A T O R S IN ILP 209

such that C > Ej > D i. Since there are finitely many Ej's and infinitely many D~'s,
some E , must satisfy C > E , > Di for infinitely many Di's. Thus for every i we can
find a j > i such that E k > Dj. But then also, C > E k > D i for all i. This contradicts
the s tatement that C > ... >Dn+ l > D n > "'" > D z > D ~ is an uncovered infinite
ascending chain of C.

Corollary 3.2. Given (S, >_), i f some C in S has an uncovered infinite ascending
chain, then an ideal downward refinement operator for (S, >_) does not exist.

A natural question that remains is whether the existence of finite and complete
cover sets for all C ~ S implies that p (C) = dc(C) is an ideal downward refinement
operator. The answer is no, as illustrated by the following example.

Example. Let S = {C l, C 2 , . . . , D} with infinitely many Ci's between C 1 and D, and
let the elements of S be ordered as follows:

C 1 > C 2 > " ' " > C n > C n + l > "'" > D .

In the downward case, dc(C i) = {Ci+ l} and d c (D) = { }; thus every downward cover
set is finite and complete. If we now define p (C) = dc(C) , then p is incomplete and
hence not ideal: D cannot be derived in finitely many steps from any C i.

In this ordered search space (S, >_), however, it is still possible to define an
ideal downward refinement operator by extending the cover sets:

p (C i) = {Ci+ 1, D}.

For the upward case consider D. Since every C i in S satisfies C i > Ci+ 1 > D, no C i
is an upward cover of D. Hence, u c (D) = { } and u c (D) is incomplete. Cl, C 2 is
an uncovered infinite ascending chain of D; hence, by the dual of Lemma 3.2, an
ideal upward refinement opera tor for (S, >_) does not exist.

In the example above, the refinement operator p (C) = dc (C) could be extended
to an ideal refinement operator. The following example shows an ordered search
space for which such an extension is not possible. Moreover, it shows that, although
all downward cover sets are finite and complete, an ideal downward refinement
opera tor does not exist.

Example. Let (T, >) be a partially ordered set that contains an infinite binary
tree that is rooted by Co:

C o ~ T, and if C i i, ~ T, then also C/ i,,,o ~ T and C i i,,,l ~ T

C i I i n > Ci l in,O

Ci i. > Ci i.,1"

Thus, there are infinitely many paths of infinite length from Co to smaller (>)
elements. We now define B, the set of "bo t toms" as follows. For every infinite path
p = C O > Co, j2 > Co, i2,i 3 > . . . , there is a Dp in B such that

C O > Co,z2 > Co , i2 , i 3 > ' ' ' > D p ,

and such that Dp is incomparable with every element of T that is not in p.
Furthermore, if p v~ p ' , then Dp and Dp, are incomparable.

210 P . R . J . V A N D E R L A A G A N D S.-H. N I E N H U Y S - C H E N G

Let S = T u B and let > be defined as above. Then every element of S has a
finite and complete downward cover set (dc(Ci, in) = {Ci, i,,o, Ci, i,. 1}, and
for every infinite path p, dc(Dp)= { }). Assume that p is an ideal downward
refinement operator for (S, >). Then for every Dp, there must be a finite p-chain
from C to Dp, and, since the elements of B are mutually incomparable, Dp E p(C)
must hold for some element C of S. We conclude that, if p is ideal for (S, >),
then

B_~ U p (C) .
C~T

However, T is a countable set and, since p is locally finite, Uc~TP(C) is
countable as well. On the other hand, the number of paths starting in C ({0, 1} N,
the number of real numbers) is uncountable and hence B is not a countable set.
From this contradiction we conclude that an ideal refinement operator for (S, >)
does not exist. []

3.2. Nonexistence of Ideal Upward Refinement Operators
In this section we will apply the dual of Lemma 3.2 to (g~, ~), i.e., to unrestricted
sets of clauses that are ordered by 0-subsumption, the most widely used notion of
generality in model inference. We will show that uncovered descending chains exist
for one specific clause, but we can prove that this clause does not form an isolated,
exceptional case; uncovered chains exist for infinitely many clauses. Hence, there
seems to be no way to find complete refinement operators by treating these
exceptional clauses separately.

We will prove that D 2, D3, D4, . . . is an uncovered infinite descending chain of
C, where

C =q ~ p (X 1,X1)

O n = q ~ {p(X/, xj)ll <i , j <n,i-~j} (n > 2).

Clearly, the heads of C, of every Dn, and of every E for which D n >- E >- C holds
are equal. Since these heads do not affect the derivability of C from any D n, we
concentrate on the bodies of these clauses:

K = {p(Xl ,X1))

K, = {p(Xi, Xy)ll <i , j <n, i 4=j} (n ~ 2).

Thus K n represents a structure that is known as a complete graph of size n; for
example,

K 3 = { p (X , , / 2) , p (X 1 , X3) ,p (X2 , /1) , p(X2,) (3) , p (X 3 , X 1) , p (X 3 , X2)}.

Lemma 3.3. For all n > 2, Kn is reduced.

PROOF. Assume that g n is not reduced for some n. Then for some substitution 0,
KnOcK n. This implies that two literals p(Xil, Xi2) and p(Xjl, Xi2) in K n are
mapped to the same literal p(Xk,, Xk2) in KnO. I f i I ~J l , then p(Xi,, Xj~) in K n is
mapped to p(Xkl, Xkl). Otherwise, i 2 vaj2 and p(Xi2, X h) in K n is mapped to
p(Xk2, Xk~). Both cases contradict K n 0 c K n. []

R E F I N E M E N T O P E R A T O R S IN ILP 211

Lemma3.4 . K 2 > ' K 3 ~- "'" >-K,>-Kn+I>- . . . >-K.

PROOF. For every Kn we can define a 0 that maps every variable X i in K, to X v
This gives K,O c_ K. Since p (X 1, X 1) in K cannot be mapped to any literal in any
K~, we get K, >- K. Using the trivial substitution, we can prove K, ~ K n + 1. Since
Kn + 1 is reduced (Lemma 3.3) and K, c K, + 1, Kn + 1 and Kn cannot be equivalent,
and K~>-K~+l. []

Lemma 3.5. There is no E such that for all n > 2, K , >- E ~- K.

PROOF. Assume that some E does satisfy K~ _~ E >- K for all n > 2. Let X 1 , X,,
be all variables in E. Since E >-K, EO c_K for some 0 and E can contain only
iiterals of the form P(Xi, Xj). In these literals X i -~Xj must hold; otherwise E is
equivalent to K. But then E c_K m implies E ~ K m >-Km+a, which contradicts
Km+ l >-E. []

Corollary 3.3. Let (~ , ~) be an unrestricted set of clauses ordered by O-subsumption
and let C and D 2, D 3, D 4 as defined at the beginning of Section 3.2, be clauses
in ~. Then D 2, D 3, D 4 is an uncovered infinite descending chain of C.

REMARK. Uncovered infinite descending chains exist for clauses of arbitrary com-
plexity. For example, if we replace all variables X i in the definition of K and K n
by fn (Xi) , then the proofs of Lemmas 3.3, 3.4, and 3.5 can remain unchanged.
Other clauses that can be proved analogously to have an uncovered infinite
descending chain are q ~ p (g (X l , XI)) and q ~ p (f " (g (X l , X1))). Note that these
last clauses contain a binary function symbol, but no binary predicate symbols.

Using the same line of reasoning as in the proof of Lemma 3.5, we can verify
that no clause E is an upward cover of K. Hence K has infinitely many proper
generalizations K~, K 2 but its upward cover set is empty. Similarly, we can
prove that ~ p (X l , X I) is the only upward cover of C = q ~ p (X 1, X1). Conse-
quently, if we consider only definite Horn clauses, then C also has infinitely many
proper generalizations D1, D 2 and the upward cover set of C in the set of all
of definite Horn clauses is empty as well. For both search spaces, the existence of a
clause without upward covers implies the nonexistence of an optimal downward
refinement operator in the framework of De Readt and Bruynooghe [12]. Adopting
their definitions, an optimal downward refinement operator returns only downward
covers, and every clause can be derived from the empty clause through exactly one
chain of refinements. Since a clause without upward covers is not a downward
cover of any other clause, it can never be derived. Hence such an optimal
downward refinement operator for the mentioned search spaces does not exist,
which is a derived result. The main result for ideal upward refinement is the
following:

Theorem 3.1. Let (~ , ~) be a O-subsumption ordered set, containing all clauses in a
first-order language that contains at least one predicate or function symbol of arity
> 2. Then an ideal upward refinement operator for (~ , ~) does not exist.

PROOF. Follows directly from the dual of Lemma 3.2 and Corollary 3.3. []

RENARK. In [2], we have shown that the infinite chains in this subsection are not
only uncovered infinite descending chains w.r.t. 0-subsumption, but also infinite

212 P . R . J . VAN D E R L A A G A N D S.-H. N I E N H U Y S - C H E N G

descending chains w.r.t, logical implication. Hence the theorem above is also valid
for unrestricted sets of clauses that are ordered by logical implication.

3.3. Nonexistence o f Ideal Downward Refinement Operators

In this section we show the nonexistence of ideal downward refinement operators
for (~ , >-). Using C n = {p(Y1,Y2),p(Y2,Y3) p(Y~_I,Yn),p(Yn,YI)} (n > 2), we
define the following clauses:

C = q ",-p(X~ ,X2) ,p (X2,X1)

D, = q ~ {P (Xl , X2) ,p (X2 , X1) } kJ C3. (n > 1).

We will prove that Da, D2, D 3 is an uncovered infinite ascending chain of C.
Again, the heads of C, of every D,, and of every clause E for which C >- E >- D,
holds do not affect the derivability of C from any D, , and we will again concen-
trate on the bodies of these clauses:

G = { p (X 1 , X z) , p (X 2 , X 1) }

G, =GLJC3, (n > 1).
To prove that G and every G~ is reduced, we introduce the notion of cycles.

3.3.1. Cycles. A sequence of literals L 1 L~ is called a linked chain iff L i and
Li+ 1 share at least one variable (1 < i < n - 1). Let C be a clause. Then C contains
a cycle of length n if C contains n distinct literals L 1, L 2 L , (n > 2), such that
the sequence L1, L 2 L , , L 1 is a linked chain.

Example. Every C n (n >__ 2) contains cycles of length n, for example,

p(X2, X3) ,p(X3, X4) ,p(X , _ l) , p (Xn) ,p (X , , X I) , p (X~, X2),

but no proper subset of C, contains a cycle.
The observations in the example above form a part of the proof of the following

lemma.

Lemma 3. 6. For all n >_ 2, C~ is reduced.

P~oo~. Assume that Cn is not reduced for some n. Then for some 0, C, 0 c C~.
This relation implies that 0 maps two literals in C~ to the same literal and hence
that 0 maps two variables X i and Xj, i < j , to the same variable X k. If j = i + 1,
then p (X i, Xi+l)O =p(Xk, Xk) ~ C,; hence j > i + 1. If 0 maps two variables X i
and Xj such that j > i + 1 to the same variable, then CnO contains a cycle of
length j - i:

p(X~,Xi+ I)O,p(Xi+ I,Xi+ 2)O p(Xj_ I,Xj)O.

Since no proper subset of C. contains a cycle and C. 0 does, we conclude that
C. 0 c C~ cannot hold, and hence that C n is reduced. []

Lemma 3. 7. For all n > 1, G n is reduced.

PROOF. Assume that Gn is not reduced for some n > 1. Then for some 0,
G,O c G~, and, by definition of G,, (G u C3,)0 c G u C3~. Since G (an alphabetical

REFINEMENT OPERATORS IN ILP 213

variant o f C2) and C3n are bo th reduced (L e m m a 3.6), G O c G or C3nOCC3n
cannot hold. H e n c e 0 must map at least one literal of G to a literal o f Ca,, or the
o ther way around.

First assume that for some k, 1 < k < 3 n, p(X1,X2)O=p(Y~,Yk+I) . Then
P(X2, X1)O =p(Yk+l,Yk), but p(Yk+l,YI,) q~ G~. The same holds when we start with
p(X2, X 1) or when a literal of the G-par t is mapped to p(Y3.,Y1).

Next we prove the case in which p(Y1,Y2)O=p(X1, X2). Then p(Y2,Y3)O =
P (X 2 , Y a O) ~ G n and 0 must map Y3 to X 1. Then also, p(Ya ,Y4)O=p(X1 ,Y40)~
Ca., and 0 must map I14 to X 2. This line of reasoning can be repeated, and every
Y/ with odd index must be m a p p e d to X 1, and every Y/ with an even index must be
mapped to X 2. But then, since 3 ~ is odd, P(Y3,, I11) 0 =P(X1, X1), which contradicts
GnOc G n. The same a rgument holds when we start with another P(Y/,Y/+I) or
p(Y3.,YI) instead of p(Y1,Y2), and with p(X2, X 1) instead of p(Xl,X2). []

Lemma3.8 . G > - . . . >'Gn+1>'Gn>" "'" >'G2>'G 1.

PROOF. G >- G n follows directly f rom G c G n and the reducedness of G n (Lemma
3.7). For all n >_ 2, let On+ 1 be a substitution that maps every Y~ (1 _< i < 3 n+ 1) in
Gn+ 1 to ~ in Gn, where j = 3 n iff i m o d 3 n = 0 and j = i m o d 3 n otherwise. Then
Gn + 10n + 1 = Q , and hence G n + 1 ~ Q . Assume that G n _~ G n + 1 also holds; then for
some or, G,~rGGn+ 1. But then (Gn+IO)O'=Q~rGGn+ v Together with IGI <
IGn + 1[, this implies that G n + 1 trO c G n + 1, which contradicts that G n + 1 is reduced
(I ~ m m a 3.7). We conclude that G, ~ G n + 1, and hence G, + 1 >" Gn for all n > 1.

[]

Lemma 3.9. There is no E such that for all n > 1, G >- E >- G n.

PROOF. Assume that E is a clause that satisfies G >- E _~ G n for all n > 1. Choose
an m such that 3 m >]El. Since E >- G m, EOG G m for some 0. Since lEO] < 3 m and
]G m] = 3 m + 2, we know that at least one o f the literals of the Cam-part of G m
does not occur in EO. Without loss o f generality, we may assume that p(Yn,Y1)
(G m \EO).

Consider the clause F = Gm\{p(Yn,Y1)}. Then E O G F implies E >-F. Let o-
map every Y/ in F to X 1 if i is odd, and to X 2 if i is even. Then F~r_ G and
hence F >- G. So E >- F >- G, which contradicts G >- E. []

Corollary 3.4. Let (~ ' , >-) be a O-subsumption ordered set of clauses and let C and let
D 1, D 2, D 3 as defined at the beginning of Section 3.3, be clauses in ~. Then
D1, D2, D 3 is an uncovered infinite ascending chain of C.

REMARK. This can be general ized too. Uncovered infinite ascending chains can be
constructed for clauses o f arbitrary complexity, using modifications to C and D n
similar to the ones discussed in the remarks following Corol lary 3.3.

Theorem 3.2. Let (~ , ~) be a O-subsumption ordered set, containing all clauses in a
first-order language that contains at least one predicate or function symbol of arity
> 2. Then an ideal downward refinement operator for (~ , ~) does not exist.

REMARK. In [2], we have shown that the infinite chains in this subsection are not
only uncovered infinite ascending chains w.r.t. 0-subsumption, but also infinite

214 P . R . J . V A N D E R L A A G A N D S.-H. N I E N H U Y S - C H E N G

ascending chains w.r.t, logical implication. Hence the theorem above is also valid
for unrestricted sets of clauses that are ordered by logical implication.

4. RESTRICTING THE SEARCH SPACE

In the previous sections we have shown that ideal (locally finite, complete, and
proper) refinement operators for general unrestricted 0-subsumption ordered sets
of clauses (g~, >-) do not exist. We can approximate these ideal refinement
operators in two ways: by dropping the property of properness and by restricting
the search space to a finite set. The first approach has been taken by Laird [4] for
downward refinement. We have defined a locally finite, complete, and improper
upward refinement operator in [3]. The second approach, restricting the search
space, has already been taken by Shapiro [15]. However, as we have shown in [1],
his downward refinement operator for reduced clauses P0 is not complete and
hence is not ideal. In the same article we have proposed a new downward
refinement operator that is ideal for finite, 0-subsumption ordered sets of reduced
clauses. This ideal refinement operator, called Pr, will be presented in Section 4.4.

4.1. Introduction

If we want to learn a logical theory that consistently describes an unknown concept
(for example, using refinement operators), we do not know the (complexity of the)
clauses in the theory to learn. Hence every restriction on a set of clauses that
reduces the expressive power brings the risk that target clauses are excluded from
this set. If we nevertheless choose to restrict the search space to a finite quasi-
ordered set (S, >), and C > D relations are decidable for every pair of elements
C, D in S, then ideal refinement operators can be defined in the following way:

p(C) =dc(C)

~(c) = uc(C).

Although a lot of order relation tests are required, algorithms that construct these
cover sets can easily be described:

dc(C) := {D ~ SiC > D}
while 3D, E ~ dc(C) such that D ~ E and D > E do

dc(C) := dc(C)\{E}

uc(C) := {D ~ SID > C}
while 3D, E ~ uc(C) such that D 4= E and E > D do

uc(C) := uc(C) \ {E}.

Refinement operators for finite quasi-ordered sets (S, >_) that return cover sets
are clearly locally finite and proper. To demonstrate the completeness of this
approach, consider an arbitrary pair C, D ~ S for which C > D. Then either D is a
downward cover of C, in which case E ~ p (C) for some E ~ D , or C has a
downward cover E ~ p(C) such that C > E > D. In the latter case, E > D holds,
and we can extend the p-chain from C to D by searching for an F ~ p(E) such
that F _> D. Since > is a transitive relation, there are no cycles in the chain from
C to D, and since S is finite, this chain is of finite length. Completeness of 6 can
be shown in a similar way.

R E F I N E M E N T O P E R A T O R S IN ILP 215

The above-defined cover set refinement operators are interesting, mostly for
theoretical reasons. They demonstrate the existence of ideal refinement operators
in finite quasi-ordered sets, and they demonstrate this in some minimal way, that is,
every refinement operator that returns fewer one-step refinements will not be ideal
(cf. Lemma 3.1). In practice, the >_ tests that are involved in the computation of
cover sets will be too time consuming, particularly when they refer to 0-subsump-
tion tests between clauses. Instead, one-step refinements are preferably determined
in a constructive way, i.e., by making (small) modifications to the element that is
subjected to refinement. The earlier mentioned minimality also suggests how
practical (constructive) ideal refinement operators can be made more efficient. If
p+ is an ideal downward refinement operator that returns proper supersets of
cover sets, then for every C ~ S we can remove from p+(C) the elements
p+ (C) \ dc(C) without losing idealness. However, although the removal of redun-
dant refinements reduces the memory requirements, it also reintroduces > tests.
Whether this removal is beneficial depends on the ordered search space under
attention and should be determined empirically.

4.2. O-Subsumption and R e d u c e d Clauses

Before we define our ideal refinement operator for finite, 0-subsumption ordered
sets of clauses, we discuss Plotkin's [10] notion of reduction and our inverse
reduction algorithm. In words, a clause is reduced if it is not equivalent to a proper
subset of itself. If a clause D is not reduced, then Plotkin's reduction algorithm
finds a reduced clause C that is equivalent to D by removing redundant literals.
We call such a C a reduced equivalent o f D. It is proved by Plotkin that if two
equivalent clauses are both reduced, then they are equal, up to renaming variables,
i.e., they are alphabetical variants. Since we treat alphabetical variants as the same,
all clauses in ~ ' (the set of all reduced clauses in a first-order language ~) are
nonequivalent.

In a (learning) system that uses a search space of logic formulae, it often is a
waste of time and memory to examine more than one clause of an equivalence
class. Since for any two clauses C and D, if C ~ D, then C ~ E iff D ~ E, using
one reduced clause as a representative of every equivalence class might lead to
more efficient (learning) systems. However, as will be shown in Section 4.4, 0-
subsumption has some unexpected properties that cause problems when we search
for clauses in a search space .gL These problems will be solved by consulting
nonreduced clauses in an intermediate step. We therefore want to build a simple
algorithm that reverses the reduction process. We need the following lemma and
theorem for this algorithm.

Lemma 4.1. Let C be a clause. I f 0 is a substitution such that CO = C, then for some
natural number k, LO k = L, for all literals L in C.

PROOF. 0 must be injective: if L I O = L 2 0 for different L1, L 2 E C, then 0 would
decrease the number of literals in C, i.e., ICol < ICI, which contradicts CO = C. For
every literal L in C, consider the following sequence:

L, LO, LO2,LO 3

216 P . R . J . VAN DER L A A G AND S.-H. N I E N H U Y S - C H E N G

Since C = CO = CO 2 , and since C is finite, not all L O i c a n be different. Then
for some i, j, i < j, we have L 0 i = L 0 r. Because 0 is injective, this implies L 0 j - ~ = L.

For every L, let n (L) be the smallest number such that L O n (L) = L . Then
LO i = L if i is a multiple of n(L) . Let k be the least common multiple of all n(L) .
Then LO k = L for all L ~ C . []

L e m m a 4.2. Le t C be a reduced clause, and let D be a clause such that C c D and
C ~ D. Then there exists a substitution 0 such that DO = C and L O = L for all
literals L ~ C.

PROOF. Since D P-subsumes C, 3o-: Do.__ C, which together with Co-__ Do. im-
plies Co._c C. If D o - c C, then also C o - c C, and C would not be reduced. We
conclude that Co. = C. By Lemma 4.1, we then know that for some k, L o -k = L for
all L ~ C, and we define 0 = crk. []

4.3. Inverse R e d u c t i o n

Given a clause D, a reduction algorithm finds an equivalent reduced clause C such
that C _ D. In this section we develop an algorithm which, given a reduced clause
C, constructs supersets D of C that are subsume-equivalent with C. Clearly, none
of the proper supersets of C will be reduced.

If we consider a search space ~ ' (all clauses of a first-order language .~) then
there are infinitely many subsume-equivalent clauses for every nonempty clause C
in ~ . We therefore have to limit the scope of the inverse reduction algorithm
before any clause can be processed by it. We accomplish this by bounding the
number of literals in D. If C is a reduced clause and m is a fixed positive integer,
then we want to find an alphabetical variant of every clause that is equivalent to C
and contains less than or exactly m literals.

4.3.1. Inverse Reduction Algorithm. Le t C be a reduced clause and let m >_ 0 be
a fixed natural number. The following algorithm finds an alphabetical variant of
every clause that is equivalent to C with m or fewer literals.

Let l = 0, if]C] < m, then output C
While l < (m -]C]) do

l : = l + l
For every sequence L 1 L I ,

where every L i ~ C, but the Li's are not necessarily distinct.
Find all sets E = {M1,. . . , M t} such that

Mi 4= L i, MiO= L i for all i, and
0 = { X l / t I X m / / t m } , Xj q~ var(C) for all j;

For every such E output C U E.

L e m m a 4.3. Le t C be a reduced clause and let m > 0 be a f ixed natural number. Then
the inverse reduction algorithm finds an alphabetical variant o f every clause that is
equivalent to C with m or fewer literals.

PROOF. (Soundness) Let D = C u E be a clause that is generated by the inverse
reduction algorithm, where E = { M 1 , . . . , M t } . Then D O = C for some 0 =
{ X 1 / t I X n / t , } , where no Xj occurs in C. Since C c D , C 0-subsumes D, and

R E F I N E M E N T O P E R A T O R S IN ILP 217

since DO = C, D 0-subsumes C. Thus C and D are equivalent. Furthermore, since
IDI _< ICl + lEt, where IEI < l _< (m - ICl), we have IDI _< ICl + m - ICI = m. That is,
D contains m or fewer literals.

(Completeness) Let D' be a clause that is equivalent to C that contains m or
fewer literals. We prove that our inverse reduction algorithm finds a clause D that
is an alphabetical variant of D' .

Let C' be a reduced clause such that C'c_D' and C ' ~ D ' . C' must be an
alphabetical variant of C ([10]). We can rename the variables in D' to find a
variant D of D' such that C ___ D.

Let E = D \ C . Since C is reduced, Cc_D and C ~ D , Lemma 4.2 states that
there exists a substitution 0 such that DO = C and LO = L for all L ~ C. This 0
does not affect any variable that occurs in C. Furthermore, since DO = C, for every
literal M i e E we can find a literal L i E C such that MiO=L v

Summarizing, for every clause D' that is equivalent to C and contains m or less
literals, we can define a clause D = C u {M1 M t} that is an alphabetical variant
of D'. We can construct a sequence of literals L1 L~ in C such that MiO = L i
for all i, where 0 does not affect the variables in C. Thus, considering all such
sequences L 1 L t and all such substitutions 0, an alphabetical variant of every
clause that is equivalent to C with m or fewer literals will be found. []

Example. Let C = p (X , X) ~ . Then for m = 2, possible redundant literals M 1 are
p (Y , Z) , p (X , Y) , p (Y , X) , and p(Y ,Y) . For m = 3 , some of the possible M1's,
M2's, and corresponding 0's are

M 1 M 2 0

p(X, Y) p(Y, Z) (Y/X, Z/X}
p(X, Y) p(X, Z) (Y/X, Z/X}
p(X, Y) p(Z, W) {Y/X, Z/X, W/X}
p(X, Y) p(Y, X) {Y/X}
p(Y, Y) p(Z, Z) {Y/X, Z/X}

REMARK. Note that the algorithm above does not find all clauses D with [D[< m
that are subsume-equivalent to C. For example, given the reduced clause C = p (X)
~ q (X , X) , it will not find the subsume-equivalent clause D' = p (U)
q(U, U), q(U, V). However, for every such clause D' , an alphabetic variant D of D'
will be found such that D = C u E. For the just defined clause D', this could be
D = p (X) ,--- q(X, X) , q(X, Y).

The inverse reduction algorithm above is theoretically interesting because it
shows the structure of all clauses in the equivalence class of a (reduced) clause. It
can also be used more practically. For example, in Section 4.4 we define our ideal
downward refinement operator Pr, in which inverse reduction plays an important
role for completeness.

4.4. A New Refinement Operator for Reduced Clauses

When we define an equivalence relation on a set, it is usually required that the
equivalence relation is compatible with the important operations on this set, i.e.,
operations on different members of the same equivalence class yield equivalent
results. Unfortunately, this is not true for the equivalence relation that is induced
by 0-subsumption.

218 P . R . J . V A N D E R L A A G A N D S.-H. N I E N H U Y S - C H E N G

Example. Consider the following clauses:

C =q ~ p (X , Y)

D =q ~ p (X , Y) , p (X , Z) .

C c D implies C ~ D, and, by 0 = {Z/Y}, we get DO = C, which implies D >-C.
Thus C ~ D, i.e., C and D are subsume-equivalent. It can be verified that C is a
reduced clause. D is clearly not reduced because it is equivalent to its proper
subset C; the literal p (X , Y) in the body of D is redundant. I f we define
o- = {X/Z}, then we get

Co-=q ~ p(Z , Y)

Do-=q ~ p (Z , Y) , p (Z , Z) .

Co- is reduced but Do- is not, and it can be reduced to q ~ p (Z , Z). Thus, whereas
C and D were subsume-equivalent, Co- and Do- are not, because their reduced
equivalents are not alphabetical variants. A similar situation occurs when we add
the literal L = ~ p(Y, Z) to C and D:

C u {L} = q ~ - p (X , Y) , p (Y , Z)

D U {L} = q ~ p (X , Y) , p (X , Z) , p (Y , Z) .

Now, both C u {L} and D u {L} are reduced and they are not alphabetical
variants. Thus, whereas C and D were subsume-equivalent, C U {L} and D U {L}
are not.

The example above illustrates that subsume-equivalent clauses may be non-
equivalent after application of a substitution or after addition of a literal. There-
fore, if literal additions and substitutions are some of the operations on clauses, it
might be insufficient to consider only reduced representatives of equivalence
classes. In fact, Shapiro [15] has defined a downward refinement operator for
reduced clauses only, P0, in which every refinement operation is either a substitu-
tion or the addition of a literal. As is shown in [1] and [7], this refinement operator
is not complete. The main causes of this incompleteness are the inability to add
more than one literal in one refinement step, and a size restriction that prohibits
"decreasing substitutions" that result in refinements that contain fewer literals
than the refined clause. For a detailed discussion on the incompleteness of P0, we
refer to [1].

To overcome the completeness problems of Shapiro's P0, we drop his "nonde-
creasing" restriction on refinements, thus allowing refinements to have fewer
literals than the refined clause. For example, q ~-p(X, X) is a one-step refinement
of q ~ p (X , Y) , p (Y , X) that is obtained by unifying the variables X and Y. We
also introduce intermediate nonreduced clauses through which we can add more
than one literal in one refinement step. The purpose of these nonreduced clauses is
to form a bridge between the reduced refined clause and reduced proper special-
izations that are not derivable otherwise. The following example illustrates this
idea.

Example. Consider a search space of reduced clauses that contains, among others,
the following clauses:

C = q ~ p (X , Y) , p (Y , Z) , p (Z , X)

D =q , - - p (X , Y) , p (Y , Z) , p (Z , X) , p (X , W) , p (W , X) .

R E F I N E M E N T O P E R A T O R S IN ILP 219

Then C and D are both reduced and, as can be verified, C >- D. So any complete
refinement operator p satisfies D ~ p*(C). If we were to add one of the literals in
D \ C to C, then we obtain a nonreduced clause that is equivalent to C. Thus, to
derive D from C, we must somehow be able to add more than one literal in one
refinement step. In our approach this is achieved by first computing a nonreduced
intermediate clause that is equivalent to C, for example,

C' =q ~ p (X , Y) , p (Y , Z) , p (Z , X) , p (X , V) , p (W , X) .

From this intermediate clause C' we can derive D by unifying the variables V
and W.

In Section 4.3 we have presented our inverse reduction algorithm. Given a
reduced clause C and an integer m, this algorithm generates clauses C' with m or
fewer literals that are equivalent to C. We will use eq(C) to denote the set of all
such C"s. Every clause C ' :g C in this set satisfies C ' = C U E for some set of
literals E. Since [El can be larger than 1, we can use inverse reduction to add more
than one literal in one refinement step. By applying substitutions to these interme-
diate clauses C', we solve the problem presented in the example above.

Note that for every redundant literal in E that is added to C, we can find a
literal in C with the same predicate name and sign.

4.4.1. Compatible Literal. Two literals L and M are compatible if they have the
same predicate symbol and sign.

If we want to add literals that are incompatible with every literal in a reduced
clause C, adding one literal in one refinement step is sufficient.

4.4.2. Most General Literal. A literal L is called most general with respect to a
clause C if L has only distinct variables as arguments that do not occur in C.

Lemma 4.4. Let C be a clause, and let L be a most general literal with respect to C.
Then the following two conditions are equivalent:

1. C properly O-subsumes D = C U {L}.
2. For any literal M in C, L and M are incompatible.

PROOF. 1 ~ 2: Assume that 2 does not hold. Then there is an M in C such that M
and L have the same predicate name and sign. Let 0 be defined on variables of L
only, such that L O = M . Then D O = (C U { L }) O = C . This means that D also
0-subsumes C. Therefore, C ~ D.

2 ~ 1: C c D , so clearly C 0-subsumes D. Assume that also D 0-subsumes C,
then for some 0, DO c_C. But then also LO~ C, and LO and L must have the
same predicate name and sign. []

It is easy to verify that, if C is reduced and L satisfies the conditions of Lemma
4.4, then D = C U {L} is also reduced.

Apar t f rom the way in which we restrict the search space, we have introduced all
notions that are relevant for the definition of our refinement operator Pr- As was
mentioned earlier, this restriction is necessary because in an unrestricted search
space ~ , for every nonempty clause, infinitely many equivalent but unequal clauses
can be constructed. In Section 4.5, we will define a complexity measure newsize
that can be used to bound unrestricted sets of clauses (~ or ~ ') to finite subsets
(~ ize or ~ ize). Although this restriction has some impact on the definition

220 P. R. J. VAN DER L A A G AND S.-H. N I E N H U Y S - C H E N G

and completeness of pr, we will not discuss these matters until that section. For the
time being we just state that ~newsize and ~,news~ze are finite sets of (reduced)
clauses.

Definition of Pr" Let C be a reduced clause. Then D ~ pr(C) iff D is reduced and
one of the following conditions holds:

1. C ~- D, and there are C' ~ eq(C) and D' ~ eq(D) such that D' = C'O, where
0 = {X, Y} and both X and Y occur in C'.

2. C >- D, and there are C' ~ eq(C) and D' c eq(D) such that D' = C'O, where
0 = { X / f (Y 1 Yn)}, f is an n-place function symbol, X occurs in C', and all
Y~'s are distinct variables not in C'.

3. D = C u {L}, where L is a most general literal with respect to C that is
incompatible with every literal in C.

REMARK. Our main interest in the just defined refinement operator Pr are theoret-
ical and concern its ideal properties. As we will prove in the remainder of this
section, it is ideal for finite, reduced search spaces bounded by newsize.

Although Pr can be implemented, it is not very practical for several reasons.
First, computing refinements is a rather complex operation. For example, the
number of clauses generated by the inverse reduction algorithm, which is used to
compute C' given C, grows exponentially with the size of the search space. Second,
the refinement operator is not fully constructive. We can reformulate the first item
as follows, to make it more constructive:

1. C' c eq(C), D' = C'O, where 0 = { X / Y } and both X and Y occur in C', and
D is the reduced equivalent of D' and C >- D.

Still, expensive tests (C >-D) are included to guarantee properness. We do not
know whether these tests can be avoided without losing properness.

Theorem 4.1. Let C , D ~ be reduced clauses such that C >-D. Then there is a
pr-chain from C to D.

Lemma 4.5. Let C, D ~ be reduced clauses such that C >- D and let C' ~ eq(C),
D' ~ eq(D) satisfy C'O = D'. Then there is an E ~ Pr(C) such that E ~_ D.

PROOF. Let C ' = C o C n =D' be a chain of clauses such that Ci=Ci_ lO i,
1 < i < n, where every 0 i is a substitution as defined in Pr'S item 1 or 2. Reynolds
[13, proof of Theorem 4] has shown how such a chain of substitutions can be
constructed for atoms. The same procedure can be used for clauses. Let Ck be the
first Ci that is not equivalent to C. Since C >-D, such a Cg exists. If we let E be
the reduced equivalent of Ck, then Ck_ 1 ~eq(C) , Ck = C k lOk, and E ~ pr(C).
Furthermore, C k >-D' (by CkO~+ ~ ... 0 n = C n =D') , which together with E ~ C k
and D ' ~ D implies E >-D. []

The following example illustrates the proof of Lemma 4.5.

Example. Consider the following clauses:

C =p ~ q (a , W) , q (X , b) , q (c , Y) , q (Z , d)

D =p ~ q (a , b) , q(c , b) , q(c , d) , q (a , d) .

R E F I N E M E N T O P E R A T O R S IN ILP 221

Let C' = C and let D' = D; then, by 0 = {W/b, X / c , Y /d , Z/a}, C'O = D'. 0 can be
split into the Pr-substitutions 01 = {W/b}, 02 = {X/c)}, 83 = {Y/d}, and 04 = {Z/a}.
We then get the following chain of clauses:

C O = C =p ~ q (a , W) , q (X , b) , q (c , r) , q (Z , d)

C 1 = CoO a =p ~ q (a , b) , q (X , b) , q (c , Y) , q (Z , d)

C 2 = C 102 =p ~ q (a , b) , q (c , b) , q (c , Y) , q (Z , d)

C 3 = C203 =p , - q (a , b) , q (c , b) , q (c , d) , q (Z , d)

C 4 = C304 =p ~ q (a , b) , q (c , b) , q (c , d) , q (a , d) .

C l is the first clause that is not equivalent to C. The reduced equivalent E of C 1 is

E =p ~ q(a, b), q(c, Y) , q (Z , d) ,

and E is a member of Pr(C) that P-subsumes D.

Lemma 4.6. Let C, D ~ be reduced clauses such that C >- D and C c D. Then there
is a E E pr(C) such that E >- D.

PROOF. Let F be a maximum subset of D \ C such that (C U F) ~ C. This means,
that for every literal M in D \ (C U F) , C>- ((CUFU{M}) . Let L be a most
general literal with respect to C U F such that L 0 = M for one of those literals.

If C u F u {L} is not equivalent to C U F, then, by Lemma 4.4, L is incompati-
ble with every literal in C u F. Thus L is incompatible with every literal in C.
Hence, E = (C U {L}) ~ pr(C) and, since EOcD, E ~D.

Otherwise, C' = C U F U {L} and D' = C u F U {M} satisfy C' >- D' and C'O = D'.
Using Lemma 4.5 a clause, E can be found such that E ~ p,(C) and E ~ D'. Since
D' _ D, this clause E also satisfies E ~- D. []

The following examples illustrate the proof of Lemma 4.6.

Example. Consider the following clauses:

C = p (X) ,--

D = p (X) ~ q (a , X) .

The only subset F of D \ C such that (C U F) ~ C is { }, the empty set. M =
-~ q(a, X) is the only literal in D \ (C u { }). L = ~ q(Y, Z) is most general w.r.t. C
and LO = M for 0 = { Y / a , Z / X } . C u {L} is reduced and

E = p (X) ~ q (Y , Z)

is a member of pr(C) that P-subsumes D.

Example. Consider the following clauses:

C = p (X) *- -q(X,a)

D = p (X) ~ q(X , a), q (Y , Z) , q(Z, Y) .

F = { ~ q (Y , Z) } is a maximum subset of D \ C such that (C U F) ~ C . Taking
M = -7 q(Z, Y), we get L = -7 q(U, V) as a most general literal with respect to
C U F. C' = C u F u {L} is equivalent to C, and C' properly 0-subsumes D' = C U
F u {M}(= D):

C' = p (X) ~ q(X, a) , q(r , Z) , q (U, V)

D' = p (X) ~ q(X , a), q(Y, Z) , q(Z , V) .

222 P . R . J . V A N D E R L A A G A N D S.-H. N I E N H U Y S - C H E N G

By L e m m a 4.5 we can find a refinemeni E of C that 0-subsumes D'. In the proof
of L e m m a 4.5, we get C'O = D' for 0 = {U/Z, V/Y}. This substitution 0 can be split
into 01 = {U/Z} and 02 = {V/Y}. We now get the following chain of clauses:

C O = C'

C 1 = CoO 1 = p (X) ~ q(X, a), q (r , Z) , q(Z, V)

C2 = ClOz = p (X) ~ q(X ,a) ,q (Y ,Z) ,q (Z ,Y)

C 1 is the first clause that is not equivalent to C'. The reduced equivalent E of
C1 is

E = p (X) ~ q(X, a), q (r , Z), q(Z, V),

and E is a member of Pr(C) that 0-subsumes D.

PROOF Ot~ THEOREM 4.1. For every pair of reduced clauses C and D such that
C >-D, we can find a substitution 0 for which CO c_D. Let F be the reduced
equivalent of CO; then either C >-F or C ~ F.

If C >-F, then C and F satisfy the conditions of Lemma 4.5. Otherwise,
F ~ eq(C), and F and D satisfy the conditions of Lemma 4.6.

In both cases the first element E of a pr-chain f rom C to D can be found. We
can complete a p,-chain from C to D by repeatedly finding the first element in a
chain from E to D. In L e m m a 4.7 in the next subsection, we prove that this chain
is of finite length. []

4.5. A New Complexity Measure

Shapiro had to restrict the search space for P0 to a finite set, because without this
restriction there are infinitely many ways to add a literal to a clause in one
refinement step [15], and O0 would not be locally finite. In our refinement operator
Pr, only a finite number of most general literals can be added through pr-item 3.
However, as was stated before, for every nonempty clause C, we can construct
infinitely many subsume-equivalent clauses. Thus, in an unrestricted search space,
the inverse reduction function eq that is used in the definition of Or is not
computable. Therefore, we still have to restrict the search space.

In concrete examples of refinement operators, Shapiro restricts the search space
using Reynolds ' [13] complexity that was originally defined for atoms:

• rsize(C) = the number of symbols occurrences in C - the number of distinct
variables in C.

Example. Consider the clauses

C = p (X) ~ q (X , Y) , q (Y , X)

D 1 = p (X) ~ q (X , X)

D 2 = p (X) ~ q (X , a) , q (a , X) .

Then C 0-subsumes both D a and D2, where rsize(C)= 6, rsize(D 1) = 4, and
rsize(D 2) = 7. Apparently, rsize can increase or decrease when a clause is special-
ized.

R E F I N E M E N T O P E R A T O R S I N I L P 223

We could follow Shapiro and use rsize to restrict search space ~q~ to ,.~rsize. But
because of the incompatibility of 0-subsumption and rsize, we introduce a new
complexity measure that is more naturally related to 0-subsumption. Moreover,
given C and D, with the property that C >- D in a search space bounded by our size
measure, we can always find a pr-chain from C to some D' in the search space
such that D' ~ D. We define:

° newsize(C) = (maxsize(C), ICI), where maxsize(C) = max{rsize(L)lL ~ C}.

The following propert ies of maxsize and newsize are stated without proof but can
easily be verified. The first proposition follows directly from the observation that
the number of literals of rsize < k is finit&

Proposition 4.1. For every fixed pair of numbers (k, m), the number of clauses with
newsize(C) <_ (k, m), i.e., maxsize(C) <_ k and IC] <_ m, is finite.

Proposition 4.2. I f C ~- D, then maxsize(C) < maxsize(D).

From here on, we assume that our refinement operator Pr is applied on 0-sub-
sumption ordered sets (2 ize, __~). Thus, for some fixed k and m, every clause
in ~newsize satisfies newsize(C) < (k, m), i.e., maxsize(C) < k and ICI < m. We
should add this as a condition to the definition of Pr: every one of the clauses
C, D,C', D' must satisfy newsize < (k, m)). Thus the clauses that are to be gener-
ated by the inverse reduction algorithm for eq(C) are also restricted by newsize.

From Proposition 4.2 it follows that C ~ D implies maxsize(C)= maxsize(D).
This relation has a nice consequence for the restricted computation of eq(C). Let
C be a clause in ~,newsize for some fixed bound (k ,m) . Then eq(C) should
compute all clauses D in ~ ' ize that are subsume-equivalent to C. Since D ~ C
implies maxsize(D) = maxsize(C), maxsize(D) < k automatically holds, and we only
have to ensure that]D] does not exceed m. Since the maximum number of literals
m is a paramete r of our inverse reduction algorithm, we can use this algorithm
unmodified. Note that if we were to use rsize to restrict ~ , auxiliary tests for
rsize(D) < k would be required.

By definition of items 1 and 2 and by Lemma 4.4, p~ is a proper refinement
operator. Local finiteness of Pr is guaranteed if every clause that is involved in the
computat ion of p(C) satisfies newsize < (k, m). Lemmas 4.5 and 4.6 state that if
C ~-D and CO = D or C c D, then we can find a successor E of C in a pr-chain
from C to D. It can be verified that, if C properly 0-subsumes D and both C and
D are members of ~,new~ize, then every clause that is used in the computat ion of E
in these lemmas is in ~ i~e as well. To prove that p~ is an ideal downward
refinement operator for (~,ew~i~e, ~), it remains to show that Pr is complete for
such ordered sets. According to the proof of Theorem 4.1, it remains to prove that
all Pr chains in ~ne~i~e are of finite length.

Lemma 4. 7. Let (k, m) be a fixed pair of numbers and let C 0, C1, C 2 " " be a Pr chain,
where newsize(C i) < (k, m) for euery C i. Then this Pr chain is of finite length.

P~OOF. For every pair of fixed numbers (k, m) there are finitely many clauses C
such that newsize(C)< (k, m). So every Pr chain contains finitely many different
clauses. Since all refinement steps are proper (D ~ pr(C) implies C ~- D), no clause
can occur more than once in a pr chain, and every p~ chain is finite. []

224 P. R. J. V A N D E R L A A G A N D S.-H. N I E N H U Y S - C H E N G

Corollary 4.1. Pr is ideal for (~newsize, >.).

REMAr~K. Pr can easily be generalized to a refinement downward refinement
operator Pc that is ideal for (~ n e w s i z e >.) . For this purpose we only have to
reduce the nonreduced clauses that are subjected to refinement.

Definition of Pc. Let C be a clause of ~' ize, T h e n D ~ pc(C) iff

D ~ pr(E) , where E is a reduced equivalent of C, and D ~ ~ ize.

Since newsize(E) < newsize(C) (maxsize(E) < maxsize(C) and IEI ~ ICI), E is in the
restricted search space whenever C is. Note that all refinements that are computed
by Pc are reduced clauses. Hence, only nonreduced clauses that have an origin
other than Pc (for example, clauses that are provided by the user or that are
computed by another operator) need to be reduced in the first phase of Pc.

For an ideal upward refinement operator for (~ ' ize, >.) that is defined very
similarly to Pr, we refer to our article [9].

5. CONCLUSIONS

In this article we have characterized sufficient conditions in terms of cover sets to
conclude when ideal refinement operators for a quasi-ordered set (S, >) do not
exist. We have translated these conditions to uncovered chains and showed that
ideal upward and downward refinement operators do not exist for unrestricted sets
of clauses that are ordered by 0-subsumption, (~ , ~). We have defined a new
complexity measure for clauses newsize to restrict a search space of (reduced)
clauses ~ (~) to a finite set ~newsize (~ ize) and a downward refinement
operator, Dr, that is ideal (i.e., locally finite, complete, and proper) for thus
restricted ordered sets of reduced clauses (~ ' ize >. ~.

R E F E R E N C E S

1. van der Laag, P. R. J. and Nienhuys-Cheng, S. H., Subsumption and Refinement in
Model Inference, in: P. B. Brazdil (cd.), Proc. European Conf. Machine Learning
(ECML-93), Lecture Notes in Artificial Intelligence, Springer-Verlag, Berlin, 1993, Vol.
667, pp. 95-114.

2. van der Laag, P. R. J. and Nicnhuys-Cheng, S. H., A Note on Ideal Refinement
Operators in Inductive Logic Programming, in: S. Wrobel (ed.), Proc. ILP-94, Technical
Report GMD-Studien no. 237, GMD, Germany, 1994, pp. 247-260.

3. van der Laag, P. R. J. and Nienhuys-Cheng, S. H., Existence and Nonexistence of
Complete Refinement Operators, in: F. Bergadano and L. De Raedt (eds.), Proc.
European Conf. Machine Learning (ECML-94), Lecture Notes in Artificial Intelligence,
Springer-Verlag, Berlin, 1994, Vol. 784, pp. 307-322.

4. Laird, P. D., Learning from Good and Bad Data, Kluwer Academic Publishers, Dor-
drecht, The Netherlands, 1988.

5. Ling, C. and Dawes, M., SIM the Inverse of Shapiro's MIS, Technical Report 263,
Department of Computer Science, University of Western Ontario, London, ON, Canada,
1990.

6. Muggleton, S. and De Raedt, L., Inductive Logic Programming: Theory and Methods,
J. Logic Programming 12:629-679 (1994).

REFINEMENT OPERATORS IN ILP 225

7. Niblett, T., A Note on Refinement Operators, in: P. B. Brazdil (ed.), Proc. European
Conf. Machine Learning (ECML-93), Lecture Notes in Artificial Intelligence, Springer-
Verlag, Berlin, 1993, Vol. 667, pp. 329-335.

8. Nienhuys-Cheng, S. H. and de Wolf, R., Foundations of Inductive Logic Programming,
Springer-Verlag, 1997, to appear.

9. Nienhuys-Cheng, S. H., van der Laag, P. R. J., and van der Torre, L. W. N., Constructing
Refinement Operators by Decomposing Logical Implication, in: P. Torasso (ed.), Proc.
Third Congress Italian Association Artif Intell. (AI*IA '93), Lecture Notes in Artificial
Intelligence, Springer-Verlag, Berlin, 1993, Vol. 728, pp. 178-189.

10. Plotkin, G. D., A Note on Inductive Generalization, Machine lnteU. 5:153-163 (1970).
11. Quinlan, J. R., Learning Logical Definitions from Relations, Machine Learning 5:

239-266 (1990).
12. De Raedt, L. and Bruynooghe, M., A Theory of Clausal Discovery, in: S. H. Muggleton

(ed.), Proc. ILP-93, Technical Report IJS-DP-6707, J. Stefan Institute, Slovenia, 1993,
pp. 25-40.

13. Reynolds, J. C., Transformational Systems and the Algebraic Structure of Atomic
Formulas, Machine Intell. 5:135-153 (1970).

14. Semeraro, G., Brunk, C. A., and Pazzani, M. J., Traps and Pitfalls When Learning
Logical Theories: A Case Study with FOIL and FOCL, Technical Report 93-33,
University of California, Irvine, CA, July 1993.

15. Shapiro, E. Y., Inductive Inference of Theories from Facts, Technical Report 192,
Department of Computer Science, Yale University, New Haven, CT, 1981.

16. Van Laer, W., Inductief Afleiden van Logische Regels, Master's Thesis, Department of
Computing Science, Katholieke Universiteit Leuven, Leuven, Belgium, 1993 (in Dutch).

