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COMPLETENESS AND PROPERNESS OF 
REFINEMENT OPERATORS IN INDUCTIVE 
LOGIC PROGRAMMING 

P A T R I C K  R. J .  VAN D E R  LAAG AND S H A N - H W E I  N I E N H U Y S - C H E N G  

t> Within Inductive Logic Programming, refinement operators compute a set 
of specializations or generalizations of a clause. They are applied in model 
inference algorithms to search in a quasi-ordered set for clauses of a 
logical theory that consistently describes an unknown concept. Ideally, a 
refinement operator  is locally finite, complete, and proper. In this article we 
show that if an element in a quasi-ordered set (S, >_ ) has an infinite or 
incomplete cover set, then an ideal refinement operator for (S, >_ ) does 
not exist. We translate the nonexistence conditions to a specific kind of 
infinite ascending and descending chains and show that these chains exist 
in unrestricted sets of clauses that are ordered by 0-subsumption. Next we 
discuss how the restriction to a finite ordered subset can enable the 
construction of ideal refinement operators. Finally, we define an ideal 
refinement operator  for restricted 0-subsumption ordered sets of clauses. 
© Elsevier Science Inc., 1998 <1 

1. INTRODUCTION 

1.1. Refinement Operators and Ideal Properties 
One of the major tasks in Inductive Logic Programming (ILP) is model inference 
(or concept learning), the induction of logical theories from examples. For  a survey 
of the theory and methods of ILP, we refer to [6]; the foundations of this field are 
described in [8]. 
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In 1981, Shapiro presented his famous Model Inference System, a milestone in 
machine learning. In his report  [15], he describes how a logical theory for an 
unknown concept can be inferred by adapting a conjecture (a finite set of clauses) 
to a sequence of examples of the unknown concept. Starting with a strong 
conjecture, too general clauses are removed and specializations of removed clauses 
can be added until a consistent theory is found. These specializations are computed 
by a downward refinement operator. Instead of searching for more specific clauses 
when necessary, we can also start with a weak conjecture and search for more 
general clauses that are computed by an upward refinement operator [4, 5]. 

In this article we abstract from the learning systems in which they are used and 
concentrate on refinement operators. Following Laird [4], we consider downward 
and upward refinement operators that can be defined on any quasi-ordered set 
(S, > ). For  every C in S, a refinement operator  delivers a subset of the set of all 
elements D of S such that C > D (downward) or D > C (upward). These elements 
are called the one-step refinements of C. 

Since refinement operators are usually used to search for clauses, most proper- 
ties of refinement operators for quasi-ordered sets will be illustrated in terms of 
generalizations and specializations of clauses. If S denotes a set of clauses in a 
language of first-order logic, then > expresses a more-general-than relation 
between the clauses in S. Whereas logical implication between clauses is the most 
straightforward notion of generality, 0-subsumption, a weaker version of it, is 
usually adopted because it is decidable and more efficient for incremental search. 

We call a refinement operator  ideal if it is locally finite, complete, and proper. 
Local finiteness means that the set of one-step refinements of every clause in the 
search space is finite and computable. Clearly, refinement operators that are not 
locally finite are not of any practical use. A refinement operator is complete if (a 
clause equivalent to) every specialization or generalization of a clause can be 
connected to it by a finite chain of one-step refinements. When incomplete 
refinement operators are used, it is not guaranteed that all clauses of a target 
theory can be derived. If a refinement operator  never returns a specialization or 
generalization that is equivalent to the refined clauses, then it is called proper. 
Properness is a nice property because we are not interested in refinements that are 
equivalent to a formerly refuted clauses. Moreover, allowing refinements that are 
equivalent to a formerly refuted clause (as, for example, FOIL [11] does) can cause 
(infinitely) long chains of equivalent clauses to be generated during the search 
process. 

Our notion of ideality does not capture every desirable aspect of refinement. For 
example, an ideal refinement operator  may return both a proper  specialization and 
a proper  specialization of this proper  specialization in the same refinement step. 
Furthermore,  the second proper  specialization may also be a one-step refinement 
of the first. This behavior is often regarded as undesirable, because it causes the 
same clause to be generated many times. 

1.2. Nonexistence Conditions for Ideal Refinement Operators 

To analyze ideal refinement operators carefully, we explore the mathematical 
concepts that are related to quasi-ordered sets and relevant for ideal refinement 
operators: covers and infinite ascending and descending chains. If we are searching 
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for the clauses of a logical theory, refinement steps on one hand must be large 
enough such that every specialization or generalization can be found in finitely 
many steps. On the other hand, it is important that refinement steps are not too 
big, because then a target clause might be skipped and a target theory will not be 
derived. For a refinement operator,  idealness implies that the one-step refinements 
of a clause include all most general proper  specializations or most specific proper  
generalizations. The mathematical concept that resembles this is the concept of 
covers. A natural way to define refinement operators then is to assign to each 
clause its downward or upward cover set. We can, for example, use Reynolds' [13] 
cover relation between atoms to define ideal downward and upward refinement 
operators for substitution ordered sets of atoms. For clauses, however, this ap- 
proach has some problems: 

1. In practical generality orderings like 0-subsumption and logical implication, it 
is hard to test whether a clause covers another clause. Generating downward 
or upward covers constructively is even harder. 

2. A cover set can be incomplete. We will give an example of a clause that has 
infinitely many nonequivalent proper  generalizations but has an empty up- 
ward cover set. 

3. A cover set can contain infinitely many nonequivalent clauses. 
4. Even when every clause is known to have a finite and complete downward or 

upward cover set, completeness of refinement operators that return such 
cover sets is not guaranteed. Moreover, we will describe an abstract ordered 
set in which every element has a finite and complete cover set, but for which 
a complete refinement operator  does not exist. 

Despite all these problems, the concept of cover sets is important for ideal 
refinement operators. As we will prove in Section 3, an ideal refinement operator  
always returns a superset of a finite and complete cover set. Consequently, if an 
element of S has an incomplete or infinite cover set in (S, > >, then this implies 
nonexistence of an ideal refinement operator for (S, > ). These nonexistence 
conditions will be translated into so-called uncovered infinite ascending and descend- 
ing chains. The related theorems will be applied to ( ~ ,  _~ ), where ~ refers to the 
set of all clauses in a first-order language and ~ refers to 0-subsumption. We will 
provide uncovered chains for concrete clauses to show the nonexistence of both 
ideal upward and downward refinement operators for ( ~ ,  >- ). 

1.3. Ideal Refinement Operators for Finite Quasi-Ordered Sets 

If we have a finite quasi-ordered set ( S, >_ ), and C >_ D tests are decidable for all 
elements of S, then we can theoretically define ideal refinement operators using 
cover sets as a set of one-step refinements. However, to extract cover sets from S, 
many tests are required, which does not yield efficient refinement operators. In 
practice, refinements should be derivable from the refined element in a construc- 
tive way. For example, Reynolds [13] has described simple and constructive down- 
ward refinement operations for atoms. Each of these operations is a simple 
substitution, for example, the unification of two variables. Shapiro [15] combined 
these simple substitutions in a downward refinement operator  that constructs 
downward cover sets of atoms. This ideal refinement operator  for atoms has been 
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generalized to an ideal refinement operator for clauses with respect to the 
so-called substitution ordering [9]. When these simple substitutions are applied to 
clauses that are ordered by 0-subsumption, however, then the resulting clauses are 
sometimes equivalent to the refined clause. To define an ideal refinement operator, 
these improper refinements should be avoided. For a complete refinement operator 
for 0-subsumption ordered clauses, we must also introduce an operation by which 
we can add one or more literals. In Section 4, we describe how inverse reduction is 
related to proper substitutions and the addition of one or more literals. The 
applicability of substitutions, literal additions, and inverse reduction is also influ- 
enced by the way in which the search space of clauses is restricted to a finite set. 
We will restrict sets of reduced clauses ~ '  to finite s e t s  ~newsize, using our 
complexity measure newsize. In the end we will discuss our downward refinement 
operator Pr, which is ideal for quasi-ordered sets (~,ewsize, ~ ). 

1.4. Related Work 

Shapiro [15] has defined a locally finite and proper downward refinement operator 
for finite sets of reduced clauses (P0). This refinement operator returns proper 
specializations only, and no one-step refinement of a clause C is a proper 
specialization of another one-step refinement of C. P0 was probably intended to 
compute downward cover sets. It was certainly intended to be what we call weakly 
complete, but, as is shown in [1] and [7], it is not. In the first of these articles we 
have first presented our inverse reduction algorithm, our complexity measure 
newsize, and our downward refinement operator Pr. 

In another article [3], we have proved the nonexistence of ideal upward and 
downward refinement operators for unrestricted 0-subsumption ordered sets of 
clauses ( ~ ,  ~-) and defined a locally finite, complete but improper upward 
refinement operator for such sets. This upward refinement operator is a counter- 
part of Laird's [4] downward refinement operator that is also locally finite, com- 
plete, and improper for ( ~ ,  _~ ). In [2], the nonexistence conditions for ideal 
refinement operators have been generalized by using cover sets and uncovered 
infinite chains, and, using a logical framework of refinement operators, different 
approaches to approximate ideal refinement operators have been discussed. 

In the article [9] we have discussed five subsequent weakenings of logical 
implication, and we have defined downward and upward refinement operators for a 
finite set of clauses with respect to all of these orderings. Among the described 
refinement operators are Pr and its upward dual, which is an ideal upward 
refinement operator for finite 0-subsumption ordered s e t s  (.~newsize, >. ). 

Ling and Dawes [5] have also defined an upward refinement operator for finite 
0-subsumption ordered sets of clauses. This refinement operator is neither com- 
plete nor proper. However, considering a variant of 0-subsumption where different 
variables always refer to different objects, Ling and Dawes' upward refinement 
operator for clauses becomes ideal. In this ordering (called 0-subsumption under 
object identity [14]), q ~ p ( X , Y ) , p ( Y , X )  is not regarded as more general than 
q ~ p ( X ,  X), and hence cannot be derived from it. 

In the case of downward refinement operators, our notion of idealness can be 
contrasted with the notion of optimality [6]. Using an optimal downward refinement 
operator, no clause in the search space can be generated more than once, which 
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makes optimal refinement very efficient. Optimal refinement is particularly inter- 
esting when the search starts with the top element (e.g., the empty clause), in which 
case weaker notions of  completeness are sufficient to guarantee the derivability of 
all clauses in the search space. An example of such a weak notion of completeness 
is global completeness [6], which means that there exists a chain of  refinements 
from the top element of the search space (e.g., the empty clause) to every other 
clause, Van Laer  [16] has defined a globally complete optimal downward refine- 
ment  operator  for sets of function-free, range-restricted clauses that are ordered by 
0'-subsumption (C 0'-subsumes D iff there exists some variable renaming 0 for 
which CO c_ D). 

So far, globally complete optimal downward refinement operators  for 0-sub- 
sumption ordered sets have not been defined. Moreover,  if one-step refinements 
must be covers (which is often included in the definition of refinement operators,  
e.g., in [12] and [6]), then such an optimal refinement operator  does not exist, as 
will be shown at the end of Section 3.2. 

In all cases of  upward refinement and when downward refinement does not start 
with the top element of the search space, global completeness and optimality are 
less appropriate.  In these cases local completeness [6] can be favored over global 
completeness,  and our notion of idealness can be favored over optimality. 

2. NOTATION AND DEFINITIONS 

2.1. Quasi-Ordered Set 

Let S be a set and let C, D, E be elements of  S. 

• A binary relation > on S is called a quasi-ordering on S if it is reflexive 
(C > C) and transitive (C > D and D > E imply C > E). We use C > D to 
denote C > D and D ~ C. For every quasi-ordering > we can define an 
equivalence relation ~ by C ~ D, if C > D and D > C. 

2.2. Refinement Operators 

Given a quasi-ordered set (S, _> ), and C, D, E ~ S: 

• I f  C >_ D or D >_ C, then C and D are called comparable. 

• p is called a downward refinement operator if VC ~ S: p(C) c_ {D ~ S[C >_ D}. 

• 6 is called an upward refinement operator if VC ~ S: 6(C) c_ {D ~ S[D > C}. 

• Given p (or 6), the sets of one-step refinements, n-step refinements, and 
refinements of C are, respectively, 

p l ( C )  = p ( C )  

p"(C) = {DI3E~ p" '(C) and D ~ p ( E ) }  

p * ( C )  = pl(C) U p2(C) U- - -Up i (C)  U " "  

• Every sequence C=Co,C 1 . . . . .  C,,=D such that C i E p ( C  i 1) is called a 
p-chain C to D. 
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2.3. Ideal Properties 

Given a quasi-ordered set (S, > ), and C, D, E ~ S, p (and dually 6) is called 

• locally finite if VC ~ S: p(C) is finite and computable 

• complete i f V C > D :  3 E ~ p * ( C )  such that E ~ D  

• proper if VC ~ S: p(C) C {D ~ SIC > D} 

• ideal if p is locally finite, complete and proper. 

2.4. Cover Sets 

Given a quasi-ordered set (S, > ), and C, D, E ~ S: 

• C c o v e r s D i f C > D a n d  ~ E : C > E > D .  

• If C covers D, then we call C an upward cover of D and D a downward 
cover of C. 

• Downward and upward cover sets are maximum sets of nonequivalent down- 
ward and upward covers, respectively. They are denoted by dc(C) and uc(C). 

• dc(C) is called complete if for every D ~ S such that C > D, 3E ~ dc(C) 
such that E > D. Complete upward cover sets are defined dually. 

Note that cover sets are only uniquely up to equivalence. When an element in a 
cover set is replaced by an equivalent element, the result is also a cover set. 

Ordered sets with incomplete cover sets are common in mathematics. For 
example, consider the set of real numbers ordered in the usual way; then there is 
no pair of numbers X, Y such that X > Y and Y is a downward cover of X. 

2.5. Clauses 

Given a language of first-order logic ~ with finitely many function, constant, and 
predicate symbols, we use the following notation. Function symbols are denoted by 
f ,  g; constants by a, b; variables by X, Y, Z; predicate symbols by p, q, r; literals by 
L, M; clauses by C, D . . . .  ; and sets of clauses by S. All of these symbols can occur 
with subscripts. 

A clause represents a (possibly empty) set of literals. The empty clause is 
denoted by t~. By C \ D  we denote the difference set of C and D that is obtained 
by removing all literals in D from C. 

Usually, clauses will be written in the usual logic programming style. For  
example, the clause 

{p(  X,  X ) ,  ~ q( X,  Y ) ,  ~ q(Y ,  X)} 

can be written as 

p ( X , X )  ~ q ( X , Y ) , q ( Y , X ) .  

Sometimes these notation styles will be mixed for convenience. Thus the clause 

D n = q ~  {p(s,,g,)la < i , j  <n , i  ~ j } , n  > 2 

represents the set of literals {q} U { -1 p ( X  i, Xj)I1 < i, j < n, i ~=j}, n > 2. 
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2.6. O-Subsumption and Reduction 

Given a quasi-ordered set of  clauses (S, > ), and C, D, E ~ S: 

• If  C > D holds, then C is called a generalization of D and D a specialization 
of C. If  C > D, then generalizations and specializations are called proper. 

• Clause C O-subsumes clause D, denoted by C >-D, if CO c_D for some 
substitution 0. 

• A clause C is Called reduced iff D ___ C and D ~ C imply C = D. In words, C 
is reduced iff it is equivalent to no proper  subset of itself. 

• If  D is a nonreduced clause and C is a reduced clause such that C c D and 
C ~ D, then all literals in D \ C are called redundant. 

For  a given set of  clauses, S, 0-subsumption is a quasi-ordering on S. I f  we talk 
about a quasi-ordering on the set of all clauses in a first-order language 2 ,  then we 
use ~ to denote  this unrestricted set of  clauses. The set of all reduced clauses in a 
first-order language ~ is denoted by J/'. Given a complexity measure for clause 
size and some fixed upper  bound for this complexity measure k, we denote the 
subsets of ~ '  and ~ '  that contain all (reduced) clauses with a size..< k by ~size and 
.9~ si~e. Throughout  this article, clauses that differ only in variable names will be 
regarded as the same. 

3. NONEXISTENCE OF IDEAL REFINEMENT OPERATORS 

3.1. Nonexistence Conditions 

In this section we relate incomplete or infinite cover sets to the nonexistence of 
ideal refinement operators  for a quasi-ordered set (S, >_ ). All lemmas in this 
section will be in terms of downward refinement operators,  but will hold similarly 
for upward refinement operators.  

Lemma 3.1. Let p be an ideal downward refinement operator for (S, > ); then every 
element in S has a finite and complete downward cover set. 

PROOF. Let  p be an ideal refinement operator.  For all C ~ S, the following 
algorithm finds a subset dcc of p(C) that is a finite and complete downward cover 
set of C. 

dcc .'= p(C) 
while 3D, E ~ dcc such that D v~ E and D > E do 

dcc := dcc \ {E}. 

Since p is locally finite, the algorithm terminates. From the completeness and 
properness  of O and the relation between D and E when E is removed from dcc, 
we can deduce that after termination of the algorithm, 

3 D, E ~ dcc such that D v~ E and D > E (1) 

VE ~ S: C > E implies 3D ~ dcc such that C > D > E.  (2) 

First we prove that every clause in dcc is a downward cover of C: Assume that 
E ~ dcc is not a downward cover of  C. Then 3 F  ~ S, such that C > F > E, and by 
(2), 3 D ~ d c c  such that C > D > F .  But then D , E ~ d c c  and D > E ,  which 
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contradicts (1). Next, since p is locally finite, dcc is a finite cover set. By (1), no two 
elements of  dcc are equivalent, and finally, by (2), dcc is complete. Notice that, in 
the proof  above, to compute  a complete cover set, it is required that D > E tests 
be decidable. To prove the existence or nonexistence of such a set, however, > 
need not be decidable. [] 

Corollary 3.1. Given a quasi-ordered set (S, > ), if for some C in S, dc(C) is 
incomplete or infinite, then an ideal downward refinement operator for ( S, > ) does 
not exist. 

At the end of this section we will give an example of  a quasi-ordered set in which 
the cover set of every element is finite and complete, but an ideal refinement 
operator  still does not exist. Although this might not be clear at first, incomplete 
cover sets are closely related to infinitely ascending or descending chains. It  is well 
known that infinitely ascending and descending chains (infinite chains of  proper  
generalizations or specializations) exist for 0-subsumption ordered clauses, which 
can cause termination problems in search algorithms (e.g., see [10]). The existence 
of such infinite chains in a quasi-ordered set alone, however, does not imply that 
ideal refinement operators  cannot exist. Existence of the following, more specific 
kind of infinite chains does imply the nonexistence of ideal refinement operators.  

3.1.1. Uncovered Chains. Given (S, > ) and C, D 1, D 2, D 3 . . . .  ~ S, 

• If  D~ > D  2 > D  3 > ... >D~ >Dn+ 1 > .-- > C, and C has no upward cover 
E ~ S such that D, > E > C for all n > 1, then D 1, D2, D 3 . . . .  is called an 
uncovered infinite descending chain of C. 

• If  C >  --- > D n + l > D n >  "'" > D 3 > D z > D l ,  a n d C h a s n o d o w n w a r d c o v e r  
E ~ S  such that C > E > D n  for all n > l ,  then D 1,D 2 ,D 3 . . . .  is called an 
uncovered infinite ascending chain of C. 

The following lemma relates uncovered chains to cover sets and thus, using Lemma  
3.1, to the nonexistence of ideal refinement operators.  

Lemma 3.2. Given (S, > ), C in S and the following statements: 

1. dc(C) is incomplete, 
2. C has an uncovered infinite ascending chain, 
3. dc(C) is infinite or incomplete, 

then 1 implies 2 and 2 implies 3. 

PROOF. (1 ~ 2) Let dc(C) be incomplete. Then for s o m e  D 1 E S for which C > O l ,  

there exists no E ~ dc(C) such that C > E >_ D 1. D 1 is not a downward cover of C, 
otherwise D 1 or another  element in S that is equivalent to D 1 would be in dc(C). 
Hence,  there must be an element D 2 c S such that C > D 2 > D 1 and ~ E ~ dc(C) 
such that C > E >_ D 2 (the existence of such an E would also imply C > E > D1). 
This line of reasoning can be repeated forever; hence C has an uncovered infinite 
ascending chain C > ... > Dn+ a > Dn > ... > D 2 > D 1. 

( 2 ~ 3 )  By contradiction. Let C >  ... >Dn+ 1 >D,  > "'" > D z > D  1 be an un- 
covered infinite ascending chain of C. Suppose dc(C)= {E 1, E 2 . . . . .  E m} is finite 
and complete. Completeness of  de(C) implies that for every D i there exists an Ej 
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such that C > Ej > D i. Since there are finitely many Ej's and infinitely many D~'s, 
some E ,  must satisfy C > E ,  > Di for infinitely many Di's. Thus for every i we can 
find a j > i such that E k > Dj. But then also, C > E k > D i for all i. This contradicts 
the s tatement  that C >  ... >Dn+ l > D  n > "'" > D z > D  ~ is an uncovered infinite 
ascending chain of C. 

Corollary 3.2. Given (S, >_ ), i f  some C in S has an uncovered infinite ascending 
chain, then an ideal downward refinement operator for  ( S, >_ ) does not exist. 

A natural question that remains is whether  the existence of finite and complete 
cover sets for all C ~ S implies that p ( C )  = dc(C)  is an ideal downward refinement 
operator.  The answer is no, as illustrated by the following example. 

Example.  Let S = {C l, C 2 , . . . ,  D} with infinitely many Ci's between C 1 and D, and 
let the elements of  S be ordered as follows: 

C 1 > C 2  > " ' "  > C n > C n + l  > "'" > D .  

In the downward case, dc(C i) = {Ci+ l} and d c ( D )  = { }; thus every downward cover 
set is finite and complete. If  we now define p ( C )  = dc(C) ,  then p is incomplete and 
hence not ideal: D cannot be derived in finitely many steps from any C i. 

In this ordered search space (S, >_ ), however, it is still possible to define an 
ideal downward refinement operator  by extending the cover sets: 

p ( C i )  = {Ci+ 1, D}. 

For the upward case consider D. Since every C i in S satisfies C i > Ci+ 1 > D, no C i 
is an upward cover of  D. Hence,  u c ( D )  = { } and u c ( D )  is incomplete. Cl, C 2 . . . .  is 
an uncovered infinite ascending chain of D; hence, by the dual of Lemma 3.2, an 
ideal upward refinement opera tor  for (S, >_ ) does not exist. 

In the example above, the refinement operator  p ( C )  = dc (C)  could be extended 
to an ideal refinement operator.  The following example shows an ordered search 
space for which such an extension is not possible. Moreover,  it shows that, although 
all downward cover sets are finite and complete, an ideal downward refinement 
opera tor  does not exist. 

Example.  Let (T,  > ) be a partially ordered set that contains an infinite binary 
tree that is rooted by Co: 

C o ~ T, and if C i ...... i, ~ T,  then also C/ ...... i,,,o ~ T and C i ...... i,,,l ~ T 

C i  I . . . . .  i n > Ci l  . . . . .  in,O 

Ci ...... i. > Ci ...... i.,1" 

Thus, there are infinitely many paths of  infinite length from Co to smaller ( > )  
elements. We now define B, the set of  "bo t toms"  as follows. For every infinite path 
p = C O > Co, j2 > Co,  i2,i 3 > . . . ,  there is a Dp in B such that 

C O > Co,z2 > Co , i2 , i  3 > ' ' '  > D p ,  

and such that Dp is incomparable with every element of  T that is not in p. 
Furthermore,  if p v~ p ' ,  then Dp and Dp, are incomparable.  
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Let S = T u B and let > be defined as above. Then every element of  S has a 
finite and complete downward cover set (dc(Ci, ..... in) = {Ci, ..... i,,o, Ci, ..... i,. 1}, and 
for every infinite path p, dc(Dp)= { }). Assume that p is an ideal downward 
refinement operator  for (S, > ). Then for every Dp, there must be a finite p-chain 
from C to Dp, and, since the elements of B are mutually incomparable, Dp E p(C) 
must hold for some element C of S. We conclude that, if p is ideal for (S, > ), 
then 

B_~ U p ( C ) .  
C~T 

However,  T is a countable set and, since p is locally finite, Uc~TP(C) is 
countable as well. On the other hand, the number  of paths starting in C ({0, 1} N, 
the number  of real numbers)  is uncountable and hence B is not a countable set. 
From this contradiction we conclude that an ideal refinement operator  for (S, > ) 
does not exist. [] 

3.2. Nonexistence of Ideal Upward Refinement Operators 
In this section we will apply the dual of Lemma 3.2 to (g~, ~ ), i.e., to unrestricted 
sets of clauses that are ordered by 0-subsumption, the most widely used notion of 
generality in model inference. We will show that uncovered descending chains exist 
for one specific clause, but we can prove that this clause does not form an isolated, 
exceptional case; uncovered chains exist for infinitely many clauses. Hence,  there 
seems to be no way to find complete refinement operators  by treating these 
exceptional clauses separately. 

We will prove that D 2, D3, D4, . . .  is an uncovered infinite descending chain of 
C, where 

C =q ~ p ( X  1,X1) 

O n = q ~  {p(X/, xj)ll <i , j  <n,i-~j} (n > 2). 

Clearly, the heads of C, of every Dn, and of every E for which D n >- E >- C holds 
are equal. Since these heads do not affect the derivability of C from any D n, we 
concentrate on the bodies of  these clauses: 

K =  {p(Xl ,X1)  ) 

K, = {p(Xi, Xy)ll <i , j  <n, i  4=j} (n ~ 2). 

Thus K n represents a structure that is known as a complete graph of size n; for 
example, 

K 3 = { p ( X , , / 2 ) , p ( X 1 ,  X3) ,p (X2 , /1 ) ,  p(X2, ) ( 3 ) , p ( X 3 ,  X 1 ) , p ( X 3 ,  X2)}. 

Lemma 3.3. For all n > 2, Kn is reduced. 

PROOF. Assume that g n is not reduced for some n. Then for some substitution 0, 
KnOcK n. This implies that two literals p(Xil, Xi2) and p(Xjl, Xi2) in K n are 
mapped to the same literal p(Xk,, Xk2) in KnO. I f  i I ~J l ,  then p(Xi,, Xj~) in K n is 
mapped to p(Xkl, Xkl). Otherwise, i 2 vaj2 and p(Xi2, X h) in K n is mapped  to 
p(Xk2, Xk~). Both cases contradict K n 0 c K n. [] 
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Lemma3.4 .  K 2 > ' K 3  ~- "'" >-K,>-Kn+I>- . . .  >-K. 

PROOF. For  every Kn we can define a 0 that maps every variable X i in K,  to X v 
This gives K,O c_ K. Since p ( X  1, X 1) in K cannot be mapped to any literal in any 
K~, we get K,  >- K. Using the trivial substitution, we can prove K,  ~ K n + 1. Since 
Kn + 1 is reduced (Lemma 3.3) and K,  c K,  + 1, Kn + 1 and Kn cannot be equivalent, 
and K~>-K~+l. [] 

Lemma 3.5. There is no E such that for all n > 2, K ,  >- E ~- K. 

PROOF. Assume that some E does satisfy K~ _~ E >- K for all n > 2. Let X 1 . . . .  , X,, 
be all variables in E. Since E >-K, EO c_K for some 0 and E can contain only 
iiterals of the form P(Xi,  Xj). In these literals X i -~Xj must hold; otherwise E is 
equivalent to K. But then E c_K m implies E ~ K  m >-Km+a, which contradicts 
Km+ l >-E. [] 

Corollary 3.3. Let ( ~ ,  ~ ) be an unrestricted set of  clauses ordered by O-subsumption 
and let C and D 2, D 3, D 4 . . . . .  as defined at the beginning of  Section 3.2, be clauses 
in ~.  Then D 2, D 3, D 4 . . . .  is an uncovered infinite descending chain of  C. 

REMARK. Uncovered infinite descending chains exist for clauses of arbitrary com- 
plexity. For example, if we replace all variables X i in the definition of K and K n 
by fn (Xi ) ,  then the proofs of Lemmas 3.3, 3.4, and 3.5 can remain unchanged. 
Other clauses that can be proved analogously to have an uncovered infinite 
descending chain are q ~ p ( g ( X l ,  XI))  and q ~ p ( f " ( g ( X l ,  X1))). Note that these 
last clauses contain a binary function symbol, but no binary predicate symbols. 

Using the same line of reasoning as in the proof of Lemma 3.5, we can verify 
that no clause E is an upward cover of K. Hence K has infinitely many proper  
generalizations K~, K 2 . . . . .  but its upward cover set is empty. Similarly, we can 
prove that ~ p ( X l ,  X I) is the only upward cover of C = q  ~ p ( X  1, X1). Conse- 
quently, if we consider only definite Horn clauses, then C also has infinitely many 
proper  generalizations D1, D 2 . . . . .  and the upward cover set of C in the set of all 
of definite Horn clauses is empty as well. For both search spaces, the existence of a 
clause without upward covers implies the nonexistence of an optimal downward 
refinement operator  in the framework of De Readt and Bruynooghe [12]. Adopting 
their definitions, an optimal downward refinement operator returns only downward 
covers, and every clause can be derived from the empty clause through exactly one 
chain of refinements. Since a clause without upward covers is not a downward 
cover of any other clause, it can never be derived. Hence such an optimal 
downward refinement operator  for the mentioned search spaces does not exist, 
which is a derived result. The main result for ideal upward refinement is the 
following: 

Theorem 3.1. Let ( ~ ,  ~ ) be a O-subsumption ordered set, containing all clauses in a 
first-order language that contains at least one predicate or function symbol of  arity 
> 2. Then an ideal upward refinement operator for ( ~ ,  ~ ) does not exist. 

PROOF. Follows directly from the dual of Lemma 3.2 and Corollary 3.3. [] 

RENARK. In [2], we have shown that the infinite chains in this subsection are not 
only uncovered infinite descending chains w.r.t. 0-subsumption, but also infinite 
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descending chains w.r.t, logical implication. Hence the theorem above is also valid 
for unrestricted sets of  clauses that are ordered by logical implication. 

3.3. Nonexistence o f  Ideal Downward Refinement Operators 

In this section we show the nonexistence of ideal downward refinement operators  
for ( ~ ,  >- ). Using C n = {p(Y1,Y2),p(Y2,Y3) . . . . .  p(Y~_I,Yn),p(Yn,YI)} (n > 2), we 
define the following clauses: 

C = q  ",-p( X~ ,X2) ,p (  X2,X1) 

D, = q ~ {P (Xl ,  X2) ,p (X2 ,  X1) } kJ C3. (n  > 1). 

We will prove that Da, D2, D 3 . . . .  is an uncovered infinite ascending chain of  C. 
Again, the heads of C, of  every D,,  and of every clause E for which C >- E >- D, 
holds do not affect the derivability of C from any D, ,  and we will again concen- 
trate on the bodies of  these clauses: 

G = { p ( X 1 , X z ) , p ( X 2 , X 1 )  } 

G, =GLJC3, (n > 1). 
To prove that G and every G~ is reduced, we introduce the notion of cycles. 

3.3.1. Cycles. A sequence of literals L 1 . . . . .  L~ is called a linked chain iff L i and 
Li+ 1 share at least one variable (1 < i < n - 1). Let C be a clause. Then C contains 
a cycle of length n if C contains n distinct literals L 1, L 2 . . . . .  L ,  (n > 2), such that 
the sequence L1, L 2 . . . . .  L , ,  L 1 is a linked chain. 

Example. Every C n (n >__ 2) contains cycles of  length n, for example, 

p( X2, X3) ,p(  X3, X4) . . . .  ,p(  X , _ l ) , p (  Xn) ,p (  X , ,  X I ) , p (  X~, X2), 

but no proper  subset of C,  contains a cycle. 
The observations in the example above form a part  of the proof  of the following 

lemma. 

Lemma 3. 6. For all n >_ 2, C~ is reduced. 

P~oo~. Assume that Cn is not reduced for some n. Then for some 0, C, 0 c C~. 
This relation implies that 0 maps two literals in C~ to the same literal and hence 
that 0 maps two variables X i and Xj, i < j ,  to the same variable X k. If  j = i + 1, 
then p ( X  i, Xi+l)O =p(Xk, Xk) ~ C,; hence j > i + 1. If  0 maps two variables X i 
and Xj such that j > i + 1 to the same variable, then CnO contains a cycle of 
length j - i: 

p( X~,Xi+ I)O,p( Xi+ I,Xi+ 2)O . . . . .  p(  Xj_ I,Xj)O. 

Since no proper  subset of C.  contains a cycle and C. 0 does, we conclude that 
C.  0 c C~ cannot hold, and hence that C n is reduced. [] 

Lemma 3. 7. For all n > 1, G n is reduced. 

PROOF. Assume that Gn is not reduced for some n > 1. Then for some 0, 
G,O c G~, and, by definition of G,, (G u C3,)0 c G u C3~. Since G (an alphabetical 



REFINEMENT OPERATORS IN ILP 213 

variant  o f  C2) and C3n are bo th  reduced ( L e m m a  3.6), G O c G  or  C3nOCC3n 
cannot  hold. H e n c e  0 must  map  at least one  literal of  G to a literal o f  Ca,, or  the 
o ther  way around.  

First assume that  for some k, 1 < k < 3  n, p(X1,X2)O=p(Y~,Yk+I) .  Then  
P(X2,  X1)O =p(Yk+l,Yk),  but  p(Yk+l,YI,) q~ G~. The same holds when we start with 
p(X2,  X 1) or  when a literal of  the G-par t  is mapped  to p(Y3.,Y1). 

Next we prove the case in which p(Y1,Y2)O=p(X1,  X2). Then  p(Y2,Y3)O = 
P ( X 2 , Y a O ) ~ G  n and 0 must  map  Y3 to X 1. Then  also, p(Ya ,Y4 )O=p(X1 ,Y40 )~  
Ca., and 0 must  map I14 to X 2. This line of  reasoning can be repeated,  and every 
Y/ with odd  index must  be m a p p e d  to X 1, and every Y/ with an even index must  be 
mapped  to X 2. But then, since 3 ~ is odd, P(Y3,, I11) 0 =P(X1,  X1), which contradicts  
GnOc G n. The same a rgument  holds when we start with another  P(Y/,Y/+I) or  
p(Y3.,YI) instead of  p(Y1,Y2), and with p(X2, X 1) instead of  p(Xl,X2). [] 

Lemma3.8 .  G > - . . .  >'Gn+1>'Gn>" "'" >'G2>'G 1. 

PROOF. G >- G n follows directly f rom G c G n and the reducedness  of  G n (Lemma  
3.7). For  all n >_ 2, let On+ 1 be a substitution that  maps  every Y~ (1 _< i < 3 n+ 1) in 
Gn+ 1 to ~ in Gn, where  j = 3 n iff i m o d 3  n = 0 and j = i m o d 3  n otherwise. Then  
Gn + 10n + 1 = Q ,  and hence  G n + 1 ~ Q .  Assume that  G n _~ G n + 1 also holds; then for 
some or, G,~rGGn+ 1. But then (Gn+IO)O'=Q~rGGn+ v Together  with IGI < 
IGn + 1[, this implies that  G n + 1 trO c G n + 1, which contradicts that  G n + 1 is reduced 
( I ~ m m a  3.7). We conclude that  G,  ~ G n + 1, and hence  G,  + 1 >" Gn for all n > 1. 

[] 

Lemma 3.9. There is no E such that for all n > 1, G >- E >- G n. 

PROOF. Assume that E is a clause that  satisfies G >- E _~ G n for all n > 1. Choose  
an m such that 3 m > ]El. Since E >- G m, EOG G m for some 0. Since lEO] < 3 m and 
]G m] = 3 m + 2, we know that at least one  o f  the literals of  the Cam-part of  G m 
does not  occur  in EO. Without  loss o f  generality, we may assume that  p(Yn,Y1) 
(G m \EO). 

Consider  the clause F = Gm\{p(Yn,Y1)}.  Then  E O G F  implies E >-F. Let o- 
map  every Y/ in F to X 1 if i is odd, and to X 2 if i is even. Then  F~r_  G and 
hence  F >- G. So E >- F >- G, which contradicts  G >- E. [] 

Corollary 3.4. Let (~ ' ,  >- ) be a O-subsumption ordered set of  clauses and let C and let 
D 1, D 2, D 3 . . . . .  as defined at the beginning of  Section 3.3, be clauses in ~.  Then 
D1, D2, D 3 . . . .  is an uncovered infinite ascending chain of  C. 

REMARK. This can be general ized too. Uncovered  infinite ascending chains can be 
constructed for clauses o f  arbitrary complexity, using modifications to C and D n 
similar to the ones discussed in the remarks  following Corol lary 3.3. 

Theorem 3.2. Let ( ~ ,  ~ ) be a O-subsumption ordered set, containing all clauses in a 
first-order language that contains at least one predicate or function symbol of  arity 
> 2. Then an ideal downward refinement operator for ( ~ ,  ~ ) does not exist. 

REMARK. In [2], we have shown that  the infinite chains in this subsection are not  
only uncovered  infinite ascending chains w.r.t. 0-subsumption, but also infinite 
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ascending chains w.r.t, logical implication. Hence the theorem above is also valid 
for unrestricted sets of clauses that are ordered by logical implication. 

4. RESTRICTING THE SEARCH SPACE 

In the previous sections we have shown that ideal (locally finite, complete, and 
proper) refinement operators for general unrestricted 0-subsumption ordered sets 
of clauses (g~, >-) do not exist. We can approximate these ideal refinement 
operators in two ways: by dropping the property of properness and by restricting 
the search space to a finite set. The first approach has been taken by Laird [4] for 
downward refinement. We have defined a locally finite, complete, and improper 
upward refinement operator  in [3]. The second approach, restricting the search 
space, has already been taken by Shapiro [15]. However, as we have shown in [1], 
his downward refinement operator  for reduced clauses P0 is not complete and 
hence is not ideal. In the same article we have proposed a new downward 
refinement operator  that is ideal for finite, 0-subsumption ordered sets of reduced 
clauses. This ideal refinement operator,  called Pr, will be presented in Section 4.4. 

4.1. Introduction 

If we want to learn a logical theory that consistently describes an unknown concept 
(for example, using refinement operators), we do not know the (complexity of the) 
clauses in the theory to learn. Hence every restriction on a set of clauses that 
reduces the expressive power brings the risk that target clauses are excluded from 
this set. If we nevertheless choose to restrict the search space to a finite quasi- 
ordered set (S, > ), and C > D  relations are decidable for every pair of elements 
C, D in S, then ideal refinement operators can be defined in the following way: 

p(C) =dc(C) 

~(c)  = uc(C). 

Although a lot of order relation tests are required, algorithms that construct these 
cover sets can easily be described: 

dc(C) := {D ~ SiC > D} 
while 3D, E ~ dc(C) such that D ~ E and D > E do 

dc(C) := dc(C)\{E} 

uc(C) := {D ~ SID > C} 
while 3D, E ~ uc(C) such that D 4= E and E > D do 

uc( C) := uc(C) \ {E}. 

Refinement operators for finite quasi-ordered sets (S, >_ ) that return cover sets 
are clearly locally finite and proper. To demonstrate the completeness of this 
approach, consider an arbitrary pair C, D ~ S for which C > D. Then either D is a 
downward cover of C, in which case E ~ p ( C )  for some E ~ D ,  or C has a 
downward cover E ~ p(C) such that C > E > D. In the latter case, E > D holds, 
and we can extend the p-chain from C to D by searching for an F ~ p(E) such 
that F _> D. Since > is a transitive relation, there are no cycles in the chain from 
C to D, and since S is finite, this chain is of finite length. Completeness of 6 can 
be shown in a similar way. 
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The above-defined cover set refinement operators are interesting, mostly for 
theoretical reasons. They demonstrate the existence of ideal refinement operators 
in finite quasi-ordered sets, and they demonstrate this in some minimal way, that is, 
every refinement operator  that returns fewer one-step refinements will not be ideal 
(cf. Lemma 3.1). In practice, the >_ tests that are involved in the computation of 
cover sets will be too time consuming, particularly when they refer to 0-subsump- 
tion tests between clauses. Instead, one-step refinements are preferably determined 
in a constructive way, i.e., by making (small) modifications to the element that is 
subjected to refinement. The earlier mentioned minimality also suggests how 
practical (constructive) ideal refinement operators can be made more efficient. If 
p+ is an ideal downward refinement operator that returns proper supersets of 
cover sets, then for every C ~ S we can remove from p+(C) the elements 
p+ (C)  \ dc(C) without losing idealness. However, although the removal of redun- 
dant refinements reduces the memory requirements, it also reintroduces > tests. 
Whether  this removal is beneficial depends on the ordered search space under 
attention and should be determined empirically. 

4.2. O-Subsumption and  R e d u c e d  Clauses 

Before we define our ideal refinement operator for finite, 0-subsumption ordered 
sets of clauses, we discuss Plotkin's [10] notion of reduction and our inverse 
reduction algorithm. In words, a clause is reduced if it is not equivalent to a proper  
subset of itself. If a clause D is not reduced, then Plotkin's reduction algorithm 
finds a reduced clause C that is equivalent to D by removing redundant literals. 
We call such a C a reduced equivalent o f  D. It is proved by Plotkin that if two 
equivalent clauses are both reduced, then they are equal, up to renaming variables, 
i.e., they are alphabetical variants. Since we treat alphabetical variants as the same, 
all clauses in ~ '  (the set of all reduced clauses in a first-order language ~ )  are 
nonequivalent. 

In a (learning) system that uses a search space of logic formulae, it often is a 
waste of time and memory to examine more than one clause of an equivalence 
class. Since for any two clauses C and D, if C ~ D, then C ~ E iff D ~ E, using 
one reduced clause as a representative of every equivalence class might lead to 
more efficient (learning) systems. However, as will be shown in Section 4.4, 0- 
subsumption has some unexpected properties that cause problems when we search 
for clauses in a search space .gL These problems will be solved by consulting 
nonreduced clauses in an intermediate step. We therefore want to build a simple 
algorithm that reverses the reduction process. We need the following lemma and 
theorem for this algorithm. 

Lemma 4.1. Let C be a clause. I f  0 is a substitution such that CO = C, then for some 
natural number k, LO k = L,  for all literals L in C. 

PROOF. 0 must be injective: if L I O = L 2 0  for different L1, L 2 E C, then 0 would 
decrease the number of literals in C, i.e., ICol < ICI, which contradicts CO = C. For 
every literal L in C, consider the following sequence: 

L,  LO, LO2,LO 3 . . . . .  
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Since C = CO = CO 2 . . . .  , and since C is finite, not all L O  i c a n  be different. Then 
for some i, j,  i < j, we have L 0 i = L 0 r. Because 0 is injective, this implies L 0 j -  ~ = L.  

For every L, let n ( L )  be the smallest number  such that L O n ( L ) = L .  Then 
LO i = L if i is a multiple of n(L) .  Let k be the least common multiple of all n(L) .  
Then LO k = L  for all L ~ C .  [] 

L e m m a  4.2. Le t  C be a reduced clause, and let D be a clause such that C c D  and 
C ~ D. Then there exists a substitution 0 such that DO = C and L O = L for  all 
literals L ~ C. 

PROOF. Since D P-subsumes C, 3o-: Do.__ C, which together with Co-__ Do. im- 
plies Co._c C. If  D o - c  C, then also C o - c  C, and C would not be reduced. We 
conclude that Co. = C. By Lemma 4.1, we then know that for some k, L o  -k = L for 
all L ~ C, and we define 0 =  crk. [] 

4.3. Inverse  R e d u c t i o n  

Given a clause D, a reduction algorithm finds an equivalent reduced clause C such 
that C _ D. In this section we develop an algorithm which, given a reduced clause 
C, constructs supersets D of C that are subsume-equivalent with C. Clearly, none 
of the proper  supersets of C will be reduced. 

If we consider a search space ~ '  (all clauses of a first-order language .~ )  then 
there are infinitely many subsume-equivalent clauses for every nonempty clause C 
in ~ .  We therefore have to limit the scope of the inverse reduction algorithm 
before any clause can be processed by it. We accomplish this by bounding the 
number  of literals in D. If C is a reduced clause and m is a fixed positive integer, 
then we want to find an alphabetical variant of every clause that is equivalent to C 
and contains less than or exactly m literals. 

4.3.1. Inverse Reduction Algorithm. Le t  C be a reduced clause and let m >_ 0 be 
a fixed natural number.  The following algorithm finds an alphabetical variant of 
every clause that is equivalent to C with m or fewer literals. 

Let l = 0, if ]C] < m, then output C 
While l < (m - ]C]) do 

l : = l + l  
For  every sequence L 1 . . . . .  L I ,  

where every L i ~ C, but the Li's are not necessarily distinct. 
Find all sets E = {M1,. . . ,  M t} such that 

Mi 4= L i, MiO= L i for all i, and 
0 = { X l / t  I . . . . .  X m / / t m }  , Xj  q~ var(C)  for all j; 

For every such E output C U E. 

L e m m a  4.3. Le t  C be a reduced clause and let m > 0 be a f ixed natural number. Then 
the inverse reduction algorithm finds an alphabetical variant o f  every clause that is 
equivalent to C with m or fewer literals. 

PROOF. (Soundness) Let D = C u E be a clause that is generated by the inverse 
reduction algorithm, where E = { M 1 , . . . , M t } .  Then D O = C  for some 0 =  
{ X 1 / t  I . . . . .  X n / t , } ,  where no Xj occurs in C. Since C c D ,  C 0-subsumes D, and 
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since DO = C, D 0-subsumes C. Thus C and D are equivalent. Furthermore,  since 
IDI _< ICl + lEt, where IEI < l _< (m - ICl), we have IDI _< ICl + m - ICI = m. That  is, 
D contains m or fewer literals. 

(Completeness)  Let  D'  be a clause that is equivalent to C that contains m or 
fewer literals. We prove that our inverse reduction algorithm finds a clause D that 
is an alphabetical variant of D' .  

Let C' be a reduced clause such that C'c_D' and C ' ~ D ' .  C' must be an 
alphabetical variant of  C ([10]). We can rename the variables in D'  to find a 
variant D of D' such that C ___ D. 

Let  E = D \ C .  Since C is reduced, Cc_D and C ~ D ,  Lemma 4.2 states that 
there exists a substitution 0 such that DO = C and LO = L for all L ~ C. This 0 
does not affect any variable that occurs in C. Furthermore,  since DO = C, for every 
literal M i e E  we can find a literal L i E C such that MiO=L v 

Summarizing, for every clause D'  that is equivalent to C and contains m or less 
literals, we can define a clause D = C u {M1 . . . .  M t} that is an alphabetical variant 
of D'.  We can construct a sequence of literals L1 . . . . .  L~ in C such that MiO = L i 
for all i, where 0 does not affect the variables in C. Thus, considering all such 
sequences L 1 . . . . .  L t and all such substitutions 0, an alphabetical variant of every 
clause that is equivalent to C with m or fewer literals will be found. [] 

Example. Let C = p ( X ,  X )  ~ .  Then for m = 2, possible redundant  literals M 1 are 
p ( Y , Z ) , p ( X , Y ) , p ( Y , X ) ,  and p(Y ,Y ) .  For m = 3 ,  some of the possible M1's, 
M2's, and corresponding 0's  are 

M 1 M 2 0 

p(X, Y) p(Y, Z) (Y/X, Z/X} 
p(X, Y) p(X, Z) (Y/X, Z/X} 
p(X, Y) p(Z, W) {Y/X, Z/X, W/X} 
p(X, Y) p(Y, X) {Y/X} 
p(Y, Y) p(Z, Z) {Y/X, Z/X} 

REMARK. Note that the algorithm above does not find all clauses D with [D[ < m 
that are subsume-equivalent to C. For example, given the reduced clause C = p ( X )  
~ q ( X , X ) ,  it will not find the subsume-equivalent clause D' = p ( U )  
q(U, U), q(U, V). However,  for every such clause D' ,  an alphabetic variant D of D' 
will be found such that D = C u E. For the just defined clause D',  this could be 
D = p ( X )  ,--- q(X,  X) ,  q(X,  Y). 

The inverse reduction algorithm above is theoretically interesting because it 
shows the structure of all clauses in the equivalence class of a (reduced) clause. It 
can also be used more practically. For example, in Section 4.4 we define our ideal 
downward refinement operator  Pr, in which inverse reduction plays an important 
role for completeness.  

4.4. A New Refinement Operator for Reduced Clauses 

When we define an equivalence relation on a set, it is usually required that the 
equivalence relation is compatible with the important  operations on this set, i.e., 
operations on different members  of the same equivalence class yield equivalent 
results. Unfortunately, this is not true for the equivalence relation that is induced 
by 0-subsumption. 
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Example. Consider the following clauses: 

C =q ~ p ( X , Y )  

D =q ~ p ( X , Y ) , p ( X , Z ) .  

C c D implies C ~ D, and, by 0 = {Z/Y},  we get DO = C, which implies D >-C. 
Thus C ~ D, i.e., C and D are subsume-equivalent. It can be verified that C is a 
reduced clause. D is clearly not reduced because it is equivalent to its proper  
subset C; the literal p ( X , Y )  in the body of D is redundant.  I f  we define 
o- = {X/Z},  then we get 

Co-=q ~ p( Z , Y )  

Do-=q ~ p ( Z , Y ) , p ( Z , Z ) .  

Co- is reduced but Do- is not, and it can be reduced to q ~ p ( Z ,  Z). Thus, whereas 
C and D were subsume-equivalent, Co- and Do- are not, because their reduced 
equivalents are not alphabetical variants. A similar situation occurs when we add 
the literal L = ~ p(Y, Z) to C and D: 

C u {L} = q  ~ - p ( X , Y ) , p ( Y , Z )  

D U {L} = q  ~ p ( X , Y ) , p ( X , Z ) , p ( Y , Z ) .  

Now, both C u {L} and D u {L} are reduced and they are not alphabetical 
variants. Thus, whereas C and D were subsume-equivalent, C U {L} and D U {L} 
are not. 

The example above illustrates that subsume-equivalent clauses may be non- 
equivalent after application of a substitution or after addition of a literal. There-  
fore, if literal additions and substitutions are some of the operations on clauses, it 
might be insufficient to consider only reduced representatives of  equivalence 
classes. In fact, Shapiro [15] has defined a downward refinement operator  for 
reduced clauses only, P0, in which every refinement operation is either a substitu- 
tion or the addition of a literal. As is shown in [1] and [7], this refinement operator  
is not complete. The main causes of this incompleteness are the inability to add 
more than one literal in one refinement step, and a size restriction that prohibits 
"decreasing substitutions" that result in refinements that contain fewer literals 
than the refined clause. For a detailed discussion on the incompleteness of  P0, we 
refer to [1]. 

To overcome the completeness problems of Shapiro's P0, we drop his "nonde-  
creasing" restriction on refinements, thus allowing refinements to have fewer 
literals than the refined clause. For example, q ~-p(X, X)  is a one-step refinement 
of q ~ p ( X , Y ) , p ( Y , X )  that is obtained by unifying the variables X and Y. We 
also introduce intermediate nonreduced clauses through which we can add more 
than one literal in one refinement step. The purpose of these nonreduced clauses is 
to form a bridge between the reduced refined clause and reduced proper  special- 
izations that are not derivable otherwise. The following example illustrates this 
idea. 

Example. Consider a search space of reduced clauses that contains, among others, 
the following clauses: 

C = q ~ p ( X , Y ) , p ( Y ,  Z ) , p ( Z ,  X)  

D =q , - - p ( X , Y ) , p ( Y , Z ) , p ( Z , X ) , p ( X , W ) , p ( W , X ) .  
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Then C and D are both reduced and, as can be verified, C >- D. So any complete 
refinement operator  p satisfies D ~ p*(C). If  we were to add one of the literals in 
D \ C to C, then we obtain a nonreduced clause that is equivalent to C. Thus, to 
derive D from C, we must somehow be able to add more  than one literal in one 
refinement step. In our approach this is achieved by first computing a nonreduced 
intermediate clause that is equivalent to C, for example, 

C' =q ~ p (  X , Y ) , p ( Y , Z ) , p (  Z , X ) , p (  X , V ) , p ( W , X ) .  

From this intermediate clause C' we can derive D by unifying the variables V 
and W. 

In Section 4.3 we have presented our inverse reduction algorithm. Given a 
reduced clause C and an integer m, this algorithm generates clauses C' with m or 
fewer literals that are equivalent to C. We will use eq(C) to denote the set of all 
such C"s. Every clause C ' :g  C in this set satisfies C ' =  C U E  for some set of 
literals E. Since [El can be larger than 1, we can use inverse reduction to add more 
than one literal in one refinement step. By applying substitutions to these interme- 
diate clauses C', we solve the problem presented in the example above. 

Note that for every redundant  literal in E that is added to C, we can find a 
literal in C with the same predicate name and sign. 

4.4.1. Compatible Literal. Two literals L and M are compatible if they have the 
same predicate symbol and sign. 

If  we want to add literals that are incompatible with every literal in a reduced 
clause C, adding one literal in one refinement step is sufficient. 

4.4.2. Most General Literal. A literal L is called most general with respect to a 
clause C if L has only distinct variables as arguments that do not occur in C. 

Lemma 4.4. Let C be a clause, and let L be a most general literal with respect to C. 
Then the following two conditions are equivalent: 

1. C properly O-subsumes D = C U {L}. 
2. For any literal M in C, L and M are incompatible. 

PROOF. 1 ~ 2: Assume that 2 does not hold. Then there is an M in C such that M 
and L have the same predicate name and sign. Let 0 be defined on variables of L 
only, such that L O = M .  Then D O = ( C U { L } ) O = C .  This means that D also 
0-subsumes C. Therefore,  C ~ D. 

2 ~ 1: C c D ,  so clearly C 0-subsumes D. Assume that also D 0-subsumes C, 
then for some 0, DO c_C. But then also LO~ C, and LO and L must have the 
same predicate name and sign. [] 

It is easy to verify that, if C is reduced and L satisfies the conditions of Lemma 
4.4, then D = C U {L} is also reduced. 

Apar t  f rom the way in which we restrict the search space, we have introduced all 
notions that are relevant for the definition of our refinement operator  Pr- As was 
mentioned earlier, this restriction is necessary because in an unrestricted search 
space ~ ,  for every nonempty clause, infinitely many equivalent but unequal clauses 
can be constructed. In Section 4.5, we will define a complexity measure newsize 
that can be used to bound unrestricted sets of clauses ( ~  or ~ ' )  to finite subsets 
( ~  . . . .  ize or ~ . . . .  ize). Although this restriction has some impact on the definition 
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and completeness of pr, we will not discuss these matters until that section. For the 
time being we just state that ~newsize and ~,news~ze are finite sets of (reduced) 
clauses. 

Definition of  Pr" Let C be a reduced clause. Then D ~ pr(C) iff D is reduced and 
one of the following conditions holds: 

1. C ~- D, and there are C' ~ eq(C) and D' ~ eq(D) such that D' = C'O, where 
0 = {X, Y} and both X and Y occur in C'. 

2. C >- D, and there are C' ~ eq(C) and D' c eq(D) such that D' = C'O, where 
0 = { X / f ( Y  1 . . . . .  Yn)}, f is an n-place function symbol, X occurs in C', and all 
Y~'s are distinct variables not in C'. 

3. D = C u {L}, where L is a most general literal with respect to C that is 
incompatible with every literal in C. 

REMARK. Our main interest in the just defined refinement operator Pr are theoret- 
ical and concern its ideal properties. As we will prove in the remainder of this 
section, it is ideal for finite, reduced search spaces bounded by newsize. 

Although Pr can be implemented, it is not very practical for several reasons. 
First, computing refinements is a rather complex operation. For example, the 
number of clauses generated by the inverse reduction algorithm, which is used to 
compute C' given C, grows exponentially with the size of the search space. Second, 
the refinement operator  is not fully constructive. We can reformulate the first item 
as follows, to make it more constructive: 

1. C' c eq(C), D' = C'O, where 0 = { X / Y }  and both X and Y occur in C', and 
D is the reduced equivalent of D' and C >- D. 

Still, expensive tests (C >-D) are included to guarantee properness. We do not 
know whether these tests can be avoided without losing properness. 

Theorem 4.1. Let C , D  ~ be reduced clauses such that C >-D. Then there is a 
pr-chain from C to D. 

Lemma 4.5. Let C, D ~ be reduced clauses such that C >- D and let C' ~ eq(C), 
D' ~ eq(D)  satisfy C'O = D'. Then there is an E ~ Pr(C) such that E ~_ D. 

PROOF. Let C ' = C  o . . . . .  C n =D'  be a chain of clauses such that Ci=Ci_ lO i, 
1 < i < n, where every 0 i is a substitution as defined in Pr'S item 1 or 2. Reynolds 
[13, proof of Theorem 4] has shown how such a chain of substitutions can be 
constructed for atoms. The same procedure can be used for clauses. Let Ck be the 
first Ci that is not equivalent to C. Since C >-D, such a Cg exists. If we let E be 
the reduced equivalent of Ck, then Ck_ 1 ~eq(C) ,  Ck = C k lOk, and E ~ pr(C). 
Furthermore,  C k >-D' (by CkO~+ ~ ... 0 n = C n =D' ) ,  which together with E ~ C k 
and D ' ~ D  implies E >-D. [] 

The following example illustrates the proof of Lemma 4.5. 

Example. Consider the following clauses: 

C =p  ~ q ( a , W ) , q ( X , b ) , q ( c , Y ) , q ( Z , d )  

D =p  ~ q (a ,  b) ,  q(c ,  b) ,  q(c ,  d ) ,  q (a ,  d) .  
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Let C' = C and let D'  = D; then, by 0 = {W/b, X / c ,  Y /d ,  Z/a},  C'O = D'. 0 can be 
split into the Pr-substitutions 01 = {W/b}, 02 = {X/c)}, 83 = {Y/d}, and 04 = {Z/a}. 
We then get the following chain of clauses: 

C O = C =p ~ q ( a , W ) , q ( X , b ) , q ( c , r ) , q ( Z , d )  

C 1 = CoO a =p ~ q ( a , b ) , q ( X , b ) , q ( c , Y ) , q ( Z , d )  

C 2 = C 102 =p ~ q ( a , b ) , q ( c , b ) , q ( c , Y ) , q ( Z , d )  

C 3 = C203 =p , - q ( a , b ) , q ( c , b ) , q ( c , d ) , q ( Z , d )  

C 4 = C304 =p ~ q ( a , b ) , q ( c , b ) , q ( c , d ) , q ( a , d ) .  

C l is the first clause that is not equivalent to C. The reduced equivalent E of C 1 is 

E =p ~ q(a,  b), q(c,  Y ) ,  q ( Z ,  d) ,  

and E is a member  of  Pr(C) that P-subsumes D. 

Lemma 4.6. Let C, D ~ be reduced clauses such that C >- D and C c D. Then there 
is a E E pr(C) such that E >- D. 

PROOF. Let F be a maximum subset of  D \ C  such that (C U F )  ~ C. This means, 
that for every literal M in D \ ( C U F ) ,  C>- ( (CUFU{M}) .  Let L be a most 
general literal with respect to C U F such that L 0 = M for one of those literals. 

If  C u F u {L} is not equivalent to C U F, then, by Lemma  4.4, L is incompati- 
ble with every literal in C u F. Thus L is incompatible with every literal in C. 
Hence,  E = (C U {L}) ~ pr(C) and, since EOcD,  E ~D.  

Otherwise, C' = C U F U {L} and D'  = C u F U {M} satisfy C' >- D'  and C'O = D'. 
Using Lemma 4.5 a clause, E can be found such that E ~ p,(C) and E ~ D'.  Since 
D'  _ D, this clause E also satisfies E ~- D. [] 

The following examples illustrate the proof  of  Lemma 4.6. 

Example. Consider the following clauses: 

C = p ( X )  ,-- 

D = p ( X )  ~ q ( a , X ) .  

The only subset F of D \ C  such that ( C U F ) ~ C  is { }, the empty set. M =  
-~ q(a, X )  is the only literal in D \ ( C  u { }). L = ~ q(Y, Z )  is most general w.r.t. C 
and LO = M  for 0 = { Y / a , Z / X } .  C u {L} is reduced and 

E = p ( X )  ~ q ( Y , Z )  

is a member  of  pr(C) that P-subsumes D. 

Example. Consider the following clauses: 

C = p ( X )  *- -q(X,a)  

D = p ( X )  ~ q( X ,  a), q (Y ,  Z ) ,  q( Z, Y ) .  

F = { ~ q ( Y , Z ) }  is a maximum subset of  D \ C  such that ( C U F ) ~ C .  Taking 
M = -7 q(Z, Y), we get L = -7 q(U, V)  as a most general literal with respect to 
C U F. C' = C u F u {L} is equivalent to C, and C' properly 0-subsumes D'  = C U 
F u {M}(= D): 

C' = p ( X )  ~ q( X,  a ) ,  q( r ,  Z ) ,  q (U,  V)  

D'  = p ( X )  ~ q( X ,  a), q( Y, Z ) ,  q( Z , V ) .  
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By L e m m a  4.5 we can find a refinemeni E of C that 0-subsumes D'.  In the proof  
of  L e m m a  4.5, we get C'O = D' for 0 = {U/Z, V/Y}. This substitution 0 can be split 
into 01 = {U/Z} and 02 = {V/Y}. We now get the following chain of clauses: 

C O = C' 

C 1 = CoO 1 = p ( X )  ~ q(X,  a), q ( r ,  Z) ,  q(Z, V) 

C2 = ClOz = p ( X )  ~ q( X ,a) ,q (  Y ,Z ) ,q (  Z ,Y)  

C 1 is the first clause that is not equivalent to C'. The reduced equivalent E of 
C1 is 

E = p ( X )  ~ q(X,  a), q (r ,  Z),  q(Z, V), 

and E is a member  of Pr(C) that 0-subsumes D. 

PROOF Ot~ THEOREM 4.1. For every pair of reduced clauses C and D such that 
C >-D, we can find a substitution 0 for which CO c_D. Let F be the reduced 
equivalent of CO; then either C >-F or C ~ F. 

If  C >-F, then C and F satisfy the conditions of Lemma  4.5. Otherwise, 
F ~ eq(C), and F and D satisfy the conditions of Lemma  4.6. 

In both cases the first element E of a pr-chain f rom C to D can be found. We 
can complete a p,-chain from C to D by repeatedly finding the first element in a 
chain from E to D. In L e m m a  4.7 in the next subsection, we prove that this chain 
is of finite length. [] 

4.5. A New Complexity Measure 

Shapiro had to restrict the search space for P0 to a finite set, because without this 
restriction there are infinitely many ways to add a literal to a clause in one 
refinement step [15], and O0 would not be locally finite. In our refinement operator  
Pr, only a finite number  of most general literals can be added through pr-item 3. 
However,  as was stated before, for every nonempty clause C, we can construct 
infinitely many subsume-equivalent clauses. Thus, in an unrestricted search space, 
the inverse reduction function eq that is used in the definition of Or is not 
computable.  Therefore,  we still have to restrict the search space. 

In concrete examples of refinement operators,  Shapiro restricts the search space 
using Reynolds '  [13] complexity that was originally defined for atoms: 

• rsize(C) = the number  of symbols occurrences in C - the number  of distinct 
variables in C. 

Example. Consider the clauses 

C = p ( X )  ~ q ( X , Y ) , q ( Y , X )  

D 1 = p ( X )  ~ q ( X , X )  

D 2 = p ( X )  ~ q ( X , a ) , q ( a , X ) .  

Then C 0-subsumes both D a and D2, where rsize(C)= 6, rsize(D 1) = 4, and 
rsize(D 2) = 7. Apparently, rsize can increase or decrease when a clause is special- 
ized. 
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We could follow Shapiro and use rsize to restrict search space ~q~ to ,.~rsize. But 
because of the incompatibility of 0-subsumption and rsize, we introduce a new 
complexity measure that is more naturally related to 0-subsumption. Moreover,  
given C and D, with the property that C >- D in a search space bounded by our size 
measure,  we can always find a pr-chain from C to some D'  in the search space 
such that D'  ~ D. We define: 

° newsize(C) = (maxsize(C), ICI), where maxsize(C) = max{rsize(L)lL ~ C}. 

The following propert ies of maxsize and newsize are stated without proof  but can 
easily be verified. The first proposition follows directly from the observation that 
the number  of literals of  rsize < k is finit& 

Proposition 4.1. For every fixed pair of numbers (k, m), the number of clauses with 
newsize(C) <_ (k, m), i.e., maxsize(C) <_ k and IC] <_ m, is finite. 

Proposition 4.2. I f  C ~- D, then maxsize(C) < maxsize( D). 

From here on, we assume that our refinement operator  Pr is applied on 0-sub- 
sumption ordered sets ( 2  . . . .  ize, __~ ). Thus, for some fixed k and m, every clause 
in ~newsize satisfies newsize(C) < (k, m), i.e., maxsize(C) < k and ICI < m. We 
should add this as a condition to the definition of Pr: every one of the clauses 
C, D,C', D' must satisfy newsize < (k, m)). Thus the clauses that are to be gener- 
ated by the inverse reduction algorithm for eq(C) are also restricted by newsize. 

From Proposition 4.2 it follows that C ~ D implies maxsize(C)= maxsize(D). 
This relation has a nice consequence for the restricted computation of eq(C). Let 
C be a clause in ~,newsize for some fixed bound (k ,m) .  Then eq(C) should 
compute all clauses D in ~ '  . . . .  ize that are subsume-equivalent to C. Since D ~ C 
implies maxsize( D ) = maxsize( C), maxsize( D ) < k automatically holds, and we only 
have to ensure that ]D] does not exceed m. Since the maximum number  of literals 
m is a paramete r  of our inverse reduction algorithm, we can use this algorithm 
unmodified. Note that if we were to use rsize to restrict ~ ,  auxiliary tests for 
rsize( D ) < k would be required. 

By definition of items 1 and 2 and by Lemma 4.4, p~ is a proper  refinement 
operator.  Local finiteness of Pr is guaranteed if every clause that is involved in the 
computat ion of p(C) satisfies newsize < (k, m). Lemmas  4.5 and 4.6 state that if 
C ~-D and CO = D or C c D, then we can find a successor E of C in a pr-chain 
from C to D. It can be verified that, if C properly 0-subsumes D and both C and 
D are members  of ~,new~ize, then every clause that is used in the computat ion of E 
in these lemmas is in ~ . . . .  i~e as well. To prove that p~ is an ideal downward 
refinement operator  for (~,ew~i~e, ~ ), it remains to show that Pr is complete for 
such ordered sets. According to the proof  of Theorem 4.1, it remains to prove that 
all Pr chains in ~ne~i~e are of finite length. 

Lemma 4. 7. Let (k, m) be a fixed pair of numbers and let C 0, C1, C 2 " "  be a Pr chain, 
where newsize(C i) < (k, m) for euery C i. Then this Pr chain is of  finite length. 

P~OOF. For every pair of  fixed numbers (k, m) there are finitely many clauses C 
such that newsize(C)< (k, m). So every Pr chain contains finitely many different 
clauses. Since all refinement steps are proper  (D ~ pr(C) implies C ~- D), no clause 
can occur more than once in a pr chain, and every p~ chain is finite. [] 
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Corollary 4.1. Pr is ideal for ( ~newsize, >. ). 

REMAr~K. Pr can easily be generalized to a refinement downward refinement 
operator  Pc that is ideal for ( ~ n e w s i z e  >. ) .  For this purpose we only have to 
reduce the nonreduced clauses that are subjected to refinement. 

Definition of Pc. Let C be a clause of ~' . . . .  ize, T h e n D  ~ pc(C) iff 

D ~ pr(E) ,  where E is a reduced equivalent of C, and D ~ ~ . . . .  ize. 

Since newsize(E) < newsize(C) (maxsize(E) < maxsize(C) and IEI ~ ICI), E is in the 
restricted search space whenever C is. Note that all refinements that are computed 
by Pc are reduced clauses. Hence, only nonreduced clauses that have an origin 
other than Pc (for example, clauses that are provided by the user or that are 
computed by another operator) need to be reduced in the first phase of Pc. 

For  an ideal upward refinement operator  for ( ~ '  . . . .  ize, >. ) that is defined very 
similarly to Pr, we refer to our article [9]. 

5. CONCLUSIONS 

In this article we have characterized sufficient conditions in terms of cover sets to 
conclude when ideal refinement operators for a quasi-ordered set (S, > ) do not 
exist. We have translated these conditions to uncovered chains and showed that 
ideal upward and downward refinement operators do not exist for unrestricted sets 
of clauses that are ordered by 0-subsumption, ( ~ ,  ~ ). We have defined a new 
complexity measure for clauses newsize to restrict a search space of (reduced) 
clauses ~ ( ~ )  to a finite set ~newsize  ( ~  . . . .  ize) and a downward refinement 
operator,  Dr, that is ideal (i.e., locally finite, complete, and proper) for thus 
restricted ordered sets of reduced clauses ( ~ '  . . . .  ize >. ~. 
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