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DNA repair: Spot(light)s on chromatin
Mauro Modesti* and Roland Kanaar*†

Chromatin modifications regulate many nuclear
processes. Recent studies on the phosphorylation of a
histone 2A variant have revealed that this chromatin
modification is a general and evolutionarily conserved
cellular response to DNA double-strand breaks.
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Cell survival and maintenance of genome integrity are criti-
cally dependent on efficient repair of DNA double-strand
breaks. Double-strand breaks are an inescapable form of
DNA damage for proliferating cells. They are generated
when DNA replication forks collapse because of obstruc-
tions in the template strands [1]; by the action of exogenous
DNA damaging agents [2]; and during programmed DNA
rearrangements [3]. Eukaryotic cells have evolved multiple
systems for repairing double-strand breaks, which use either
homologous recombination or non-homologous end joining
at their mechanistic core [2]. To operate adequately, these
repair systems are intimately coupled to DNA damage sur-
veillance and signaling functions [4]. A remarkable finding
by the Bonner lab [5,6] has shed new light on a very early
step in the cellular response to double-strand breaks. 

Bonner and colleagues [5,6] have discovered that, within
seconds after induction of genomic double-strand breaks
by ionizing radiation, mammalian cells respond by a
specific and extensive chromatin modification around
the damaged sites, in the form of phosphorylation of a
histone 2A variant. In doing so, they have developed the
tools to detect double-strand breaks essentially at their
onset. Recently, it has become clear that this modifica-
tion is not limited to mitotic double-strand break repair
in mammalian cells. Instead, it appears to be a general
cellular response in many, if not all, processes that
involve double-strand break intermediates, including
mitotic double-strand break repair in yeast [7], V(D)J
recombination — the process by which variable (V),
diversity (D) and joining (J) elements are joined to generate
mature immunoglobulin and T-cell receptor genes — in
lymphoid cells [8] and meiotic recombination in mice [9].

Chromatin modification during double-strand break repair
The eukaryotic genome is organized into a nucleoprotein
structure called chromatin. The basic unit of eukaryotic

DNA organization is the nucleosome, which consists of a
stretch of 146 base pairs of DNA, wrapped around two
copies each of the histone proteins H2A, H2B, H3 and
H4, in addition to linker DNA bound by histone H1 [10].
Repeats of this unit are packaged into higher-order
chromatin structures. Three classes of H2A are present in
mammalian cells, and among these histone H2AX makes
up 2–25% of the H2A pool [5]. 

Rogakou et al. [5] discovered that, following exposure to
various agents that cause double-strand breaks, mammalian
cells responded by phosphorylating serine 139 in the
unique, and evolutionary conserved, carboxy-terminal
extremity of H2AX. This response was directly propor-
tional to the amount of double-strand breaks that were
introduced, and reached a maximum after 10–30 minutes.
Hundreds to thousands of phosphorylated H2AX (γ-H2AX)
molecules were formed per double-strand break, implying
that a single double-strand break leads to the modification
of a chromatin domain containing megabase pairs of DNA
[5]. Furthermore, using an antibody specific for γ-H2AX
and by inducing double-strand breaks in partial nuclear
volumes, Rogakou et al. [6] visualized the spectacular
modification of chromatin domains around the damaged
sites (Figure 1). To date, detection of γ-H2AX is probably
the most specific and efficient technique for spotting
double-strand breaks in cells.

γγ-H2AX formation during V(D)J recombination
Whether γ-H2AX formation is limited to the repair of
DNA damage-induced double-strand breaks in somatic
mammalian cells, or whether it is a more general cellular
response to double-strand breaks was addressed by the
Nussenzweig, Reid and Bonner labs [8]. Double-strand
breaks are also transient intermediates during a number of
programmed genomic rearrangements. For instance, during
the process of V(D)J recombination in lymphoid cells,
immunoglobulin and T-cell receptor genes are reorganized
by site-specific recombination [3]. The process is initiated
by double-strand breaks introduced by the RAG1 and
RAG2 proteins. The general double-strand break repair
machinery is then recruited to reassemble the broken
ends into functional genes. 

To address whether γ-H2AX is formed during V(D)J
recombination, γ-H2AX labeling by immunofluorescence
was combined with detection of DNA by fluorescence
in situ hybridization to pinpoint the T-cell receptor α locus
during V(D)J recombination. In 20% of freshly isolated
immature murine thymocytes, which are active in V(D)J
recombination, Chen et al. [8] detected one to two γ-H2AX
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foci (Figure 2a). The γ-H2AX foci were dependent on the
presence of the Rag proteins that mediate V(D)J recombi-
nation, and most of the γ-H2AX localized to the T-cell
receptor α locus.

Interestingly, Chen et al. [8] found that γ-H2AX nearly
always coincided with the Nijmegen breakage syndrome
protein (Nbs1), which is part of a complex, also containing
Rad50 and Mre11, that has been implicated in the cellular
response to double-strand breaks. This colocalization
suggests a role for the Rad50–Mre11–Nbs1 complex in
V(D)J recombination. It could help explain the high rates
of chromosomal translocations involving immunoglobulin
and T-cell receptor loci, and the increased susceptibility
to lymphoid malignancies observed in patients with a
defect in Nbs1 or Mre11 [11].

γγ-H2AX formation during meiosis
Double-strand breaks are also intermediates in the
generation of genetic diversity during meiotic recombi-
nation in Saccharomyces cerevisiae [12]. They appear prior
to synapsis, the process that ultimately ensures proper
disjunction of homologous chromosome pairs. In mice,

meiotic double-strand breaks have not been detected
physically, but recent results [13,14] have indicated that
recombination between homologous chromosomes is ini-
tiated by double-strand breaks that appear before the ini-
tiation of synapsis. With this in mind, Burgoyne and
colleagues [9] reasoned that the detection of γ-H2AX
could be used to mark double-strand breaks during
meiosis. They indeed detected γ-H2AX during the early
stages of meiotic prophase I, where chromosomes are not
yet synapsed. At later stages, the number of the γ-H2AX
signal dropped dramatically, disappearing from the chro-
matin of fully synapsed homologous chromosomes. Fur-
thermore, this pattern of γ-H2AX formation was not
detected during meiosis of an asynaptic mutant. These
results provide compelling evidence that, just as in yeast,
meiotic recombination in mice is initiated by double-
strand breaks whose processing is linked to homologous
chromosome synapsis.

Functional significance of γγ-H2AX formation
The Jackson lab [7] addressed whether γ-H2AX formation
is functionally significant using yeast genetics. S. cerevisiae
has only a single H2A variant, but it does have the carboxy-
terminal extension specific for the mammalian H2AX sub-
family. Downs et al. [7] showed by genetic ablation that
this extension is not essential for cell viability. However,
the truncation mutation, as well as a point mutation
changing the critical serine residue into alanine, did
affect the survival of cells following the induction of
double-strand breaks. Further analysis of strains lacking
the H2A carboxy-terminal extension showed that γ-H2A
is not critical for cell-cycle checkpoint functions after
damage induction, or for transcriptional induction of DNA
damage-responsive genes. The efficiency of repairing
double-strand breaks, however, was seen to be affected
when assessed by a plasmid reporter assay for non-homol-
ogous end joining. In contrast, an indirect measurement of
double-strand break repair through homologous recombi-
nation indicated that this repair system was only margin-
ally affected. Thus, in yeast, histone H2A may have a role
in DNA repair that is perhaps more critical during non-
homologous end joining. But it cannot yet be excluded
that the effect of γ-H2AX formation on DNA repair is
indirect, through a local difference in chromatin conforma-
tion resulting from phosphorylation [7]. 

In a collaborative effort, the Gellert and Bonner labs
investigated the relationship between double-strand break-
induced γ-H2AX foci and those formed in human cells by
double-strand break repair factors, specifically Rad50,
Rad51 and Brca1 [15]. Paull et al. [16] found that all three
repair factors can localize with γ-H2AX and genomic sites
of DNA damage (Figure 2b). Time-course experiments
revealed that γ-H2AX foci appear first. They are generally
followed by colocalization of Brca1 in the foci, and then
by either Rad50 or Rad51 in different subsets of cells.
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Figure 1

Visualization of the γ-H2AX response following DNA double-strand
breaks. (a) Nucleus of an irradiated human MCF7 cell after exposure
to 0.6 Gy and 30 minutes recovery. Nucleic acid staining is red and
γ-H2AX foci are green. (b) Laser-directed DNA double-strand breaks
in MCF7 cells. The path of the laser is indicated with a white line.
(c) Broken chromosome arms in a Muntiacus muntjak cell (2n = 6)
undergoing a defective mitosis. Green arrows point to ends of isolated
chromosome arms with γ-H2AX foci. (Images provided by E. Rogakou,
reproduced with permission from [6].)
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Given that Rad51 is very likely involved  in homologous
recombination only, while Rad50 is probably required for
both homologous recombination and non-homologous end
joining, it is conceivable that the γ-H2AX response of
somatic human cells is important for both double-strand
break repair systems.

Kinases involved in γγ-H2AX formation
The kinases involved in the responses of mammalian cells
to double-strand breaks include the DNA-dependent
protein kinase (DNA-PK), the ataxia telangiectasia mutated
protein (ATM) and the AT-related protein (ATR) [4].
These serine/threonine kinases belong to the family of
phosphatidylinositol-3-OH kinase-related kinases (PIKKs),
which have the amino acid motif SQE as a target site for
phosphorylation. Two members of the PIKK family, Mec1
and Tel1, are conserved in S. cerevisiae [4]. The SQE motif
is present in the conserved carboxy-terminus of human
H2AX and in the yeast equivalent. Experiments with
yeast mec1 and tel1 mutant strains showed that γ-H2A for-
mation upon double-strand break induction was largely
dependent on Mec1 [7]. In the mec1 strain, γ-H2A forma-
tion was not entirely abolished, but the residual phospho-
rylation was no longer detectable in a mec1 tel1 double
mutant strain. As Mec1 is able to phosphorylate H2A in
vitro, these results suggest that Mec1 is the primary kinase
involved in γ-H2A formation.

In mammalian cells the role of the kinases was addressed
with the use of wortmannin, a potent inhibitor of the
entire PIKK family [4]. Paull et al. [16] showed that pre-
incubation of cells with wortmannin before double-strand
break induction abolished γ-H2AX focus formation, as
well as the later appearance of Rad51 and Brca1 foci.
Interestingly, when cells were incubated with the drug
5 minutes after damage induction, no effect on focus
formation by any of these proteins was detected. These

results implicate PIKK proteins in the phosphorylation of
H2AX upon double-strand break induction, and γ-H2AX
as the seed for focus formation by other repair proteins
such as Rad51 and Brca1. Examination of the γ-H2AX
response in DNA-PK and/or ATM-deficient mammalian
cells led to the conclusion that, in addition to DNA-PK, at
least one other kinase, possibly ATM and/or ATR, can
phosphorylate H2AX after double-strand break formation
[16]. This functional redundancy could reflect the critical
importance of this very early event in the cellular response
to double-strand breaks.

Future directions
Given that the γ-H2AX response has now been detected
during mitotic double-strand break repair, V(D)J recom-
bination and meiosis, it is likely a truly general cellular
response to double-strand breaks. One might therefore
expect that the formation of γ-H2AX foci will shortly be
demonstrated in other processes in which double-strand
breaks have been implicated, such as class switch recom-
bination [17], somatic hypermutation of immunoglobulin
genes [18,19] and transposition [3]. Numerous other
intriguing questions remain to be answered about the
involvement of γ-H2AX in the cellular response to
double-strand breaks. For example, does this histone
modification in mammalian cells assist DNA repair or
DNA damage signaling, or both. γ-H2AX might promote
these processes by recruiting factors to damaged sites.
Another possibility is that γ-H2AX could trigger changes
in higher-order chromatin structure around damaged sites
in a way that would facilitate DNA repair or trigger the
signaling response.

The organization of higher-order chromatin structures in
interphase cells is still poorly understood. Some recent
studies [20] propose that interphase chromatin fibers
might be organized into domains of several megabase
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Figure 2

γ-H2AX localizes to sites of DNA double-
strand breaks. (a) In freshly isolated murine
thymocytes, γ-H2AX localizes to the T-cell
receptor α (TCRα) locus detected by
fluorescence in situ hybridization (FISH). The
cells are visualized by differential interference
contrast (DIC) microscopy. (b) Rad50
detected by immunofluorescence (IF)
localizes to γ-H2AX and laser-induced DNA
double-strand breaks in human MCF7 cells.
The laser path is clearly apparent. (Images for
panels (a,b) provided by M. Difilippantonio
and A. Nussenzweig, and T. Paull,
respectively.)
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pairs, which in turn, might contain smaller DNA loops.
Remarkably, Bonner and colleagues [5,6] have estimated
that a single genomic double-strand break induces the
modification of a chromatin domain containing megabase
pairs of DNA. It is therefore tempting to speculate on the
nature and dynamics of γ-H2AX foci. Does γ-H2AX for-
mation initiate at or near broken ends, and then spread out
along the chromatin fibers? Does γ-H2AX spread from a
loop containing a double-strand break to other smaller
loops within one chromatin domain? Are changes in super-
helix density in the broken loops sensed by the kinases
responsible for phoshorylating H2AX, or do they first rec-
ognize broken ends? Is γ-H2AX modification of chromatin
fibers used by the various DNA repair systems to synapse
broken ends or bring them in proximity of a homologous
template? These are only a few of the many intriguing
questions that remain to be answered. 
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