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ABSTRACT 

We give a simple characterization of the moduli of the eigenvalues of a complex 

Gaussian matrix in terms of x2 distributions. We also show that the spectral radius of a 

k x k complex Gaussian matrix is stochastically smaller than the norm of a k x (k + 1) 

reai Gaussian matrix. 

INTRODUCTION 

Theorem 1.1 below gives a simple characterization of the mod& of the 

eigenvalues of a k x k complex Gaussian matrix in terms of x2 distributions. 
It states that the squared moduli of the eigenvalues behave like independent 
& distributions as i runs from one to k. The argument is similar to that of 
Ginibre [3], but the emphasis there is on the spectral radius. Theorem 2.2 
gives a relationship between the distribution of the spectral radius of a k x k 
complex Gaussian matrix, the norm of a k x (k + 1) real Gaussian matrix, and 
the x& distribution. In particular, we establish a stochastic ordering for these 
three random variables. We begin with basic definitions and notation. 

DEFINITION. A real Gaussian matrix is a matrix whose elements are 
independent standard Gaussian variables. A complex Gaussian matrix is a 
matrix whose real and imaginary parts are independent real Gaussian matrices. 

NOTATION. Ml:!, will denote a k x n real Gaussian matrix. Mff,), will 
denote a k x n complex Gaussian matrix. We will assume that k < n. 
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NOTATION. For any matrix M, 11 M 11 2 will denote the operator norm of M 

with respect to the Euclidean norm. For any square matrix M, u(M) will 
denote the spectral radius of M, and per M will denote the permanent of M. 

NOTATION. { Xi} will denote independent nonnegative random variables 
such that Xi2 has a x’ distribution. 

1. GAUSSIAN MATRICES AND X2 DISTRIBUTIONS 

THEOREM 1.1. The collection of moduli of the eigenvalues of Mf:i has the 

same distribution as the collection of random variables { Xzi}i, 1,..., k. 

Theorem 1.1 will follow immediately from Lemma 1.4 and Lemma 1.5. 

From this theorem we have the immediate 

COROLLARY 1.2. Prob[a( Mffi) > z] = Prob[max { X,i)i=l,k > z]. n 

For a discussion of a( Mill), 

’ 

see Geman [2]. We will also make use of an analog 
of Corollary 1.2: 

THEOREM 1.3. Prob[ II Mi,?II 1 > ~1 2 Probbax{ Xp(n+k-Pi+l)Ii= I;.., k > 
zl. 

Proof. This follow from inspection of the columns of the semidiagonaliza- 
tion of Gaussian matrices discussed in Silverstein [5]. Silverstein only proves 
the real case, but as mentioned by Edelman [l], his argument can be general- 
ized. n 

LEMMA 1.4. Let rl 2 * * * > rk be the moduli of the eigenvalues of M f h 
Then the joint density of ( ri)i= 1, , k is given by 

where 

Proof. Let Ar,* * *, Xk be the eigenvalues of M,$, 1 X, ( > . *. > ) hk 1. 
Then the joint density of (A,),, i,, , k is given by 

l3kl-I (Xi - Xj12eXP 
i<j 

where 



SPECTRA OF GAUSSIAN MATRICES 387 

-see Ginibre [3] for a proof and discussion. The quantity n ( Xi - Aj ( ’ is the 
i<j 

squared modulus of the Vandermonde determinant: 

where Sk denotes the permutation group on k symbols. Write hi = ri8*. If 
a(j) + a’(j) for some j, then 

fi .p(i)- l&o(i)- I)& b r;‘(i)-lei(u’(i)- 1)0, 

i=l i=l 

dej = 0. 

Thus 

= (29r)kper[ry-2]ij=l __, k. , . 1 

Multiplying this by 

establishes the lemma. n 

LEMMA 1.5. Assume we are given an ordered k-tuplet of independent 
random variables ( Ai)i, 1,, , k, with corresponding densities ( pi)i= 1,. , k. De- 
fine a new k-tuplet of random variables, ( Bi)i, 1,, , k, as a random permutation 
of the (A,), each permutation considered equal in probability. Then the joint 
density of the random vector ( Bi)i, 1., k is given by (l/k!) 

Per[pi( Bj)li,j= 1,. , k. n 

2. BARGMANN-MONTGOMERY-VON NEUMANN TYPE ESTIMATES 

LEMMA 2.1. 

Prob[ XB(n+k- 1) > z] G Prob[ llM~~~ll2 > z] 
< I’( /3/2)r( P( n + k - 1)/2) 
. 

r( Bk/2)r( Pn/2) 
Prob[ X&n+k- 1) >z]. 
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Furthermore the tight hand side is asymptotic to equality as .z -+ 00. 

It follows that this bound is optimal among all bounds of the form 

CrProb[Xj>~] <Prob[J(M~~~J),>a] <C,Prob[Xj>~], 

where C,, C,, and j depend on n, k, and /3, but not on z. 

Proof. The left hand inequality follows immediately from theorem 1.3. 
The proof of the right hand inequality can be found in Goldstine and von 

Neumann [4, 11.8.21. Goldstine and von Neumann restrict their attention to 

the real square Gaussian matrices, but the argument can be generalized. See 

Edelman [l] for a discussion. H 

THEOREM 2.2. 

Prob[ X,, > z] < Prob[ o(M&) > z] 

< Prob[ ]]Mbr,)k+i I] a > z] < Zk-’ PrOb[ Xzk > ~1. 

Furthermore the left and tight hand inequalities are asymptotic to equality as 
z -+ 00. 

Proof. The left hand inequality follows from Corollary 1.2. It can be seen 

to by asymptotic by inspection of the density given in Lemma 1.4. The central 

inequality follows from Corollary 1.2 and Theorem 1.3. The right hand 

inequality is a special case of Lemma 2.1. n 
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