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Crack-like cohesive defect propagation within a plane orthotropic linear elastic layer is considered by
assuming that the defect, and its growth under load, can be modeled as the evolving separation along
a straight, predetermined nonlinear, nonuniform Needleman-type cohesive interface. The analysis
exploits a general form of orthotropy rescaling originally developed for the displacement boundary value
problem by Krenk (1979). It is shown that when the material is degenerate orthotropic (i.e., q = 1, q is the
orthotropic shear parameter) rescaling enables the determination of solutions from isotropic ones and,
when the material is fully orthotropic, rescaling allows for solutions to be obtained from problems with
the simpler cubic symmetry. (These are well known attributes of linear static sharp crack analysis, which
depend on an alternative form of rescaling the traction boundary value problem (Suo, 1990; Suo et al,
1991).) The procedure is demonstrated by obtaining degenerate orthotropic response from isotropic solu-
tions recently obtained by the authors in an investigation of both solitary as well as multiple cohesive
defect interaction problems in layered systems under arbitrary loading (Nguyen and Levy, 2009, 2011).
In order to obtain fully orthotropic solutions via rescaling, a novel integral equation formulation is devel-
oped based on exact infinitesimal strain elasticity solutions for rectangular domains composed of cubi-
cally symmetric media and subject to arbitrary loading. Explicit results are obtained for the simple
edge notch bend configuration, chosen so as to shed light on the mechanisms of defect propagation in
orthotropic layers. It is demonstrated that increasing the orthotropic stiffness ratio can precipitate a
quasi-brittle defect growth response. Furthermore, it is well known that in a number of technically
important problem geometries and loadings, static sharp crack solutions are only weakly dependent
on shear parameter q enabling the estimation of fully orthotropic behavior from isotropic solutions
(Suo et al, 1991). This result is shown to be true for nonlinear cohesive fracture analysis of the edge notch
bend configuration analyzed in this study.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

The purpose of this paper is to extend an exact theory of nonlin-
ear cohesive fracture of isotropic planar layers (Nguyen and Levy,
2009, 2011) to the realm of orthotropic elasticity. The technical sig-
nificance of the work stems from the widespread use of composite
layers, at least one of which is anisotropic, in adhesive and protec-
tive coatings (Chvedov and Jones, 2004; Graziano, 2000; Boelen
et al. 2004), in dental restorations consisting of ceramic, ceramic
filled polymer and cementitious layers (Niu et al, 2008) and in
the rehabilitation of structures where fiber reinforced plastic plate
is adhered to damaged concrete beams (Carpinteri et al, 2007;
Wang, 2007; Au and Buyukozturk, 2006; Pan and Leung, 2007;
Rabinovitch, 2008). Numerous other applications exist as well.
The subject of this paper is cohesive fracture within a single
orthotropic layer exclusively, while future work will address the
ll rights reserved.

: +1 315 433 9099.
heterogeneous multilayer cohesive interface fracture problem.
The present analysis requires a straight nonlinear, nonuniform
cohesive interface, along which a crack-like defect1 will evolve, to
be preselected to reside between two materially identical orthotro-
pic sub-layers. Note that by nonlinear, nonuniform cohesive inter-
face we mean an interface characterized by a traction-separation/
slip relation that is a vector valued expression generally dependent
on an interface coordinate dependent displacement jump vector
and explicitly dependent on the interface coordinate through the
interface strength. A well known example is the nonlinear exponen-
tial force law (Ferrante et al., 1982), which concerns normal separa-
tion only; given by sðn; mÞ ¼ ermax

m
d e�m=dn where s is the traction

vector on a side of the interface with unit normal n and v is the
(normalized) normal component of displacement jump across the
interface, generally dependent on an interface coordinate. The
interface constitutive quantities rmax, d characterize the interface
1 The term crack is reserved for the static sharp crack of fracture mechanics.
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2 For many materials of interest 0 < q < 5, 1/20 < k < 20 (Bao et al, 1992).
3 In what follows a caret will designate a scaled variable.
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strength and the dimensionless force length, respectively. Interface
nonuniformities including crack-like defects are considered by
allowing the interface strength to be a function of interface coordi-
nate x, i.e., rmax(x) (Needleman, 1990a; Needleman 1990b).

The approach taken here for the analysis of the orthotropic
cohesive fracture problem is similar in some respects to one that
is used in the well developed theory of static sharp cracks in plane
rectangular anisotropic media in general, and orthotropic media in
particular. In these problems, stress intensity factors for straight
cracks in a variety of geometrical and loading configurations can
be obtained by means of orthotropy rescaling of the governing
orthotropic elasticity equations resulting in problems with cubic
symmetry or, isotropic symmetry (provided the unscaled problem
is degenerate orthotropic, i.e., q = 1, q is the orthotropic shear
parameter (Suo, 1990; Suo et al, 1991)). The argument follows that,
because many problems of technical interest have been solved for
the simpler symmetry classes, their solutions can be exploited to
yield the desired fully orthotropic (or degenerate orthotropic) solu-
tions without much additional effort. Although the essence of the
nonlinear cohesive fracture problem is fundamentally different
from that of the linear static sharp crack, the overall philosophy
employed here is the same as that used in Suo (1990), Suo et al
(1991) to treat sharp cracks, i.e., to employ a rescaling of the equa-
tions to extract solutions for orthotropic media from isotropic or
cubic media. Because the cohesive fracture problem, in contrast
to the sharp crack problem, involves a nonlinear displacement
boundary condition, the general form of rescaling introduced by
Krenk (1979) will be employed. For problems with degenerate
orthotropy, it is shown that rescaling reduces the problem to iso-
tropic symmetry while fully orthotropic problems are reduced to
problems with cubic symmetry. In the former case, isotropic solu-
tions obtained by Nguyen and Levy (2009, 2011) are used to di-
rectly obtain orthotropic response via rescaling. In the later case
an exact methodology, based on elasticity solutions for problems
of cubic symmetry, is developed for loading consisting of pointwise
prescribed strong boundary conditions on the upper and lower
layer surfaces, and resultant prescribed weak boundary conditions
on the side surfaces. This system models cohesive fracture in a sin-
gle layer under a wide range of loading conditions. In particular,
the stress function equation is solved in two sub layers adhered
to each other along a cohesive interface and exact elasticity solu-
tions for the boundary displacement components are written for
each sub-layer. These are then pieced together to form integral
equations governing displacement discontinuity components nor-
mal and tangent to the interface. The equations are necessarily
nonlinear owing to nonlinear interface traction-separation/slip
relations required to characterize the interface. The solution pro-
cess proceeds by using eigenfunction expansion methods to reduce
the integral equations to an infinite set of nonlinear algebraic
equations which are then truncated and solved numerically.

In the next section (Section 2) orthotropy rescaling of the elas-
ticity equations is discussed and extended to include the nonlinear
cohesive interface boundary condition. Two problems involving
degenerate orthotropic media are then solved by a rescaling of iso-
tropic solutions obtained previously by the authors (Nguyen and
Levy, 2009, 2011). The first problem deals with a cohesive defect
(nonuniformity in interface strength) in a layer for which there is
symmetry about the defect line (Fig. 1), while the second deals
with a problem of stability of interfacial separation in a trilayer
system (Fig. 5). Because fully orthotropic solutions can be obtained
from cubic symmetry solutions, Section 3 presents an exact general
theory of nonlinear cohesive defect growth in a layer composed of
cubically symmetric media. Explicit results, including a discussion
of the issue of q dependence, are presented for an edge notch bend
configuration. The section closes with a demonstration of the
remarkable fact that, for this configuration, increasing the
orthotropic stiffness ratio can precipitate a transition from more
or less ductile defect growth to a quasi-brittle type of response
characterized by an abrupt jump in defect length. The final section
(Section 4) summarizes the findings and suggests further exten-
sions of the work.

2. Orthotropy rescaling; degenerate orthotropic solutions

2.1. Displacement boundary value problem

Hooke’s law for plane orthotropic linear elastic media assumes
the form (Lekhnitskii, 1981),

ei ¼ bijtj; i; j ¼ 1;2;6 ð1Þ

where the strain components ei, i = 1, 2, 6 are given in terms of the
strain tensor components by [e1, e2, e6]T = [exx, eyy, 2exy]T and the
stress components ti, i = 1, 2, 6 are given in terms of the stress ten-
sor components by [t1, t2, t6]T = [rxx, ryy, rxy]T. The coefficients bij,
i, j = 1, 2, 6 have different forms depending on whether one is deal-
ing with plane strain or plane stress. The coefficients bij, i, j = 1, 2, 6
have different forms depending on whether one is dealing with
plane strain or plane stress. Thus, if bij = aij, i, j = 1, 2, 6 are plane
stress components, then the plane strain components are given by
bij = aij � ai3aj3/a33, i, j = 1, 2, 6. In terms of engineering moduli the
aij are defined by, a11 = 1/E1, a22 = 1/E2, a12 = �t21/E2, a21 = �t12/
E1, a66 = 1/G and a13 = �t31/E3, a23 = �t32/E3, a33 = 1/E3 with
a12 = a21 = �t21/E2 = �t12/E1 (all other coefficients zero). The quan-
tities (E1, E2, E3) are stiffnesses, G is the in-plane shear modulus, and
(t12, t21, t13, t31, t23, t32) are Poisson ratios, i.e., tij characterizes the
contraction in the j direction due to an extension in the i direction.
There are four independent constants, i.e., five constants (b11, b22, -
b12, b21, b66) connected by one constraint b12 = b21. Following Krenk
(1979) introduce quantities valid for both plane stress and plane
strain: the effective stiffness E, the effective Poisson ratio t, the shear
parameter q and the stiffness ratio k,2

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b11b22

�1
p

; t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b12b21

b11b22

s
; q ¼ 1

2
2b12 þ b66ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b11b22

p ; k ¼ b11

b22
ð2Þ

It is well known that, for rectilinear anisotropic media, the equi-
librium equations will be satisfied when the stress components are

written in the form rxx ¼ @2u
@y2 ; ryy ¼ @2u

@x2 ; rxy ¼ � @2u
@x@y and the com-

patibility equations will be satisfied when the stress function u

satisfies the differential equation @4u
@x4 þ 2qk1=2 @4u

@x2@y2 þ k @4u
@y4 ¼ 0

where k;q are defined above (Lekhnitskii, 1981).
If a change of variables3 (Krenk, 1979) is introduced according to,

x̂ ¼ k1=8x; ŷ ¼ k�1=8y; ûx ¼ k�1=8ux; ûy ¼ k1=8uy;

êxx ¼ k�1=4exx; êyy ¼ k1=4eyy; êxy ¼ exy;

r̂xx ¼ k1=4rxx; r̂yy ¼ k�1=4ryy; r̂xy ¼ rxy;

ð3Þ

then the following standard relationships are true,

r̂xx ¼
@2û
@ŷ2 ; r̂yy ¼

@2û
@x̂2 ; r̂xy ¼ �

@2û
@x̂@ŷ

;

êxx ¼
@ûx

@x̂
; êyy ¼

@ûy

@ŷ
; 2êxy ¼

@ûy

@x̂
þ @ûx

@ŷ
:

ð4Þ

The stress function û now satisfies the rescaled equation,

@4û
@x̂4 þ 2q

@4û
@x̂2@ŷ2 þ

@4û
@ŷ4 ¼ 0; ð5Þ



Fig. 1. Clockwise from upper left. (i) center crack, (ii) double edge notched, (iii) edge notched bend, (iv) single edge notched.
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and, the stress strain relations assume the form,

êxx

êyy

2êxy

2
64

3
75 ¼ 1

E

1 �t 0
�t 1 0
0 0 2ðqþ tÞ

0
B@

1
CA

r̂xx

r̂yy

r̂xy

2
6664

3
7775 ð6Þ

Thus, both orthotropic plane stress and plane strain constitutive
relations, when expressed in rescaled variables (3), assume the plane
stress form (6) for materials with cubic symmetry provided the effec-
tive material constants (E, t, q) take on the appropriate values
through the definitions for the bij coefficients (see (1) and (2)).

2.2. Decohesive interface boundary condition

The particular problems of interest in this work involve the
analysis of crack-like cohesive defect growth by the evolving separa-
tion/extension along a preselected interface. This requires a bound-
ary condition that has a nonlinear coupling of the normal or shear
interface traction components to the normal and tangential dis-
placement jump components. In order to model preexisting de-
fects, these relations also depend functionally on an interface
coordinate. To see how the change of variables (3) effect nonlinear
interface force laws assume that interface traction components
along a straight interface y = 0 (in unscaled variables) are of the
form smax(x)fx(u/dt, v/dn), rmax(x)fy(u/dt, v/dn)where smax(rmax) is
the interface strength in shear(normal) mode and fx(fy) are nondi-
mensional shear(normal) traction components equal to the stress
components on one side of the interface,

rxyðx; y ¼ 0Þ ¼ smaxðxÞfx
u
dt
;
v
dn

� �
;

ryyðx; y ¼ 0Þ ¼ rmaxðxÞfy
u
dt
;
v
dn

� �
: ð7Þ

The interface force representation (7) is general enough to
accommodate many force laws currently in use including the
uncoupled piecewise linear model and the Xu–Needleman law
used below. (In the latter, fy depends on a ‘‘q’’ coupling parameter,
the ratio of shear interface energy to normal interface energy for
complete separation, which remains unchanged in the rescaling

process, i.e., ŝmax d̂t
r̂max d̂n

¼ smaxdt
rmaxdn

. This follows from (8) and (9) below.) In

(7), x is now the normalized interface coordinate and u, v the nor-
malized displacement jump components tangent and normal to
the interface, respectively defined by lu ¼ ½ux� ¼
Limuxðx; y # 0Þ � Limuxðx; y " 0Þ, lv ¼ ½uy� ¼ Limuyðx; y # 0Þ�Limuy

ðx; y " 0Þ and dt, dn are the interface force length constitutive con-
stants in shear and normal mode, respectively. Quantities
x, u, v, dn, dt are normalized by the characteristic dimension l (for
example the layer half length) along the x axis so that in terms
of scaled variables,

v̂ ¼ v ; û ¼ k�1=4u; d̂n ¼ dn; d̂t ¼ k�1=4dt; l̂ ¼ k1=8l ð8Þ

where use has been made of (3). The interface traction components
become,

r̂xyðx̂; ŷ ¼ 0Þ ¼ ŝmaxðx̂Þfxðû=d̂t; v̂=d̂nÞ;
r̂yyðx̂; ŷ ¼ 0Þ ¼ r̂maxðx̂Þfyðû=d̂t ; v̂=d̂nÞ;
with ŝmax ¼ smax;

r̂max ¼ k�1=4rmax ð9Þ

For interface force laws of the form (7), the work of separation in
normal mode (/n) and the initial interface stiffness (jn) are defined
by,

/n ¼ rmax

Z 1

0
fyð0;v=dnÞdðlvÞ ¼ ðldnÞrmaxs1; s1 ¼

Z 1

0
fyð0; nÞdn

jn ¼ rmaxðldnÞ�1D2fyð0; nÞ
��
n¼0 ¼ ðldnÞ�1rmaxs2; s2 ¼ D2fyð0; nÞ

��
n¼0

ð10Þ

where ldn is the dimensioned force length in normal mode and
D2fyð0; nÞ

��
n¼0 means take the derivative of fy with respect to its second

argument n and then substitute n = 0. In rescaled variables (8)–(10)
imply,

/̂n ¼ k�1=8/n;

ĵn ¼ k�3=8jn

ð11Þ

As an example consider the physically based nonlinear expo-
nential force law for normal mode (Ferrante et al, 1982) given by,

ryyðx; y ¼ 0Þ ¼ rmaxfyðv=dnÞ;

fyðv=dnÞ ¼ e
v
dn

e�v=dn
ð12Þ

where rmax is constant. In normal mode the work of separation is
given by /n = e(ldn)rmax while the initial interface stiffness is given
by jn = e(ldn)�1rmax. In rescaled variables the boundary condition
assumes the form r̂yyðx̂; ŷ ¼ 0Þ ¼ er̂max

v̂
d̂n

e�v̂=d̂n .
Note that in all of the calculations that follow we use the

smooth hyperelastic exponential interface force law proposed by
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Fig. 2. Interface force law in normal and shear mode.
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Xu and Needleman (1993) which couples the physically based
nonlinear normal force-separation relation (12) to a phenomeno-
logical nonlinear shear mechanism. This model allows for both
normal and shear failure modes along the interface and was orig-
inally derived for sharp, crystalline interfaces. It is used here be-
cause it is general enough to capture most of the physically
reasonable interactions between the normal and shear modes.
Although certain anomalies are known to exist with the Xu–Nee-
dleman force law improvements/modifications are not without
their own limitations (Van den Bosch et al., 2006). For an up-to-
date review of interface models, some of which include a wider
range of interface behavior such as coupled adhesion, friction
and viscous dissipation under monotonic and cyclic loading, see
Raous (2011). Here we will use the Xu–Needleman law in its ori-
ginal form. In Nguyen and Levy (2009) the Xu–Needleman law
was compared with an uncoupled piecewise linear law in an iso-
tropic bilayer system. The results were qualitatively the same
although the Xu–Needleman law gave a slightly stiffer response.
Because many previous studies have expounded at length on
the features of this particular force law we only note here that
there are four interfacial constitutive parameters4: normal
characteristic force length (dn) normalized by layer half-length (l),
the normal interface strength (rmax), the ratio of shear interface en-
ergy to normal interface energy for complete separation (q = /t//n),
and the shear stiffness/strength parameter C. Another equivalent
set is: normal characteristic force length (dn), the normal interface
strength (rmax), the shear characteristic force length (dt) (defined
by dt = C�1dn), the shear interface strength (smax) (defined by
smax ¼ qCrmax

ffiffiffiffiffiffi
2e
p

) where the first (last) two characterize normal
(shear) mode response. Furthermore, from (10), the normal
(shear) energy of complete separation is given by /n ¼ ðldnÞ
rmaxe1; ð/t ¼ ðldtÞsmax

ffiffiffiffiffiffiffiffi
e=2

p
Þ with /t = q/n. The initial normal stiff-

ness is jn = (ldn)�1rmaxe while the initial shear stiffness is

jt ¼ ðldtÞ�1smax

ffiffiffiffiffiffi
2e
p

. The uncoupled normal and tangential interface
constitutive relations fyð0; vÞ and fxðu; 0Þ are shown in Fig. 2 for dif-
ferent interface characteristic force lengths dn and dt, respectively.
Note that the parameter values q = 0.5, C = 0.7 are used in all
calculations reflecting an interface that is weaker and more ductile
(smax = .816rmax, dt = 1.43dn, /t = 0.5/n), and initially more compli-
ant, in shear (jt � 1

2 jn).
The rescaled problem defined by (4), (5), (6), and (9) involves

only three bulk material parameters (E, m, q) and is formally equiv-
alent to problems concerning materials with cubic symmetry. Note
that if q = 1, the so called degenerate class of orthotropic materials
(Suo et al, 1991), the rescaled constitutive relation (6) is of isotro-
pic form and depends on only two bulk material parameters (E, m).
For many orthotropic traction boundary value problems involving
static sharp cracks the solutions are insensitive to q. This feature
enables the estimation of stress intensity factors for fully orthotro-
pic media from isotropic ones via rescaling. One of the purposes of
this paper is to investigate whether this attribute might hold for
nonlinear cohesive fracture analysis. (This will be considered in a
later section.) The following two problems are concerned with
the determination of degenerate orthotropic behavior from isotro-
pic solutions obtained in previous work (Nguyen and Levy, 2009,
2011).

2.3. A cohesive defect in an orthotropic plate

Consider a cohesive defect in an isotropic plate in plane stress,
situated along the x-axis and opened in such a way that there is
no shear along the defect line. In this problem the cohesive defect
4 It is assumed that maximum shear that can be transmitted decreases with
increasing separation.
is taken in the form of an interface coordinate dependent interface
strength given by,

rmaxðxÞ ¼
r0

max; jxj > a

r0
max � p; jxj 6 a

(
ð13Þ

where r0
max is constant. (Note that the crack-like defect approxima-

tion to the static sharp crack can be obtained by letting p ¼ r0
max).

Four such configurations have been considered for the static sharp
crack in Bao et al (1992), i.e., the center crack (CC), the single edged
notch (SEN), the double edged notch (DEN) and the edge notch bend
(ENB) configurations (Fig. 1). For cohesive defects in these configu-
rations, the normal component of displacement jump along the en-
tire cohesive interface can be written as,

v̂ ¼ H x̂; â;
r̂
E
;
r̂0

max

E
; d̂n; t

� �
ð14Þ

where â (normalized by l̂) is the defect or half-defect length
depending on the particular defect configuration. The function H
can be found in numerical or graphical form by the methods de-
scribed in Nguyen and Levy (2009, 2011). Rescaling the variables
according to (3) and (8) leads to,

v ¼ H x; a;
r

k1=4E
;
r0

max

k1=4E
; dn; t

� �
ð15Þ

where E, t are now regarded as effective orthotropic moduli in the
sense of (2). Thus, degenerate orthotropic response is obtained by
letting,

E! k1=4E ¼ k1=4ðb11b22Þ
�1=2

; t!
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b12b21

b11b22

s
ð16Þ

in the isotropic solution. Note that v̂ may depend on ĥ=̂l as well and
if this ratio is small the replacement scheme will also involve
ĥ=̂l! k�1=4h=l. In the case of a fiber composite where the (stiffer) fi-
bers are oriented in the x direction E1 > E2 and k < 1. The effective
half length of the orthotropic plate k1=4l is therefore less than its iso-
tropic counterpart by a multiplicative factor of k1=4. This phenome-
non has been termed k1=4contraction by Suo et al (1991) and has
implications in choosing the proper lengths of orthotropic test spec-
imens in order to minimize end effects. For the case of a cohesive
defect (15) indicates that the effective stiffness E, defined in (2),



5 Counted down from the top.
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undergoes an analogous k1=4 stiffness contraction To see this, com-
pare the response of a degenerate orthotropic layer with that of
an isotropic layer for the case where they both have identical defect
geometry (a ¼ â), loading (r ¼ r̂), interface constitutive constants
(r0

max ¼ r̂0
max; dn ¼ d̂n) and bulk constitutive constants (E, t) such

that the isotropic stiffness and Poisson ratio are the same as their
effective orthotropic counterparts as given by (2). Under these con-
ditions (14) and (15) indicate different separation behaviors deter-
mined by the stiffness ratio k.

The traction component along the entire cohesive interface is
given by (9)2,

r̂yy

r̂
¼ r̂maxðx̂; âÞ

r̂
fyðv̂=d̂nÞ ð17Þ

which in rescaled variables is of identical form provided the carets
are removed. Thus, ryy is obtained from r̂yy by the same replace-
ment scheme as that of v. When comparing degenerate orthotropic
response to that of an isotropic layer of similar properties it was
found that the separation v changed with stiffness ratio k. This same
behavior can be expected of ryy as well given (17). By judicious
choice of constitutive coefficients the above analysis can be used
to obtain an approximation of static sharp crack behavior (this has
been done in Nguyen and Levy (2011) for isotropic response of a
layer with center crack geometry). In particular, p ¼ r0

max in (13),
the remote tensile loading r̂ is assumed less than the interface
strength r̂0

max (which is taken to equal the elastic modulus E), and
the elastic modulus is assumed less than the initial interface stiff-
ness, i.e., r̂ < r̂0

max=100 < r̂0
max ¼ E < er̂0

max=d̂n where er̂0
max=d̂n is

the normalized initial interface stiffness in normal mode. It can be
shown that under these assumptions rescaling leads to an interface
separation behind the defect tip given by,

v ¼ k�1=4r
E

Hðx; aÞ ð18Þ

and a normal component of traction ahead of the defect tip given
by,

ryyðx; aÞ ¼ rKðx; aÞ ð19Þ

which is independent of stiffness ratio k. Note that (18) and (19)
were obtained assuming that that the quantity k�1=4h=l is large en-
ough to be neglected. For the problem of a sharp crack in an isotro-
pic plate in one of the four plane stress opening mode
configurations (CC, SEN, DEN, DNB) solutions are well known (Bao
et al, 1992). When these results are rescaled for degenerate ortho-
tropic material behavior they assume the form of (18) and
(19).Fig. 3 depicts the normalized traction (or stress concentration
factor) along the defect line in the CC configuration (Fig. 1) for the
crack-like defect of half length a = 0.5. Also plotted is the static sharp
crack solution. All results have been rescaled from isotropic results
(for the sharp crack we have used the Koiter and Benthem solution
(Koiter and Benthem, 1973), while for the cohesive defect we have
used the results of Nguyen and Levy (2011)). Note that different val-
ues of stiffness ratio k give different values for E for an equivalent
isotropic material. Curves for the crack-like defect are plotted for five
different values of stiffness ratio k. Note that these curves are gen-
erally independent of k only when k�1=4h=l > 2 (Bao et al 1992) (this
is the case for which the sharp crack solution has been plotted). For
the values of h/l chosen, i.e., h/l = 0.675, the condition k�1=4h=l > 2
will be satisfied when k < 0:013. Two of the five curves
(k ¼ 0:001;0:01) plotted in Fig. 3 satisfy this condition and indeed
coalesce with each other (and approximate the sharp crack solution
which is k independent). Recall that the classical fracture solution
has a stress singularity at the crack tip and the normalized stress
away from the crack tip decreases to values that are smaller than
the nominal stress (for the crack length shown). This is because
the static sharp crack solution is limited in that it applies only in
the neighborhood of the crack tip. The solutions for the crack-like
cohesive defect presented here yield stress distributions that (i) have
finite values at the defect tip (assumed to be located at the unloaded
defect half length), (ii) have values that are valid along the entire
length (2l in Fig. 1) of the cohesive defect line (not just near the de-
fect tip) and (iii) evolve nonlinearly with increasing load. The crack
like cohesive defect solutions, at points far from the defect tip, be-
comes smaller than the nominal stress when the stiffness ratio k in-
creases (Fig. 3) and, in fact may become negative near the vertical
boundary. This phenomenon is an effect of rescaling and the finite
height h of the geometry on the normal stress component which
cannot be captured in classical crack theories (i.e., k�1=4h=l and
increasing k contracts h). Thus, for small k�1=4h=l bending dominates
over the direct action of the nominal stress giving rise to compres-
sive regions ahead of the defect tips.

Fig. 4 depicts the distribution of normalized normal component
of displacement jump v at different values of stiffness ratio k. Note
that the curves are not consistent with what we would expect
physically because they indicate that increasing k (increasing ratio
E2/E1) gives rise to a more compliant behavior. Furthermore this
fact, that the response becomes more compliant under increasing
k, seems to contradict (18) which indicates a contrary response.
This is due to the fact that in this calculation the rigid displace-
ments of the top and bottom sublayers are controlled and not
the nominal load. Thus, for the same rigid displacements, an in-
crease in E2 reduces the stretching of the sublayers in the nominal
stress direction giving rise to an increase in v. Note that the curves
reveal very small separations of the interface in bonded zones and
a short contact region at the ends of the interface that is consistent
with the stress distribution in Fig. 3.

2.4. The stability of separation in a uniform trilayer system

Consider the following problem of the uniform separation of
three layers bonded together along two interfaces characterized
by uniform (constant r̂max) nonlinear traction-separation/slip rela-
tions (7). This problem is nontrivial owing to the fact that the mid-
dle layer will displace rigidly at some point in the deformation
process while maintaining uniform separations above and below
it. Assume the layers have identical, degenerate orthotropic mate-
rial properties and that the outer two layers have the same thick-
ness (Fig. 5). This problem was chosen for analysis because it
allows the direct exploration of some of the features of orthotropic
response by rescaling the exact nontrivial solutions to the isotropic
version of the problem (Nguyen and Levy, 2011). In Nguyen and
Levy (2011) the outer two layers were assumed identical, but
materially and geometrically distinct from the middle layer. (This
system is not considered here because the present form of rescal-
ing does not readily allow for a meaningful definition of displace-
ment jump across two materially distinct orthotropic layers.) The
equations governing the solution to the isotropic plane stress prob-
lem are obtained from global equilibrium of the layers and, the
nonlinear interface displacement/traction boundary condition be-
tween the layers,

r̂� f 1
y

v̂1

d̂n

� �
¼ 0; r̂� f 2

y
v̂2

d̂n

� �
¼ 0;

v̂1 þ v̂f 1
y

v̂1

d̂n

� �
� v̂1

R þ v̂2
R ¼ 0; v̂2 þ v̂f 2

y
v̂2

d̂n

� �
� v̂2

R � v̂1
R ¼ 0;

ð20Þ

where v̂1 (v̂2) are uniform separations of the first (second) inter-
face,5 v̂1

Rð¼ �v̂3
RÞ is the prescribed rigid displacement of the upper

layer (lower layer) and v̂2
R is the rigid displacement of the middle



Fig. 3. Distribution of normal traction. Center crack geometry; Degenerate orthotropy.

Fig. 4. Distribution of normal separation for the cases in Fig. 3.
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Fig. 5. The uniformly loaded materially uniform trilayer.

v̂
R
1

symmetric

nonsymmetric

v̂R
1

v̂R
2

Fig. 7. The uniform mode solution. Displacement. v̂d̂�1
n ¼ 0:1;0:5;1:0;1:5;2:0.
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layer. Note that in this section the boundary traction r̂ is normalized
by r̂max and is part of the solution. All displacement quantities in
(20) are normalized by layer half length l̂. In addition, the nondimen-
sional parameter v̂ is given by,

v̂ ¼ r̂max

E
ðĉ1 þ ĉ2Þ ð21Þ

where ĉ1; ĉ2 are the normalized thicknesses of the first and second
layers, e.g., ĉ1 ¼ ĥ1=̂l. Note that interfacial separations above and be-
low the middle layer v̂1, v̂2 are not necessarily the same because
(fy)�1, for the force law (12), is multivalued. The solutions for
v̂2

R; r̂ can be obtained from (12), (20)1 and (20)2 (once v̂1, v̂2 have
been eliminated using (20)3 and (20)4). They are given implicitly by,

solution one : v̂2
R ¼ 0; v̂1

R � v̂r̂þ d̂nW1ð�r̂e�1Þ ¼ 0;

solution two : v̂2
R þ

1
2

d̂n½W1ð�r̂e�1Þ �W2ð�r̂e�1Þ� ¼ 0;

v̂1
R � v̂r̂þ 1

2
d̂n½W1ð�r̂e�1Þ þW2ð�r̂e�1Þ� ¼ 0;

ð22Þ

where W1, W2 are real valued branches of the multivalued Lambert
W function (recall that the solution to the equation y exp (y) = x is
y = W(x) and, as seen in Fig. 6, W1(x) is the principal branch with
W1(0) = 0 (Corless et al, 1996)). Note that the uniform separations
v̂1, v̂2 then follow from (20)3 and (20)4. The global behavior of solu-
tions (22) is summarized in Fig. 7 which depicts the rigid displace-
ment of the middle layer as a function of rigid loading of top (and
bottom) layer v̂1

Rð¼ �v̂3
RÞ for different values of parameter v̂d̂�1

n .
Fig. 6. The real valued branches of the Lambert W function.
The figure indicates that for values of v̂1
R=d̂n less than a critical value

v̂1
RC=d̂n (which is greater than one) only the symmetric solution is

available, i.e., one for which the centerline of the middle layer does
not displace rigidly. For values of v̂1

R=d̂n, greater than critical v̂1
RC=d̂n,

generally dependent on v̂d̂�1
n , a second, nonsymmetric solution be-

comes available i.e., one for which the centerline of the middle layer
displaces rigidly. The symmetric and nonsymmetric solutions are
illustrated in the boxes in Fig. 7. It can be shown (Nguyen and Levy,
2011) that the critical value v̂1

RC=d̂n is given by,

v̂1
RC ¼ d̂n þ v̂ ¼ d̂n þ

r̂max

E
ðĉ1 þ ĉ2Þ: ð23Þ

Furthermore, the transition to the nonsymmetric branch can be
gradual, for values of v̂d̂�1

n < 2=3, or abrupt for values of
v̂d̂�1

n > 2=3. Thus, from (21), small force length parameter d̂n, large
interface strength r̂max, small effective stiffness E, and large thick-
ness ratios ĉ1 ¼ ĥ1=̂l; ĉ2 ¼ ĥ2=̂l favor abrupt or brittle nonsymmet-
ric separation. As one moves from the origin along the positive
v̂1

R=d̂n axis in Fig. 7 the number of solutions increases from 1 (when
v̂1

R=d̂n < v̂1
RC=d̂n) to 3 (when v̂1

R=d̂n > v̂1
RC=d̂n and v̂d̂�1

n < 2=3) to 5
(when v̂1

R=d̂n > v̂1
RC=d̂n and v̂d̂�1

n > 2=3). Because there is no bias in
the system towards displacement above or below the horizontal,
nonsymmetric solutions can be in the first or fourth quadrant.
(For a discussion of the stability characteristics of the equilibrium
branches see Nguyen and Levy (2011)).

The solution described above is for the plane stress isotropic
problem or, by the rescaling procedure outlined above, for the
plane degenerate orthotropic problem provided the careted quan-
tities are rescaled. The transformation from rescaled variables to
original variables can be affected through the transformation for-
mulae (3) and (8) together with the relations ŝmax ¼ smax,
r̂max ¼ k�1=4rmax. Thus,

r̂ ¼ r; v̂1

d̂n

¼ v1

dn
; v̂1

R ¼ v1
R; v̂2

R ¼ v2
R; ð24Þ

where r is the boundary loading normalized by rmax, (rmax, dn) are
respectively the (constant) interface strength and the normalized
(with respect to the layer half-length l) interface force length
parameter. The quantities v1;v2

R;v1
R are the displacement jump,

the rigid displacement of the middle layer and the controlled rigid
displacement of the outer layers normalized by l. The parameter
v̂, defined by (21), in unscaled variables becomes,



6 A function which is piecewise continuous with a finite number of bounded jump
discontinuities.
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v̂ ¼ r̂max

E
ðĉ1 þ ĉ2Þ ¼ k�1=2 rmax

E
ðc1 þ c2Þ ¼ k�1=2v

¼ b22rmaxðc1 þ c2Þ; ð25Þ

where use has been made of (2) and the following,

ĉ1 ¼
ĥ1

l̂
¼ k�1=8h1

k1=8l
¼ k�1=4 h1

l
¼ k�1=4c1; ĉ2 ¼ k�1=4c2;

r̂max ¼ k�1=4rmax

ð26Þ

A direct analysis of the general orthotropic equations (4)–(6) and
(12)1 reveals that governing equations are identical in form to
(20) which were obtained by rescaling of the isotropic equations.
Note that for this problem, both the nondegenerate (q – 1) and
the degenerate (q = 1) orthotropic equations are the same because
they are independent of shear parameter q. Thus, the solution
(22) (for force law (12)2), and the critical rigid separation (23) apply
to both the nondegenerate (q – 1) and the degenerate (q = 1) ortho-
tropic problems provided v̂ ¼ b22rmaxðc1 þ c2Þ. Because the impact
of orthotropy is felt solely through the parameter v̂ this allows for
a simple interpretation of behavior based on the non-dimensional-
ized isotropic solution (Fig. 7). Note that this feature is independent
of the particular form of force law provided it can be written in the
form rmaxfy(v/dn).

It is interesting to note that for plane stress b22 = 1/E2, so the
problem is formally equivalent to the isotropic problem with iso-
tropic stiffness E replaced by directional stiffness E2. For plane
strain b22 ¼ 1=E2 � m2

32=E3 and, because a nonzero stress rzz is in-
duced owing to the plane strain constraint (ezz = 0), the response
will depend on the stiffnesses in both y and z directions. In order
to explore this behavior consider transversely isotropic response
arising from a randomly arrayed unidirectional fiber reinforced
composite layer in which the fibers are much stiffer than the ma-
trix. Consider two different configurations, one in which the fibers
are oriented along the x axis and another in which the fibers are
oriented along the z axis. In both cases the rigid separation applied
to the layers is perpendicular to the fiber direction. In the first case
however E2 = E3 < E1, while in the second case E1 = E2 < E3. The
above considerations indicate identical response in both cases for
plane stress (b22 = 1/E2) governed essentially by the stiffness of
the matrix. In contrast to plane stress, plane strain gives markedly
different response for the two fiber configurations. In the first case
(E2 = E3 < E1) and b22 ¼ ð1� m2

32Þ=E2 which is equivalent to isotropic
response in the y, z plane. In the second case, E1 = E2 < E3 so that
b22 = 1/E2 (in the limit of infinitely stiff fibers). In this case b22 is
larger (the response is more compliant in the y direction) and, by
(25) v̂ is larger as well. The consequences for behavior are indi-
cated in Fig. 7, i.e., a delayed transition to unstable behavior but
a tendency towards more brittle response.

3. Problems with cubic material symmetry; q dependence

3.1. General theory

The general theory for materials with cubic symmetry follows
along the lines of Nguyen and Levy (2009) for isotropic materials.
Note that in this subsection all field variables are unscaled and ap-
ply to problems with cubic symmetry. Application to the fully
orthotropic problem by means of rescaling will be carried out in
a later subsection. Consider a plane linear elastic sublayer
B ¼ fðx; yÞ x 2 ð�l; lÞ; y 2 ð�h; hÞj g subject to strong (that is point-
wise prescribed) traction boundary conditions on the horizontal
surfaces,

rxyðx; y ¼ hÞ ¼ f 1
x ðxÞ; ryyðx; y ¼ hÞ ¼ f 1

y ðxÞ
rxyðx; y ¼ �hÞ ¼ f 2

x ðxÞ; ryyðx; y ¼ �hÞ ¼ f 2
y ðxÞ

ð27Þ
and weak (that is resultant prescribed) boundary conditions on the
vertical surfaces,

Z h

�h
rxyðx ¼ l; yÞdy ¼ Q 2;

Z h

�h
rxyðx ¼ �l; yÞdy ¼ Q 1Z h

�h
rxxðx ¼ l; yÞdy ¼ N2;

Z h

�h
rxxðx ¼ �l; yÞdy ¼ N1Z h

�h
yrxxðx ¼ l; yÞdy ¼ M2;

Z h

�h
yrxxðx ¼ �l; yÞdy ¼ M1

ð28Þ

where (N1, Q1, M1, N2, Q2, M2) are the prescribed axial force, shear
force and bending moment per unit depth of the cross section,
respectively. The loadingsðf 1

y ; f
2
y ; f

1
x ; f

2
x Þ, representing normal and

shear traction components on the horizontal surfaces, are as-
sumed to be square integreble6 and consistent with global equilib-
rium of the sublayer, but otherwise arbitrary. Note that the
superscript on the traction components ðf i

x; f
i
yÞ indicates top

(i = 1) or bottom (i = 2) surface (for resultants (Ni, Qi, Mi) the
subscript indicates left (i = 1) or right (i = 2) surface). Depending
upon whether the sublayer surface is interior or exterior the func-
tions ðf 1

x ; f
1
y ; f

2
x ; f

2
y Þ are regarded as applied boundary tractions or,

reactive displacement jump dependent interface tractions. The
equations of global equilibrium representing force and moment
balance are given by,

N2 � N1 þ
Z l

�l
½f 1

x ðxÞ � f 2
x ðxÞ�dx ¼ 0;Q2 � Q1 þ

Z l

�l
½f 1

y ðxÞ � f 2
y ðxÞ�dx ¼ 0

lðQ2 þ Q1Þ þ ðM1 �M2Þ þ
Z l

�l
x½f 1

y ðxÞ � f 2
y ðxÞ�dx� h

Z l

�l
½f 1

x ðxÞ þ f 2
x ðxÞ�dx ¼ 0

ð29Þ

where use has been made of the weak boundary conditions (28).
In the Appendix stress function solutions that satisfy the stress

function equation (5) and the global equilibrium/boundary condi-
tions are constructed in the form of an eigenfunction expansion.
By writing normal and shear loads ðf 1

x ; f
1
y ; f

2
x ; f

2
y Þ on the upper and

lower surfaces as mean convergent Fourier expansions a concise
form for the stress and displacement fields within a single sublayer
can be obtained. Of particular importance to the development of
interfacial integral equations for the sublayer system are the
boundary displacement components ux(x, y = ± h), uy(x, y = ±h)
and these are given by (A.4).

Integral equations governing the separation/slip of a defect
evolving along a straight predetermined cohesive interface can
be obtained by employing (A.4) for two materially identical sublay-
ers and properly identifying applied boundary loads and reactive,
displacement jump dependent cohesive tractions (Fig. 8). An addi-
tional sub or superscript is now included which indicates sublayer
number (for example the j subscript in ðf ij

x ; f
ij
y ;Nij;Qij;MijÞ). Thus, if

the single sublayer solution is applied to the upper (lower) sublay-
er then f 11

x ; f 11
y (f 22

x ; f 22
y ) represents applied boundary loads while

f 21
x ¼ f 12

x ; f 21
y ¼ f 12

y are cohesive traction-separation/slip relations
which may be written as f 21

x ðx;uðxÞ;vðxÞÞ; f 21
y ðx;uðxÞ;vðxÞÞ. The nor-

malized displacement jump components u(x), v(x) are defined by
u = [u] � ex/l, v = [u] � ey/l where the displacement jump vector
[u] is the difference u(x, y1 = �h1) � u(x, y2 = h2), u(x, y1 = �h1) ta-
ken in the top sublayer and u(x, y2 = h2) taken in the bottom sub-
layer. Integral equations governing the normal component of
displacement jump (or separation) v and tangential component
(or shear slip) u can be obtained by writing (A.4) for the lower
(upper) surface of the top (bottom) sublayer and subtracting. This
leads to,
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Fig. 9. The edge defect layer under end moments. g = h/H.
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Fig. 8. Two sub layer system.
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uðxÞ ¼uR þx1c1 þ hR
x ðxÞ þ

Z l

�l
K11

xy ðx; x0Þf 11
y ðx0Þdx0

þ
Z l

�l
K11

xx ðx; x0Þf 11
x ðx0Þdx0 þ

Z l

�l
K22

xy ðx; x0Þf 22
y ðx0Þdx0

þ
Z l

�l
K22

xx ðx; x0Þf 22
x ðx0Þdx0 þ

Z l

�l
Kxyðx; x0Þf 21

y ðx0;uðx0Þ;vðx0ÞÞdx0

þ
Z l

�l
Kxxðx; x0Þf 21

x ðx0;uðx0Þ; vðx0ÞÞdx0

vðxÞ ¼ vR �x1xþ hR
yðxÞ þ

Z l

�l
K11

y ðx; x0Þf 11
y ðx0Þdx0

þ
Z l

�l
K11

yx ðx; x0Þf 11
x ðx0Þdx0 þ

Z l

�l
K22

yy ðx; x0Þf 22
y ðx0Þdx0

þ
Z l

�l
K22

yx ðx; x0Þf 22
x ðx0Þdx0 þ

Z l

�l
Kyxðx; x0Þf 21

x ðx0;uðx0Þ;vðx0ÞÞdx0

þ
Z l

�l
Kyyðx; x0Þf 21

y ðx0;uðx0Þ; vðx0ÞÞdx0 ð30Þ

where Kxx ¼ K21
xx � K12

xx ; Kxy ¼ K21
xy � K12

xy ; Kyx ¼ K21
yx � K12

yx ; Kyy ¼ K21
yy

�K12
yy and c1 is the thickness ratio of the first layer (i.e., h1/l). Note

that the first four integrals in each integral equation represents
the effect on behavior arising from the pointwise prescribed bound-
ary loads on the upper and lower surfaces. The functions hR

x and
hR

y are simply the differences between h1
x , h2

x and h1
y , h2

y respectively,
Fig. 10a. Distribution of normal tra
normalized by half-length l. (For explicit expressions of these
quantities as well as the kernel functions see the Appendix.) The ri-
gid body equilibrium terms uR, vR, x1 appearing in the integral
equations are handled in the following way. If an equilibrium set
of applied boundary loads are chosen for the entire sublayer system
then satisfaction of equilibrium equations (29) for one sublayer im-
plies satisfaction of equilibrium for the second sublayer. Thus we
have available three additional equations (29) to solve for three of
the 6 rigid body displacement quantities associated with the two
individual sublayers. In (30) we have fixed the bottom sublayer
against rigid translation and rotation. The remaining 3 rigid body
terms associated with the top sublayer will be obtained using
(29). A prescription of the quantities f 21

x ; f 21
y as functions of interface

coordinate x and normal separation v and shear slip u completes the
governing equations to the problem. The system (30) and (29) is
therefore well posed and its solution u(x), v(x) enables the determi-
nation of traction distributions f 21

x ðxÞ; f 21
y ðxÞ along the defect line. If

desired, the stress field within the sublayers can now be determined
since all the boundary conditions are available explicitly.

The solution to system (30) and (29) are obtained by expanding
the separation/slip fields u(x), v(x) in eigenfunctions of the kernels.
The substitution of these expansions reduces the system to an infi-
nite set of nonlinear algebraic equations which are then truncated
and solved for the unknown mode multipliers. A computer pro-
gram, expressly written for this purpose, solves the equations
numerically using the Newton-Raphson method with integrals
explicitly appearing in the algebraic equations evaluated using a
composite Simpson formula. The results appearing below are
based on a 256 mode truncation of the governing equations. This
approximation was chosen because it represents a good balance
between (i) solution smoothness, (ii) solution precision and (iii)
available computer power. Solution precision was tested with dif-
ferent numbers of modes to ensure that truncation errors were
insignificant in the sense that errors did not affect (i) the qualita-
tive features of the cohesive separation/slip behavior or (ii) the
stress distributions.
ction along defect line. Cubic.



Fig. 10b. Distribution of normal cohesive separation along defect line. Cubic.

Fig. 11a. Distribution of normal traction along defect line. Cubic.

Fig. 11b. Distribution of shear traction along defect line. Cubic.
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Fig. 12a. Distribution of normal cohesive separation along defect line. Cubic.

Fig. 12b. Distribution of shear cohesive slip along defect line. Cubic.
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3.2. The edge notched layer subject to end moments. q dependence

The solution to the problem of an edge notched layer, separated
along a straight cohesive interface by end moments (Fig. 9), is now
considered for cubic materials and, for fully orthotropic materials
via rescaling. In the former case we utilize the computational pro-
cedure described above while in the later case rescaling the solu-
tion for materials with cubic symmetry yields the desired results.
Of particular interest is the effect of shear parameter q on behavior.
Note that the parameter g = h/H characterizes departures from
geometric symmetry, i.e., departures from g = 1, where, at this va-
lue of g, there is no shear traction or shear slip on the cohesive
interface. Also, further note that the moment M (per unit depth)
has been normalized by L2rmax.

In Figs. 10-14 we will consider the cohesive defect approxima-
tion to static sharp crack behavior and then relax this approxima-
tion, thereby allowing for defect evolution, in the figures that
follow. Note that in these figures the moment is taken to be
M = 0.005. Fig. 10 contains distribution plots of normalized (with
respect to the interface strength rmax) normal traction (Fig. 10a),
and normalized normal separation (Fig. 10b), along the crack line
for various values of shear parameter q for material with cubic
symmetry. For comparison purposes the sharp crack solution
(Suo, 1990) is also plotted at those values of q. The sharp crack
and the cohesive defect solutions for the normal traction
(Fig. 10a) generally show the same trend at the crack tip but differ
markedly ahead of it. The compressive region in front of the tip is
captured by the cohesive defect solution but completely missed by
the asymptotic singular solution of Suo (1990). Companion curves
of normalized normal separation are shown in Fig. 10b. The sharp
crack asymptote cannot capture the opening behind and away
from the tip although both solutions yield correct behavior in front
of the tip, i.e., vanishing normal separation. Note that in the cohe-
sive interface calculation, interface compression is effectively re-
sisted by the very stiff compressive tail of the exponential force
law in normal mode (Fig. 2). As expected, both Figs. 10a and 10b
indicate that the effect of shear parameter q is relatively weak
for this geometrical and loading configuration. Furthermore, note
that graphs of separation (Fig. 10b), which are obtained directly
in the present formulation, reveal very small oscillations using



Fig. 13a. Distribution of normal traction along defect line. Degenerate orthotropic.

Fig. 13b. Distribution of normal traction along defect line. Degenerate orthotropic.
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256 modes. Larger oscillations in interface traction components
(Fig. 10a) occur because of the amplification effect of the force
law. Large derivatives on either side of the maxima of the normal
and shear interface traction components work to amplify minor
oscillations that exist in the displacement jump components.
Removing these oscillations by smoothing out the displacement
jump components was not carried out because our interest is in
the qualitative aspects of the global distributions and not the spe-
cific values of interface traction components at a point. Figs. 11 and
12 are plots of the same behavior except for the case where the
symmetry parameter is g = 0.5. The normal traction/separation
behavior (Figs. 11a and 12a) is very similar to that of g = 1
(Fig. 10) in that there is a weak dependence of shear parameter q
and the same basic features of the curves are maintained. The mag-
nitude of the edge displacement is smaller in the g = 0.5 case and
this reflects a transition to peel type behavior. In contrast to the
symmetric case of Fig. 10, here the geometric asymmetry induces
a shear traction (Fig. 11b) and a shear slip (12b). As expected for
this geometry, fxis of smaller magnitude then fy. Furthermore,
Fig. 11b clearly shows a region of shear traction reversal which
must occur in order to satisfy global equilibrium of a single layer.

The insensitivity of behavior to q in the edge notched layer con-
figuration allows one to predict fully orthotropic behavior from
degenerate orthotropic (q = 1) response. Figs. 13 and 14 depict re-
sponse for asymmetrical (g = 0.5) geometry and for a range of val-
ues of stiffness ratio k. In particular, Fig. 13 contains graphs of
normal (Fig. 13a) and shear (Fig. 13b) cohesive traction while
Fig. 14 contains graphs of normal cohesive separation (Fig. 14a)
and cohesive shear slip (Fig. 14b). Also depicted is the sharp crack
solution. Note that as in previous figures there is a compressive re-
gion (Fig. 13a) and a shear traction reversal (Fig. 13b) ahead of the
crack tip. Furthermore, the separation v/dn increases with stiffness
parameter k. This is to be expected based on the static sharp crack
results of Suo (1990) and, because an increased k indicates a de-
creased bending stiffness (i.e., a smaller E1).One of the strengths
of the cohesive interface approach is that it naturally allows for de-
fect propagation under load. For the edge notched layer configura-
tion we now relax the sharp crack approximation by requiring the



Fig. 14a. Distribution of normal cohesive separation along defect line. Degenerate orthotropic.

Fig. 14b. Distribution of shear cohesive slip along defect line. Degenerate orthotropic.
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applied moment to range over values large enough to precipitate
significant defect growth. The basic mechanics of cohesive defect
propagation in layered systems was described in Nguyen and Levy
(2009). There, the problem of an isotropic bilayer with an edge
defect subject to applied shear forces was analyzed. In that work
two modes of defect propagation were identified, both of which
ultimately result in an unzipping of the interface characterized
by an unbounded rate dâ=dP attained at the unzip load, i.e., the
maximum value of load (shear force P) required to sustain equilib-
rium. Here, âðPÞ is the evolving defect length (with âðP ¼ 0Þ ¼ a)
defined by onset criteria for separation or slip, i.e., the defect tip
is located at the point which first satisfies u(x, P) = dt or v(x, P) = dn.
Brittle defect growth is distinguished by a rate of increase of defect
length with load which becomes large at small values of load P and
length âðPÞ while ductile defect growth is characterized by a rate
which becomes large at large values of load P and length âðPÞ. Thus,
the qualitative difference in response for ductile behavior and for
brittle behavior is that in the ductile case, the interface defect opens
up and extends gradually with application of load. Brittle behavior
has the defect behaving in an almost stationary manner, opening a
small amount but without appreciable extension until a critical P
precipitates an abrupt unzipping behavior. In Nguyen and Levy
(2009) the parameter which controls this behavior is the interface
force length dn. Here we are concerned with a similar edge defect
geometry albeit with a slightly different loading (applied moments
not shear forces) and a uniform orthotropic layer (and not an iso-
tropic bilayer). In what follows we will address the question: at a
fixed dn, can a change in stiffness ratio k precipitate a transition from
ductile to brittle interface response? Note that in all remaining calcu-
lations, unless otherwise noted, the following parameter values are
assumed: q = 2, g = 0.5, E = 1000rmax, m = 0.25, dn = 0.01, c1 = 0.1,
a = 0.5 (other parameter values required will be introduced in the
text that follows or, when they appear directly in the figures).

Figs. 15a and 15b contain plots of normal separation distribution
and shear slip distribution along the defect line for a stiffness ratio
k ¼ 0:1. At this parameter value the figures indicate a gradual, duc-
tile evolution with load of normal separation and shear slip. Here,
the defect unzips the interface at a maximum value of load,



Fig. 15b. Shear slip distribution along defect line. Load step 0.01. Unzip load Mu = 0.31.

Fig. 15a. Separation distribution along defect line. Load step 0.01. Unzip load Mu = 0.31.

7 Recall that values of g different from unity characterize departures from
symmetry.
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Mu = 0.31. Figs. 16a and 16b are similar to 15a and 15b except that
the stiffness ratio has been increased 100-fold to k ¼ 10. The
resulting noticeably different behavior is remarkable in that
there is now a critical jump load M⁄ = 0.095 which precipitates
an abrupt or brittle opening with a coincident extension of the
defect. Following this transition there is a loading region where
the defect continues to evolve prior to unzip at a load of
Mu = 0.175. Furthermore, note that the maximum magnitude of
the normal separation at unzip is nearly an order of magnitude
larger for the brittle process (i.e., when k ¼ 10). This can be ex-
pected owing to the fact that, for this value of k, E1 < E2 and the
primary deformation mechanism appears to be bending. Both
Figs. 15 and 16 indicate very small negative values of v/dn for
intervals ahead of the evolving defect tip. This kind of interpen-
etration indicates a contact zone because the interface force law
in normal mode actively resists material interpenetration
through a very high compressive stiffness (see Fig. 2). Note as
well that the shear slip for both stiffness ratios is an order of
magnitude smaller than the normal separation. This is not sur-
prising as the load and defect geometries indicate a primarily
normal mode process. Figs. 17a and 17b are plots of normal
and shear traction along the defect line for a stiffness ratio
k ¼ 0:1. These graphs are consistent with the separation and
shear slip distributions of Figs. 15a and 15b. As expected the
magnitude of the shear traction fx is an order of magnitude less
than the normal traction fy. Furthermore, the plots clearly show
regions of interface compression and shear traction reversal
which must occur in order to satisfy global equilibrium of a sin-
gle sub layer. Fig. 18 is a plot of the evolving defect length â ver-
sus load M for two groups of curves: the g = h/H = 1 group,7 and
the g = h/H = 0.5group, both of which contain three curves repre-
senting the response under stiffness ratios k ¼ 0:1;1;10. All curves
begin at the initiation load and terminate at the unzip load Mu,
i.e., the maximum load attainable prior to the breakdown of
equilibrium coincident with a large (theoretically unbounded)
growth rate dâ=dM: The figure indicates that for both groups,
small values of stiffness ratio supports ductile defect growth



Fig. 16a. Separation distribution along defect line. Load step 0.005. Unzip load Mu = 0.175. Jump load M⁄ = 0.095.

Fig. 16b. Shear slip distribution along defect line. Load step 0.005. Unzip load Mu = 0.175. Jump load M⁄ = 0.095.

Fig. 17a. Normal traction distribution along defect line. Load step 0.02. Unzip load Mu = 0.31.
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Fig. 18. Defect length versus load. Mu for curves (from left) (0.155, 0.175, 0.21, 0.22, 0.25, 0.315).

Fig. 17b. Shear traction distribution along defect line. Load step 0.02. Unzip load Mu = 0.31.
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(e.g., ðg; kÞ ¼ ð1;0:1Þ; ð0:5;0:1Þ) characterized by a relatively large,
smooth increase of âwith M terminating at an unzip load Mu. In
contrast consider the curves obtained by increasing the stiffness
ratio k 10-fold to ðg; kÞ ¼ ð1;1Þ; ð0:5;1Þ and then 100-fold to
ðg; kÞ ¼ ð1;10Þ; ð0:5;10Þ. The curves undergo a transition from con-
tinuous defect growth to what appears to be a jump discontinuity
in defect length at a critical value of load (jump load) M⁄. For stiff-
ness ratio k=10, this is indicated by a vertical line which is really
just a measure of the magnitude of the jump discontinuity and is
a manifestation of the load control algorithm used in the analysis.
We expect that displacement control would yield unstable solu-
tions as well which would probably give rise to an ‘‘S’’ shaped
extension-load curve.

In any event the load M⁄ does not lead to unzipping of the inter-
face and there exists an interval of load beyond M⁄, i.e., M e
(M⁄, Mu) which results in an increase of defect length â with M,
although at a diminishing rate. Ultimately this process terminates
at the unzip load Mu at an unbounded growth rate dâ=dM: Note
that the unzip load Mu for more or less ductile defect evolution
at stiffness ratio k ¼ 0:1 is greater than the jump load M⁄ and the
unzip load Mu for k ¼ 10 but, the associated defect lengths â are
such that for k ¼ 0:1 â at unzip is greater than â at jump, but less
than â at unzip, for k ¼ 10. For this reason an elevated stiffness ra-
tio leads to a kind of quasi-brittle defect growth response. Finally,
note that decreasing g = h/H from unity (i.e., departures from sym-
metry (Fig. 9)) effectively elevates the load required for a given de-
fect length. This is indicated by Fig. 18 for all values of stiffness
ratio k.
4. Conclusions

In this paper we have demonstrated that orthotropy rescaling
of the nonlinear cohesive defect problem preserves some of the
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key features of the rescaling of linear static sharp crack problems.
In particular, we have shown that solutions to degenerate ortho-
tropic problems (q = 1) can be obtained from isotropic solutions
while solutions to fully orthotropic problems (q – 1) can be
obtained from cubic symmetry solutions. In the former situation
we have utilized existing solutions to two distinct isotropic
problems (symmetrical opening of a cohesive defect in a layer;
stability of interfacial separation in a trilayer system) to obtain
degenerate orthotropic response. In the later case we have pre-
sented an exact, integral equation formulation of nonlinear cohe-
sive growth in a layer composed of cubically symmetric material
and then rescaled to obtain fully orthotropic solutions. The utility
of this methodology, for the cubically symmetric problem, re-
mains the same as for the isotropic problem, i.e., as stated in
Nguyen and Levy (2011): the efficacy of this approach is that (i)
it lacks the conceptual limitations of Euler–Bernoulli beam theory,
(ii) it enables the determination of interface separation/slip
behavior without solving for the detailed elastic fields within
the layers and (iii) it approaches the generality of finite element
analysis (FEA) for the class of systems considered, i.e., linear elas-
tic layers.

For the problem of defect growth in the cubically symmetric,
edge notch bend configuration detailed results have been ob-
tained and key features of the response elucidated. In particular,
in this configuration we have demonstrated that the solution
has a weak dependence on shear parameter q enabling solutions
to be estimated from isotropic ones. This is a well known
attribute of many solutions to orthotropic static, sharp crack
problems. Furthermore, it was shown that under increasing
orthotropic stiffness ratio a transition occurs from a ductile (grad-
ual, smooth) defect evolution to a quasi-brittle type of behavior
characterized by a discontinuous jump in (i) defect extension
and (ii) normal separation and shear slip. Beyond the jump load
that precipitates this behavior there is additional smooth defect
extension (although at a lower rate) prior to unzipping of the
interface. Note that this behavior contrasts with truly brittle re-
sponse that occurs, for example, when an isotropic bilayer con-
taining an edge defect is pulled apart by equal and opposite
shear forces (Nguyen and Levy, 2009). In that problem reducing
the interface energy signals a transition from smooth ductile de-
fect growth, characterized by unbounded defect growth rates at
large defect lengths and large unzip loads, to brittle defect growth
characterized by unbounded defect growth rates at small defect
lengths and small unzip loads. In the latter case the discontinuous
transition in growth rate occurs at the unzip load and, in contrast
to the problem considered here, there is no stable defect growth
beyond this load.

Furthermore, while this paper treats the problem of defect evo-
lution in a homogeneous orthotropic layer a natural extension is to
consider defect growth along an interface(s) in a heterogeneous,
orthotropic multilayer composite. Recall that for the homogeneous
layer the device utilized was a predetermined cohesive interface,
along which a defect will evolve, which separates the layer into
the two materially uniform sub layers. In the multilayer composite
problem individual layers will have different (orthotropic) material
properties so that each layer will require distinct rescaling charac-
teristics. The nonlinear coupling of any two layers across a cohe-
sive interface gives rise to ambiguity in the definition of interface
displacement jump. This is an important difference between defect
evolution within a single homogeneous layer and at an interface in
a multilayer composite. Future work will address this issue and
provide an analysis of interfacial defect evolution in the orthotro-
pic multilayer composite.
Appendix A

Stress function solutions that satisfy the stress function equa-
tion (5) may be expressed in the form of an eigenfunction
expansion,

u ¼
X1
n¼0

wnðyÞ cos anxþ
X1
n¼1

gnðyÞ sin anx; an ¼
np
l

ðA:1Þ

with wn, gn given by,

w0ðyÞ ¼ C0xyþ C1x2 þ C30y2 þ C40y3 þ C2x2yþ C3xy2 þ C4xy3

q < 1

wnðyÞ ¼ C1n cosh ancy cos anfyþ C2n sinh ancy cos anfy

þ C3n cosh ancy sinanfyþ C4n sinh any sin anfy

gnðyÞ ¼ D1n cosh ancy cos anfyþ D2n sinh ancy cos anfy

þ D3n cosh ancy sin anfyþ D4n sinh any sinanfy; n ¼ 1;2;3; . . .

q > 1

wnðyÞ ¼ C1n cosh ancy cosh anf
0yþ C2n sinh ancy cosh anf

0yþ C3n

� cosh ancy sinh anf
0yþ C4n sinh ancy sinh anf

0y

gnðyÞ ¼ D1n cosh ancy cosh anf
0yþ D2n sinh ancy cosh anf

0y
þ D3n cosh ancy sinh anf

0yþ D4n sinh ancy sinh anf
0y;

n ¼ 1;2;3; . . .

where c ¼
ffiffiffiffiffiffiffi
1þq

2

q
; f ¼

ffiffiffiffiffiffiffi
1�q

2

q
; f0 ¼ �

ffiffiffiffiffiffiffi
q�1

2

q
. Note the isotropic case

(q = 1) has been treated in Nguyen and Levy (2009, 2011) and
will not be considered further (although it can be obtained from
(A.2) by appropriate handling of the degenerate terms). The struc-
ture of the function w0 involves non-Fourier terms for the stress
function (xy, x2) which are included because they give rise to Fou-
rier terms for the stresses. Additional terms (x2y, xy2, xy3) capture
axial variation of shear force, normal force and bending moment
required by the weak boundary conditions on the surfaces at
x = ±l. The 7 constants {C0, C1, C2, C3, C4, C30, C40} together with
the 8 sets of coefficients are determined by the 4 strong bound-
ary conditions (27) on y = ± h plus the 3 weak conditions on the
left x = �l end of the sublayer (28)2,4,6. (Note that the 4 strong
boundary conditions represent 12 conditions on the constants
or sets of coefficients.) The 3 additional weak boundary condi-
tions on x = l (28)1,3,5 are used to obtain the resultant normal,
shear and moment at the right end of the sublayer. It is not hard
to show that satisfaction of all of these conditions implies satis-
faction of global equilibrium (29).

If the normal and shear loads ðf 1
x ; f

1
y ; f

2
x ; f

2
y Þ on the upper and

lower surfaces are written as mean convergent Fourier expansions,
e.g.,

f 1
y ðxÞ ¼

X1
n¼0

f 1
yen cos anxþ

X1
n¼1

f 1
yon sinanx

f 1
yen ¼

1
l

Z l

�l
f 1
y ðxÞ cos anxdx; f 1

yon ¼
1
l

Z l

�l
f 1
y ðxÞ sin anxdx; n ¼ 1;2; . . .

f 1
ye0 ¼

1
2l

Z l

�l
f 1
y ðxÞdx

ðA:3Þ

then the coefficients {C0, C1, C2, C3, C4, C30, C40} and {C1n, C2n, C3n,
C4n, D1n, D2n, D3n, D4n, n = 1, 2, . . .} can be expressed in a form
explicitly dependent on the boundary loads. Note that in (A.3)
subscript e(o) indicates even (odd) coefficients of cosine (sine).
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Similar representations hold for ðf 2
y ; f

1
x ; f

2
x Þ. The stress field is

therefore completely determined by the Fourier coefficients of
ðf 1

x ; f
1
y ; f

2
x ; f

2
y Þ and the constants(N1, Q1, M1). The displacement fol-

lows by direct integration of the stress displacement relations ob-
tained from (4) and (6). We record here for reference the
boundary displacement components ux(x, y = ± h), uy(x, y = ± h)
which are required in the formulation of the governing
equations,

uxðx; y ¼ elÞ ¼ uRx �xelþ hxðxÞ þ
Z l

�l
K1

xyðx; x0Þf 1
y ðx0Þdx0

þ
Z l

�l
K2

xyðx; x0Þf 2
y ðx0Þdx0 þ

Z l

�l
K1

xxðx; x0Þf 1
x ðx0Þdx0

þ
Z l

�l
K2

xxðx; x0Þf 2
x ðx0Þdx0

uyðx; y ¼ elÞ ¼ uRy þxxþ hyðxÞ þ
Z l

�l
K1

yyðx; x0Þf 1
y ðx0Þdx0

þ
Z l

�l
K2

yyðx; x0Þf 2
y ðx0Þdx0 þ

Z l

�l
K1

yxðx; x0Þf 1
x ðx0Þdx0

þ
Z l

�l
K2

yxðx; x0Þf 2
x ðx0Þdx0

ðA:4Þ

where the functions (hx, hy) depend on the resultant end loadings
(N1, Q1, M1, N2, Q2, M2) , the material properties, and the thickness
ratio e which is the non-dimensional length ratio h/l. In (A.4) the
ðKi

xx;K
i
xy;K

i
yx;K

i
yyÞ are kernel functions with i = 1, 2 indicating the

particular surface or interface. These quantities are generally
dependent on layer elastic properties E, t, q, layer half-length l
and thickness ratio e. Note that the boundary displacement includes
rigid body displacement components uRx �xel, uRy + xx. This is
because the sublayer has yet to be fixed in space. Explicit
expressions for (hx, hy) and the ðKi

xx;K
i
xy;K

i
yx;K

i
yyÞ are not given.

Similar quantities for the sublayer system follow. The displacement
components at the boundary y = �h = �el can be obtained from
(A.4) by replacing e with �e.
K1
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Kn
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