
Discrete Applied Mathematics 160 (2012) 1285–1290

Contents lists available at SciVerse ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

Note

On the connectivity of p-diamond-free vertex transitive graphs✩

Yingzhi Tian ∗, Jixiang Meng, Zhao Zhang
College of Mathematics and System Sciences, Xinjiang University, Urumqi, Xinjiang, 830046, People’s Republic of China

a r t i c l e i n f o

Article history:
Received 17 August 2010
Received in revised form 13 June 2011
Accepted 17 November 2011
Available online 17 December 2011

Keywords:
Connectivity
Superconnected
Vertex transitive graphs
Diamond-free graphs
p-diamond-free graphs

a b s t r a c t

Let G be a graph of order n(G), minimum degree δ(G) and connectivity κ(G). We call the
graph G maximally connected when κ(G) = δ(G). The graph G is said to be superconnected
if every minimum vertex cut isolates a vertex.

For an integer p ≥ 1, we define a p-diamond as the graph with p + 2 vertices, where
two adjacent vertices have exactly p common neighbors, and the graph contains no further
edges. Usually, the 1-diamond is triangle and the 2-diamond is diamond. We call a graph p-
diamond-free if it contains no p-diamond as a (not necessarily induced) subgraph. A graph
is vertex transitive if its automorphism group acts transitively on its vertex set.

In this paper, we give some sufficient conditions for vertex transitive graphs to be
maximally connected. In addition, superconnected p-diamond-free (1 ≤ p ≤ 3) vertex
transitive graphs are characterized.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

We shall follow [2] for graph-theoretical terminology and notation not defined here. Let G = (V , E) be a finite graph
without loops and multiple edges, where V = V (G) is the vertex set and E = E(G) is the edge set. For each vertex v ∈ V (G),
the neighborhood N(v) of v is defined as the set of all vertices adjacent to v and d(v) = |N(v)| is the degree of v. We denote
by δ(G) theminimum degree and by n(G) = |V (G)| the order of G.

The underlying topology of an interconnection network is often modeled by a graph G = (V , E). The connectivity of G,
denoted by κ(G), has long been used to measure the reliability of the network. Because of κ(G) ≤ δ(G), we call a graph
G maximally connected when κ(G) = δ(G). Many authors have presented sufficient conditions for graphs to be maximally
connected; see the survey paper [7]. For further study, Boesch proposed the concept of superconnected graphs [1]. A graph
G is said to be superconnected if any minimum cut of G isolates a vertex. There are many studies on this subject; see [5,6,11]
for examples.

Graph symmetry is another factor that should be taken into account in the design of an interconnection network. A
graph G is vertex transitive if Aut(G) acts transitively on V (G), and is edge transitive if Aut(G) acts transitively on E(G).
Since each vertex of a vertex transitive graph has the same degree, we define the degree of a vertex transitive graph as
this same degree. Several known results indicate that graphs with high symmetry have high connectivities. For instance,
connected vertex transitive graphs (digraphs) have maximum edge (arc) connectivity [10] and connected edge (arc)
transitive graphs (digraphs) have maximum vertex connectivity [15]. In view of the above results, it is natural to ask what is
the relationship between the symmetry of graphs and its superconnectivity. In [11], Meng characterized the superconnected
vertex and edge transitive graphs. Zhang and Meng [18] characterized the superconnected irreducible edge transitive
graphs (where irreducible means that the graph has no vertices with the same neighbor set) and gave some sufficient
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conditions for reducible edge transitive graphs to be superconnected. It seems difficult to characterize superconnected
vertex transitive graphs. The authors in [9] characterized superconnected vertex transitive bipartite graphs and the authors
in [13] characterized superconnected vertex transitive line graphs. Superconnected vertex transitive graphs with degree 3,
4 (5) and 6 were characterized by those authors in [16,14,12], respectively.

For an integer p ≥ 1, we define a p-diamond as the graph with p + 2 vertices, where two adjacent vertices have exactly
p common neighbors, and the graph contains no further edges. Usually, the 1-diamond is triangle and the 2-diamond
is diamond. We call a graph p-diamond-free if it contains no p-diamond as a (not necessarily induced) subgraph. In [4],
Dankelmann, Hellwig and Volkmann proved that a connected diamond-free graph of order n(G) ≤ 3δ(G) is maximally
connected when δ(G) ≥ 3. Holtkamp and Volkmann [8] gave minimum degree condition for p-diamond-free graphs to be
maximally local connected. In this paper, wewill give some sufficient conditions for vertex transitive graphs to bemaximally
connected. In addition, we will characterize superconnected p-diamond-free (1 ≤ p ≤ 3) vertex transitive graphs.

2. Preliminary

For a subset A of V (G), let N(A) = NG(A) = {u ∈ V (G) \A : there exists v ∈ A, such that (u, v) ∈ E(G)} be the neighbor
set of A,N[A] = NG[A] = A ∪ N(A) and R(A) = RG(A) = V \ N[A]. For a nonempty vertex set A of V, if R(A) ≠ Ø, then N(A)
is a vertex cut of G, and thus |N(A)| ≥ κ(G). A vertex set A is said to be a fragment of G, if N(A) is a minimum vertex cut of G.
A fragment of minimum cardinality is called an atom of G. A fragment A with 2 ≤ |A| ≤ |V (G)| − κ(G) − 2 is called a strict
fragment of G. If there exists a strict fragment in G, then G is said to be degenerate. Clearly, if A is a strict fragment of G, so is
R(A). A smallest strict fragment of G is called a superatom of G, whose cardinality is denoted by ω(G).

Recall that an imprimitive block for a permutation group Φ on a set T is a proper, non-trivial subset A of T such that if
ϕ ∈ Φ then either ϕ(A) = A or ϕ(A) ∩ A = Ø. A subset A of V (G) is called an imprimitive block for G if it is an imprimitive
block for Aut(G) on V (G).

Theorem 2.1 ([15]). Let A be an imprimitive block of a vertex transitive graph G, then the induced subgraph G[A] is also vertex
transitive.

Let G andH be two graphs. The lexicographic product of G byH , denoted by G(H), is the graphwith vertex set V (G)×V (H)
and, for two vertices (u1, v1) and (u2, v2) ofG(H), (u1, v1) and (u2, v2) are adjacent if and only if either u1 and u2 are adjacent
in G or u1 = u2 and v1 and v2 are adjacent in H . Denote by Cn the cycle of length n,Nn the empty graph of order n, Kn the
complete graph of order n and Q3 the 3-cube.

For vertex transitive graphs, the following theorem is well-known.

Theorem 2.2 ([17]). If G is a connected vertex transitive graph with degree k, then κ(G) ≥ 2(k + 1)/3.

For connected vertex transitive graphs with degree at most 6, Chen [3] obtained the following result.

Theorem 2.3 ([3]). Let G be a k-regular connected vertex transitive graph with k 6 6, then κ(G) = k unless k = 5 and
G ∼= Cn(K2) for some n ≥ 4.

The line graph of G, denoted by L(G), is a graph with vertex set E(G) and e1, e2 ∈ E(G) are adjacent if and only if they are
incident in G. The girth of G, denoted by g(G), is the length of a shortest cycle in G. Let H be a group and S a subset of H \ {1H}

with S = S−1, where 1H is the identity of H and S−1
= {s−1

: s ∈ S}. Define the Cayley graph C(H, S) = (V , E), where
V = H, E = {{h, hs} : h ∈ H, s ∈ S}. It is well known that Cayley graph is vertex transitive. In [11], Meng characterized
superconnected graphs which are both vertex transitive and edge transitive.

Theorem 2.4 ([11]). Let G be a connected graph which is both vertex transitive and edge transitive. Then G is not superconnected
if and only if G ∼= Cn(Nm) (n ≥ 6) or G ∼= L(Q3)(Nm).

In the following, superconnected vertex transitive graphs with degree k ≤ 6 were characterized.

Theorem 2.5 ([16]). Let G be a connected vertex transitive cubic graph with |V (G)| ≥ 7. Then G is superconnected if and only if
G is 1-diamond-free (that is girth (G) ≥ 4).

Theorem 2.6 ([14]). Let G be a connected vertex transitive 4-regular graph with |V (G)| ≥ 8. Then G is superconnected if and
only if G is diamond-free, G � Cn(N2) (n ≥ 6) and G � L(Q3).

Theorem 2.7 ([14]). Let G be a connected vertex transitive 5-regular graph. If |V (G)| ≥ 9, then G is superconnected if and only
if G is 3-diamond-free.

Theorem 2.8 ([12]). Let G be a connected vertex transitive 6-regular graph with |V (G)| ≥ 10. Then G is superconnected
if and only if G is 4-diamond-free, ω(G) ≠ 3 and G is not isomorphic to one of the following graphs: Cn(N3) (n ≥ 6),
L(C(Z6, {−1, −2, 1, 2})) and H(N2), where H is a connected 3-regular vertex transitive graph with girth g(H) = 3 and
|V (H)| ≥ 7.

Motivated by the above results, we will characterize superconnected p-diamond-free (1 ≤ p ≤ 3) vertex transitive
graphs in Section 4.



Y. Tian et al. / Discrete Applied Mathematics 160 (2012) 1285–1290 1287

3. Connectivity of p-diamond-free vertex transitive graphs

By the definition of atom, we easily obtain the following lemma.

Lemma 3.1. Let G be a connected graph. Then (i) κ(G) = δ(G) if and only if every atom of G has cardinality 1; and (ii) if
κ(G) < δ(G), then each atom has cardinality at most ⌊(|V (G)| − κ(G))/2⌋ and induces a connected subgraph of G.

Proof. The first conclusion is obvious. (ii) Let A be an atom of G. Since R(A) = V \ N[A] is a fragment of G, it must
have cardinality greater than or equal to |A|. Since V (G) = A ∪ N(A) ∪ R(A) and |N(A)| = κ(G), it follows that |A| ≤

⌊(|V (G)| − κ(G))/2⌋. Suppose to the contrary that the induced subgraph G[A] is not connected. Let A1 be a component of
G[A]. But then N(A1) ⊆ N(A) and hence A1 is a fragment of G contained in A and A1 ≠ A, which contradicts the definition of
atom. �

In [10], Mader proved the following basic theorem.

Theorem 3.2 ([10]). Let G be a connected graph which is not a complete graph and let A be an atom of G. If B is a fragment of G
with A ∩ B ≠ Ø, then A ⊂ B.

Theorem 3.2 implies that atoms are imprimitive blocks for the graph G. The following corollary is also observed from
Theorem 3.2.

Corollary 3.3. Let G be a connected graph and A be an atom of G. If C is a minimum vertex cut of G, then A is either disjoint from
C or a subset of C.

Now, we give the following sufficient conditions for vertex transitive graphs to be maximally connected.

Theorem 3.4. Let G be a connected vertex transitive graph with degree k and let p = (k+ 3)/2 if k is odd and p = (k+ 6)/2 if
k is even. If G is p-diamond-free, then G is maximally connected.

Proof. Suppose to the contrary that κ(G) < k. Let A be an atom in G. Then |A| ≥ 2 and G[A] is connected by Lemma 3.1. If
α ∈ Aut(G), then α(A) is also an atom, and so by Theorem 3.2, either A = α(A) or A ∩ α(A) = Ø. Hence A is an imprimitive
block for Aut(G) on V (G), and its translates partition V (G) by the vertex transitivity of G. Corollary 3.3 now yields that N(A)
is partitioned by translates of A, and therefore |N(A)| = t|A| for some integer t ≥ 2 (t = 1 implies that V (G) = A ∪ N(A),
which is impossible).

If k is odd, then we have |N(A)| ≤ k − 1 and |A| ≤ (k − 1)/2. Thus |N[A]| = |A| + |N(A)| ≤ 3(k − 1)/2. Since |A| ≥ 2
and G[A] is connected, we can select an edge e = uv ∈ E(G[A]). But then

|N[A]| ≥ |N[{u, v}]| = |N(u)| + |N(v)| − |N(u) ∩ N(v)| ≥ 2k − (k + 1)/2 > 3(k − 1)/2,

a contradiction (the second inequality follows since G is (k + 3)/2-diamond-free).
Nowwe assume that k is even. SinceN(A) is partitioned by translates ofA, we have (1) |N(A)| ≥ 3|A|when |N(A)| = k−1;

and (2) |N(A)| ≥ 2|A| when |N(A)| ≤ k − 2. That is, |A| ≤ (k − 1)/3 when |N(A)| = k − 1 and |A| ≤ (k − 2)/2 when
|N(A)| ≤ k − 2. Thus |N[A]| ≤ 4(k − 1)/3 when |N(A)| = k − 1 and |N[A]| ≤ 3(k − 2)/2 when |N(A)| ≤ k − 2. We can
assume that k ≥ 8 by Theorem 2.3. If k = 8, then |N(A)| cannot be k−1 (for otherwise, since 7 is a prime number, we deduce
that |A| = 1, which is impossible), and thus |N[A]| ≤ 3(k − 2)/2. If k ≥ 10, we also obtain that |N[A]| ≤ 3(k − 2)/2 from
3(k − 2)/2 ≥ 4(k − 1)/3. On the other hand, since |A| ≥ 2 and G[A] is connected, we can select an edge e = uv ∈ E(G[A]).
But then

|N[A]| ≥ |N[{u, v}]| = |N(u)| + |N(v)| − |N(u) ∩ N(v)| ≥ 2k − (k + 4)/2 > 3(k − 2)/2,

a contradiction (the second inequality follows since G is (k + 6)/2-diamond-free). �

If G is a connected vertex transitive graphwith degree k ≤ 4, then by Theorem 2.3 κ(G) = k. Thus the following corollary
is obtained by Theorems 2.3 and 3.4.

Corollary 3.5. Let G be a connected vertex transitive graph. If G is 4-diamond-free, then G is maximally connected. Furthermore,
each connected 5-diamond-free vertex transitive graph G is maximally connected unless G ∼= Cn(K2) for some n ≥ 4.

4. Superconnected 3-diamond-free vertex transitive graphs

In [6], Hamidoune proved the following useful results on strict fragments and superatoms of vertex transitive graphs.

Theorem 4.1 ([6]). Let G be a k-regular vertex transitive graph with κ(G) = k.
(i) Let A be a superatom and B be a strict fragment such that A ∩ B ≠ Ø and A ⊈ B. Then |A ∩ B| = 1, A ∪ B is a fragment and

N[A ∩ B] = N[A] ∩ N[B].
(ii) If ω(G) ≥ 3, then the intersection of three distinct superatoms of G is empty.

By the definition of superatoms, we observe the following lemma.
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Lemma 4.2. Let G be a connected degenerate graph and A be a superatom of G. If ω(G) ≥ 3, then the induced subgraph G[A] is
connected.

Proof. Suppose to the contrary that G[A] is not connected. Let A1, A2, . . . , At (t ≥ 2) be the components of G[A]. If there
exists a component Ai with |Ai| ≥ 2, then, by N(Ai) ⊆ N(A), we have that Ai is a strict fragment with cardinality less than A,
a contradiction. Thus, assume that |Ai| = 1 for 1 ≤ i ≤ t . By ω(G) ≥ 3, we see that t ≥ 3. Similarly, we argue that A1 ∪ A2
is a strict fragment with cardinality less than A, also a contradiction. �

Weonly consider vertex transitive graphswith degree greater than 6, since superconnected vertex transitive graphswith
degree less than or equal to 6 were characterized by Theorems 2.5–2.8. As in the case with atoms, we wish to prove that
superatoms of G are imprimitive blocks of G. This fundamental fact is the following lemma.

Lemma 4.3. Let G be a connected degenerate vertex transitive graphwith degree k ≥ 7. Assume that ω(G) ≥ 3, A is a superatom
of G and B is a strict fragment of G. If G is 3-diamond-free and A ∩ B ≠ Ø, then A ⊆ B.

Proof. Since G is 3-diamond-free, we have κ(G) = k by Corollary 3.5.
Suppose to the contrary that A ⊈ B. Then by Theorem 4.1 (i), we have |A∩ B| = 1. Let A∩ B = {a}. By Theorem 4.1(i), we

deduce that

N(a) = (N(A) ∩ B) ∪ (A ∩ N(B)) ∪ (N(A) ∩ N(B)). (1)

Denote R1 = A∩N(B), R2 = N(A)∩B, R3 = N(A)∩N(B), R4 = N(A)∩R(B) and R5 = R(A)∩N(B). By careful consideration,
we get the following two claims.
Claim 1. |R1| ≤ |R2|. If B ∩ R(A) = Ø, then |R1| ≤ |R2| by |A| ≤ |B|. Otherwise, assume that B ∩ R(A) ≠ Ø and |R1| > |R2|.
Since N(B ∩ R(A)) ⊆ R2 ∪ R3 ∪ R5, |R1| + |R3| + |R5| = k, |R1| > |R2| and R(B) ⊆ R(B ∩ R(A)), we have N(B ∩ R(A)) is a
vertex cut with |N(B ∩ R(A))| ≤ |R2| + |R3| + |R5| < |R1| + |R3| + |R5| = k, which contradicts to κ(G) = k.
Claim 2. |A∩R(B)| ≤ 1. For otherwise, assume that |A∩R(B)| ≥ 2. Since |N(A∩R(B))| ≤ |R1|+|R3|+|R4| ≤ |R2|+|R3|+|R4| =

k and R(A) ⊆ R(A ∩ N(B)), we see that A ∩ R(B) is a strict fragment with cardinality less than A, a contradiction. Thus
|A ∩ R(B)| ≤ 1. In the following, we consider two cases.
Case 1. |A ∩ R(B)| = 1.

Let {u} = A∩R(B). Since |R1| ≤ |R2|, |R2|+|R3|+|R4| = k, andN(u) ⊆ R1∪R3∪R4, we have thatN(u) = R1∪R3∪R4 and
|R1| = |R2|. By (1), we know N(a) = R1 ∪ R2 ∪ R3. For each vertex v ∈ R1, we verify that N(v) ⊆ {u, a} ∪ R1 ∪ R2 ∪ R3 ∪ R4 =

{u, a} ∪ N(u) ∪ N(a). Thus N(v) = {u, a} ∪ (N(v) ∩ N(u)) ∪ (N(v) ∩ N(a)) is obtained. Since G is 3-diamond-free, we get
|N(v) ∩ N(u)| ≤ 2 and |N(v) ∩ N(a)| ≤ 2. But then k = d(v) ≤ |{a, u}| + |N(v) ∩ N(u)| + |N(v) ∩ N(a)| ≤ 6, which
contradicts to k ≥ 7.
Case 2. |A ∩ R(B)| = 0.

Now we have A = R1 ∪ {a}. Obviously, |R1| ≥ 2, and thus |R2| ≥ |R1| ≥ 2. Let w ∈ R1. We verify that N(w) ⊆

{a} ∪ R4 ∪ (N(w) ∩ N(a)) (because N(a) = R1 ∪ R2 ∪ R3 by (1)). Since G is 3-diamond-free and |R2| + |R3| + |R4| = k, we
have |N(w)| ≤ 1+|R4|+ |N(w)∩N(a)| ≤ 3+ k−|R2|− |R3|. If |R2|+ |R3| ≥ 4, then |N(w)| ≤ k−1, a contradiction. Thus,
we assume that |R2| + |R3| ≤ 3. But then k = |N(a)| = |R1| + |R2| + |R3| ≤ 2(|R2| + |R3|) ≤ 6, also a contradiction. �

Lemma 4.4. Let G be a connected degenerate transitive graph with degree k ≥ 7. If G is 3-diamond-free, then ω(G) = 2.
Furthermore, each superatom of G is an independent set.

Proof. Clearly, ω(G) ≥ 2. Suppose ω(G) ≥ 3, we will derive a contradiction. Let A be a superatom in G. Then |A| ≥ 3 and
G[A] is connected by Lemma 4.2. If α ∈ Aut(G), then α(A) is also a superatom, and so by Lemma 4.3, either A = α(A) or
A∩α(A) = Ø.HenceA is an imprimitive block for Aut(G) onV (G), and its translates partitionV (G)by the vertex transitivity of
G. Lemma4.3 nowyields thatN(A) is partitioned by translates of A, and therefore |N(A)| = t|A| for some integer t ≥ 2 (t = 1
implies that V (G) = A ∪ N(A), which is impossible). Then we have |A| ≤ k/2. Thus |N[A]| = |A| + |N(A)| ≤ 3k/2. Since
|A| ≥ 3 and G[A] is connected, we can select an edge e = uv ∈ E(G[A]). But then

|N[A]| ≥ |N[{u, v}]| = |N(u)| + |N(v)| − |N(u) ∩ N(v)| ≥ 2k − 2 > 3k/2,

a contradiction (the second inequality follows from G is 3-diamond-free). Thus ω(G) = 2 is obtained.
Assume B is a superatom which is not an independent set. Then |N(B)| = 2k − 2 − |N(u) ∩ N(v)| ≥ 2k − 4 > k, a

contradiction. �

A graph G is said to be reducible if there exist two vertices u and v with the same neighbor set. Otherwise, G is said to be
irreducible. By Lemma 4.4, we obtain the following corollary.

Corollary 4.5. Let G be a connected irreducible transitive graph with degree k ≥ 7. If G is 3-diamond-free, then G is
superconnected.
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Proof. Suppose to the contrary that G is not superconnected. Then G is degenerate. By Lemma 4.4, G has a superatom A such
that |A| = 2 and A is an independent. But then the two vertices in A have the same neighbor set, a contradiction to the
irreducibility of G. �

Let G be a connected vertex transitive graph with degree k. Assume that G is both 3-diamond-free and irreducible. Since
κ(G) = k, we obtain that G is superconnected if |V (G)| ≤ k + 3 (a minimum cutset has k vertices and one of the connected
components has cardinality one). If k = 1, then G ∼= K2. If k = 2, then G is not superconnected if and only if G ∼= Cn(n ≥ 6).
If k = 3, then G is not superconnected if and only if G has girth 3 and |V (G)| ≥ 7 by Theorem 2.5. If k = 4, then G is not
superconnected if and only if G ∼= L(Q3) or G contains diamond as a subgraph and |V (G)| ≥ 8 by Theorem 2.6. If k = 5,
then G is superconnected by Theorem 2.7. If k = 6, then by Theorem 2.8 we verify that G is not superconnected if and only
if G ∼= L(C(Z6, {−1, −2, 1, 2})). (If ω(G) = 3 and let A be a superatom, then |N(A)| ≥ 2k − 5 > k, a contradiction.) The
following theorem is thus obtained.

Theorem 4.6. Let G be a connected irreducible vertex transitive graph. If G is 3-diamond-free, then G is not superconnected if
and only if one of the following conditions is satisfied:

(i) G is isomorphic to Cn (n ≥ 6), or L(Q3), or L(C(Z6, {−1, −2, 1, 2})); or
(ii) G is a connected 3-regular vertex transitive graph with girth g(G) = 3 and |V (G)| ≥ 7; or
(iii) G is a connected 4-regular vertex transitive graph with diamond as its subgraph and |V (G)| ≥ 8.

Let G be a connected 3-diamond-free vertex transitive graph with degree k ≥ 7. If G is not superconnected, then it
follows from Lemma 4.4 that ω(G) = 2 and each superatom of G consists of exactly two independent vertices. Now define
an equivalence relation T on the vertex set of G. For v1 and v2 in V (G), v1Tv2 ⇔ N(v1) = N(v2).

According to this equivalence, V (G) is partitioned into some non-empty sets, say, A1, A2, . . . , At . Clearly, |Ai| ≥ ω(G) = 2
and, for any u ∈ Ai, Ai = {v ∈ V (G) : N(v) = N(u)}. Thus, each Ai is an imprimitive block for G. By the vertex transitivity of
G, |Ai| is independent of i. It follows that |Ai| = |V (G)|/t for some integer t ≥ 2.

Now define a quotient graph G = G/T of G. The vertices of G are Ai, i = 1, 2, . . . , t , and Ai and Aj are adjacent in G if and
only if some vertex in Ai is adjacent to some vertex in Aj in G. The following is obvious.

Lemma 4.7. G is a connected 2-diamond-free vertex transitive graph.

Proof. G is clearly connected and 2-diamond-free. (If there is a 2-diamond in G, we can find a 4-diamond in G by |Ai| ≥ 2
and the definition of G.) By the vertex transitivity of G and the fact that Ai (1 ≤ i ≤ t) are imprimitive blocks for G, we can
see that G is vertex transitive. �

Lemma 4.8. If G is not superconnected, then G is not superconnected.

Proof. Let k be the degree of regularity of G and n = |V (G)|. By definition, if Ai and Aj (i ≠ j) are adjacent in G, then the
induced subgraph G[Ai ∪ Aj] is a complete bipartite graph. Thus, G has degree k/|Ai| = kt/n. Let C be a minimum vertex cut
of G such that G− C has no isolated vertices and let G1,G2, . . . ,Gs be the components of G− C . Then we have the following
claims.

Claim 1. C is a union of some A′

is.
If not, let u ∈ Ai ∩ C and v ∈ Ai but v ∉ C . Set C ′

= C \ {u}. Then, since N(u) = N(v), C ′ is also a vertex cut, which is
impossible.

By a similar argument we have

Claim 2. For any j(1 ≤ j ≤ s), V (Gj) is a union of some A′

is.
Then, C corresponds to a vertex cut C of G, |C | = |C |/m = k/m, where m = |Ai| = n/t . Since G is a connected 3-

diamond-free vertex transitive graph, we have κ(G) = k/m. It follows that C is a minimum vertex cut of G. Clearly, G − C
has no isolated vertices. The result follows. �

The following theorem characterizes superconnected 3-diamond-free vertex transitive graphs.

Theorem 4.9. Let G be a connected vertex transitive graph. If G is 3-diamond-free, then G is not superconnected if and only if
one of the following conditions is satisfied:

(i) G is isomorphic to one of the following graphs: Cn(Nm) (n ≥ 6 and m ≥ 1), L(Q3)(Nm)(m ∈ {1, 2}) and L(C(Z6,
{−1, −2, 1, 2})); or

(ii) G ∼= H(Nm) (m ∈ {1, 2}), where H is a connected 3-regular vertex transitive graph with girth g(H) = 3 and |V (H)| ≥ 7;
or

(iii) G ∼= K, where K is a connected 4-regular vertex transitive graph with diamond as its subgraph and |V (K)| ≥ 8.



1290 Y. Tian et al. / Discrete Applied Mathematics 160 (2012) 1285–1290

Proof. By Theorem 4.6, Cn(n ≥ 6), L(Q3), L(C(Z6, {−1, −2, 1, 2})),H and K are not superconnected. For Cn(Nm) (n ≥ 6 and
m ≥ 2), L(Q3)(N2) and H(N2), the results follow from the definition of lexicographic product of graphs and the fact that
Cn(n ≥ 6), L(Q3) and H are not superconnected.

Suppose now that G is not superconnected. If G is irreducible, then by Theorem 4.6, one of the following conditions
is satisfied: (1) G is isomorphic to one of the following graphs: Cn(n ≥ 6), L(Q3) and L(C(Z6, {−1, −2, 1, 2})); (2) G is
a connected 3-regular vertex transitive graph with girth g(G) = 3 and |V (G)| ≥ 7; (3) G is a connected 4-regular vertex
transitive graphwith diamond as its subgraph and |V (G)| ≥ 8. Thus,we assume thatG is reducible in the following. SinceG is
not superconnected, we know that G is degenerate. If k ≤ 6, then by Theorems 2.5–2.8we can verify that G ∼= Cn(Nm) (n ≥ 6
and 2 ≤ m ≤ 3) or G ∼= H(N2), where H is a connected 3-regular vertex transitive graph with girth g(H) = 3 and
|V (H)| ≥ 7. Thus, assume k ≥ 7. Let A be superatom of G. By Lemma 4.4, it follows that |A| = 2 and A is an independent
set. Now consider the quotient graph G defined above. By Lemmas 4.7 and 4.8 we see that G is a connected 2-diamond-free
vertex transitive graph which is not superconnected. Since G is irreducible, Corollary 4.5 yields that the degree k of G is less
than 7. By Theorems 2.5–2.8, G is 3-diamond-free and G is 2-diamond-free, we can verify that G is isomorphic to one of the
following graphs: Cn (n ≥ 6) and L(Q3). Therefore G is isomorphic to one of the following graphs: Cn(Nm) (n ≥ 6 andm ≥ 4)
and L(Q3)(N2). (Since L(Q3)(Nm) contains 3-diamond form ≥ 3.) �

If G is diamond-free or 1-diamond-free, then the following two theorems are obtained by Theorem 4.9.

Theorem 4.10. Let G be a connected vertex transitive graph. If G is diamond-free, then G is not superconnected if and only if
G ∼= Cn(Nm) (n ≥ 6 and m ≥ 1), or G ∼= L(Q3), or G ∼= H, where H is a 3-regular vertex transitive graph with g(H) = 3 and
|V (H)| ≥ 7.

Theorem 4.11. Let G be a connected vertex transitive graph. If G is 1-diamond-free (that is g(G) ≥ 4), then G is not
superconnected if and only if G ∼= Cn(Nm) (n ≥ 6 and m ≥ 1).

By Theorem 4.11, we can easily obtain the result in [9].

Corollary 4.12 ([9]). Let G be a connected vertex transitive bipartite graph. Then G is not superconnected if and only if
G ∼= Cn(Nm) (n ≥ 6 and m ≥ 1).
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