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SUMMARY

Isl1+ cardiovascular progenitors and their
downstream progeny play a pivotal role in car-
diogenesis and lineage diversification of the
heart. The mechanisms that control their re-
newal and differentiation are largely unknown.
Herein, we show that the Wnt/b-catenin path-
way is a major component by which cardiac
mesenchymal cells modulate the prespecifica-
tion, renewal, and differentiation of isl1+ cardio-
vascular progenitors. This microenvironment
can be reconstituted by a Wnt3a-secreting
feeder layer with ES cell-derived, embryonic,
and postnatal isl1+ cardiovascular progenitors.
In vivo activation of b-catenin signaling in isl1+

progenitors of the secondary heart field leads
to their massive accumulation, inhibition of dif-
ferentiation, and outflow tract (OFT) morpho-
genic defects. In addition, the mitosis rate in
OFT myocytes is significantly reduced following
b-catenin deletion in isl1+ precursors. Agents
that manipulate Wnt signals can markedly ex-
pand isl1+ progenitors from human neonatal
hearts, a key advance toward the cloning of
human isl1+ heart progenitors.
C

INTRODUCTION

Cardiogenesis requires the formation of a diverse spec-

trum of muscle and nonmuscle cell lineages in specific

tissue compartments in the heart. Understanding how

embryonic precursor cells generate and control the forma-

tion of distinct endothelial, pacemaker, atrial, ventricular,

and vascular smooth muscle lineages, as well as how

these cells become positioned to form the specific cham-

bers, aorta, coronary arteries, and conduction system in

the heart, is of fundamental importance in unraveling the

developmental logic and molecular cues that underlie

both cardiovascular development and disease (for review,

see Chien and Karsenty [2005]).

Toward this end, recent studies from our laboratory

have identified multipotent isl1+ cardiovascular progeni-

tors (MICPs), marked by the transcriptional signature of

isl1/nkx2.5/flk-1, which can generate the three major cell

types in the heart: cardiac, smooth muscle, and endothe-

lial cells (Moretti et al., 2006). MICPs have been cloned

from both mouse ES (embryonic stem) cells and mouse

embryos and can make this decision at a single cell level,

suggesting a hematopoietic paradigm for how the diver-

sity of cardiovascular lineages can be generated (Moretti

et al., 2006). Supporting this concept, a hierarchy of dis-

tinct isl1+ cardiovascular progenitors have been uncov-

ered (Laugwitz et al., 2005; Moretti et al., 2006), including

a rare subset of isl1+ cardioblasts that persist until birth
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and can develop into fully mature cardiac and smooth

muscle cells. At the same time, independent studies

from other laboratories also point to the existence of other

multipotent and bipotent cardiovascular precursors (Katt-

man et al., 2006; Wu et al., 2006), which may also arise

from the early heart field. Moreover, in vivo lineage tracing

of the descendants of the isl1+ cardiovascular progenitors

documents their contribution to over two-thirds of all the

cells in the embryonic heart, and to these three major

cell types in all of the cardiovascular compartments, with

the exception of the free left ventricular wall (Cai et al.,

2003; Laugwitz et al., 2005). Uncovering the molecular

pathways that control their formation, renewal, and differ-

entiation into specific mature cellular progeny will be

critical in unlocking the potential of stem cell therapy for

a myriad of cardiovascular degenerative diseases.

In many model systems, microenvironmental cues are

known to play a pivotal role in the control of stem cell for-

mation, renewal, and differentiation (for review, see Scad-

den [2006]). While it is known that a single hematopoietic

stem cell can regenerate the entire spectrum of blood

cell lineages (Akashi et al., 2000), there is an absolute

requirement for the in vivo bone marrow niche (for review,

see Yin and Li [2006]). Accordingly, it is difficult to renew

and expand hematopoietic stem cells ex vivo, a major

inherent limitation to the system. In the case of the embry-

onic (Moretti et al., 2006) and postnatal (Laugwitz et al.,

2005) isl1+ cardiovascular progenitors, we have previously

documented a role for the cardiac mesenchymal cells

(CMC) in the expansion, inhibition of differentiation, and

maintenance of their multipotency. In addition, the CMC

play a role in the prespecification of MICPs, having an

inductive effect on the transition of mesodermal precur-

sors into the hierarchy of isl1+ heart progenitors (Moretti

et al., 2006). Uncovering the molecular basis for these

effects of the CMC would be a major step forward in allow-

ing the unlimited expansion of isl+ cardiovascular progen-

itors while maintaining their multipotency. In addition,

documenting the translation of these pathways to human

isl1+ progenitors would represent another important step

in the critical pathway that might eventually allow these

human cells to be harnessed as models of human cardio-

vascular disease, assay systems for cardiovascular drug

development, and to be exploited for their potential thera-

peutic applications. We herein report that a Wnt/b-catenin

pathway is a major component of the CMC microenviron-

ment that controls the prespecification, renewal, and the

subsequent differentiation of a hierarchy of isl1+ cardio-

vascular progenitors. The inhibition of glycogen synthase

kinase-3 (GSK-3) by chemical agents leads to a marked

increase in the expansion of human isl1+ cardiovascular

progenitors. In addition, the in vivo constitutive activation

of b-catenin pathways within isl1+ progenitors in the sec-

ondary heart field results in their massive accumulation,

inhibition of myocytic differentiation, and severe outflow

tract (OFT) defects. Finally, the mitosis rate in OFT myo-

cytes is significantly reduced following b-catenin deletion

in isl1+ precursors. Taken together, these findings are an

important advance in understanding the control of the
166 Cell Stem Cell 1, 165–179, August 2007 ª2007 Elsevier Inc.
microenvironmental pathways by which the CMC can

regulate the cell fate of isl1+ cardiovascular progenitors

during cardiogenesis, and how defects in their renewal

and differentiation can lead to OFT abnormalities that

are a major form of congenital heart disease. In addition,

the studies represent an important step toward the isola-

tion of clones of human isl1+ cardiovascular progenitors

via the manipulation of Wnt signals in CMC.

RESULTS

High-Throughput Screening Identifies Chemical

Probes that Enhance CMC Cues for Expansion

of Isl1+ Cardiac Progenitors

To find CMC-derived environmental cues involved in the

renewal of isl1+ progenitors, we developed a high-

throughput chemical screening system, based on the

coculture of CMC with postnatal isl1+ progenitors

(Figure S1A). To genetically mark isl1+ progenitors in the

postnatal heart, we crossed isl1-mER-Cre-mER (MCM)

mice with the conditional Cre reporter strain R26R (Laug-

witz et al., 2005; Soriano, 1999). Recently, several

synthetic small molecules from a combinatorial library of

heterocyclic compounds were identified that regulate

stem cell fate (Ding et al., 2003; Wu et al., 2004). We

used this library to screen for small molecules that would

expand the rare population of postnatal isl1+ progenitors.

CMC from isl1-MCM/R26R mouse hearts were isolated

as previously described (Laugwitz et al., 2005), expanded

for 7 days, and treated with a DMSO control or small

molecules for an additional 4 days. As seen in

Figure S1B, b-galactosidase (b-gal) activity was directly

proportional to the starting amount of CMC. The screening

of over 15,000 independent compounds in four separate

experiments identified 25 candidates that were able to

significantly upregulate b-gal activity. Although there

was only a small increase over the control, the effect of

these compounds was highly reproducible and statisti-

cally significant (p < 0.05, 0.01, or 0.001, Figure S1C). A

more sensitive assay of isl1 immunostaining was per-

formed, and three candidates were noted to substantially

increase the number of isl1+ progenitors (Figure 1C and

data not shown). Two of these compounds were unknown

(compound A and compound B), and the third was 6-

bromoindirubin-30-oxime (BIO), previously shown to be

an inhibitor of GSK-3 (Meijer et al., 2003). BIO has been

recently shown to promote self-renewal of both human

and mouse ES cells through activation of the Wnt/b-

catenin pathway in combination with other signaling

inputs (Sato et al., 2004). We therefore decided to explore

the role of BIO on the renewal of isl1+ progenitors.

As shown in Figures 1A–1E, BIO increased the number

of isl1+ progenitors in a dose-dependent manner, and

a maximal effect was seen at 2.5 mM with an �7-fold in-

crease versus control. Immunostaining of cleaved cas-

pase-3 showed no appreciable apoptosis in both BIO-

and DMSO-treated CMC (data not shown), suggesting

that the expansion of isl1+ progenitors by BIO does not

occur through repressing apoptosis. To further validate
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Figure 1. Identification and Characterization of a Chemical Probe that Augments the Expansion of Postnatal Isl1+ Cardiovascular

Progenitors from a High-Throughput Chemical Screening

Representative views of isl1+ cells in the control (A and B) and in the BIO-treated sample (C and D). Insets show a magnification of isl1+ cells. Nuclei

were detected with Hoechst dye (B and D). Scale bar, 50 mm. Quantification of the effect of BIO (E), 1-Azakenpaullone (F), an acetoxime analog of BIO

(G), or GSK-3 peptide inhibitor (H) treatment at different doses on the expansion of postnatal isl1+ cardiovascular progenitors. Mean ± SEM, n R 3.

Note quantification of each treatment represents the total number of isl+ cells per culture. (I–M) Human neonatal cardiac tissue-derived cells were

cultured in the presence of either DMSO (control [I and J]) or BIO (K and L) and stained for isl1. Quantification of the effect of BIO on the expansion

of postnatal human isl1+ cardiovascular progenitors (M), mean ± SEM, n = 6. Scale bar, 25 mm. *p < 0.05, **p < 0.01, ***p < 0.001.
the specificity of BIO function, we tested two other ATP-

competitive GSK-3-specific inhibitors: an acetoxime ana-

log of BIO and 1-Azakenpaullone (Kunick et al., 2004;

Meijer et al., 2003). Both of these compounds substan-

tially increased isl1+ progenitor cell number versus control

(Figures 1F and 1G). More importantly, a cell-permeable

and substrate-competitive GSK-3 peptide inhibitor, which

has negligible inhibitory effect on other protein kinases

(Plotkin et al., 2003), was able to significantly expand

isl1+ progenitor cells (Figure 1H). Taken together, these

results suggest that BIO promotes the expansion of isl1+

progenitors by inhibiting GSK-3 activity.

In order to test whether BIO was capable of expanding

human neonatal isl1+ progenitors, human neonatal CMC

were isolated from the biopsies of patients with congenital

heart defects into single cells and cultured for 4 days in the

presence or absence of BIO. Interestingly, BIO treatment
C

markedly increased the number of human isl1+ progeni-

tors, detected by immunostaining (Figures 1I–1M),

suggesting that Wnt/b-catenin pathways have an evolu-

tionarily conserved role in expanding isl1+ cardiovascular

progenitors.

Wnt/b-Catenin Pathway Plays a Pivotal Role

in the Control of Isl1+ Progenitor Expansion

The above results suggested that CMC-derived cues

promote the expansion of isl1+ progenitors through the

inhibition of GSK-3 activity. This prompted us to investi-

gate the roles of signaling molecules in the GSK-3 path-

way (Dominguez and Green, 2001). The Wnt/b-catenin

pathway has previously been shown to be involved in

the renewal of a variety of stem cell/progenitors (Reya

et al., 2003; Sato et al., 2004). Thus, we examined whether

Wnt3a, a well-established ligand in the Wnt/b-catenin
ell Stem Cell 1, 165–179, August 2007 ª2007 Elsevier Inc. 167
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Figure 2. Wnt/b-Catenin Pathway Plays a Pivotal Role in the Control of the Expansion of Isl1+ Cardiovascular Progenitors

Isl1 immunofluorescence on a control (A and B) or Wnt3a-producing (C and D) feeder layer. Arrows point to isl1+ cells. Asterisks indicate feeder layer

cells. Scale bar, 25 mm. (E) Quantification of the number of isl1+ cells detected by immunostaining on a Wnt3a feeder layer compared with control.

Mean values ± SEM, n = 6, ***p < 0.001. Immunofluorescence analysis of embryonic E8.5 isl1+ progenitors on a control (F and G) or Wnt3a-producing

(H and I) feeder layer. Scale bar, 50 mm. (J and K) Flow cytometry profile of E8.5 cells from AHF enriched tissue of double transgenic isl1-IRES-Cre;

Z/RED embryos after expansion on a control or Wnt3a feeder layer for 7 days. (L) Quantification of the number of dsRed+ progenitors on Wnt3a versus

control feeder. Mean values ± SEM, n = 3, ***p < 0.001. (M–O) dsRed signal (N) correlates highly with isl1 expression (M) in cells from double transgenic
168 Cell Stem Cell 1, 165–179, August 2007 ª2007 Elsevier Inc.
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pathway (Logan and Nusse, 2004), was able to expand

postnatal isl1+ progenitors. Treatment with Wnt3a-

conditioned medium resulted in an �2-fold increase of

isl1+ progenitors compared with the control (Figures

S2A–S2E). We further cocultured CMC with a feeder layer

stably secreting Wnt3a, hence providing a higher

sustained level of Wnt3a activity, and observed a nearly

6-fold increase of isl1+ progenitors versus control (Figures

2A–2E).

To test whether Wnt signaling is required for the expan-

sion of postnatal isl1+ progenitors, we utilized a potent

extracellular inhibitor of Wnt signaling, Dickkopf-1 (Dkk1)

(Logan and Nusse, 2004). CMC incubated with Dkk1-

conditioned medium showed a nearly 40% reduction in

the number of isl1+ progenitor cells versus the control

treatment (Figures S2F–S2J).

Given the fact that Wnt3a can enhance the expansion of

postnatal isl1+ progenitors, we tested whether this ligand

also had a similar effect on the isl1+ embryonic progenitor

subset. Single cell preparations from the secondary heart

field region of approximately E8.5 embryos were gener-

ated as previously described (Moretti et al., 2006) and

plated at a low density on a feeder layer consisting of

a cell line stably secreting Wnt3a or its control. As shown

in Figures 2H and 2I, the Wnt3a-secreting feeder layer

triggered a marked expansion of embryonic isl1+ progen-

itors, while the control feeder essentially failed to maintain

the expression of isl1 (Figures 2F and 2G).

To investigate the differentiation potential of these

expanded embryonic isl1+ progenitors, we genetically

marked isl1-expresssing cells by crossing isl1-IRES-Cre

mice (Laugwitz et al., 2005) into the Cre reporter strain

Z/RED (Vintersten et al., 2004), thereby enabling us to

purify the isl1+ cells by flow cytometry. After coculture

on feeder layers for 7 days, dsRed-expressing cells were

isolated as a distinct population by FACS analysis (Figures

2J and 2K). As seen in Figure 2L, there was a significant

expansion of dsRed+ cells on the Wnt3a feeder compared

to the control. These dsRed+ cells were highly enriched for

isl1 as confirmed by colocalization of isl1 and dsRed

double immunostaining (Figures 2M–2O). In addition,

dsRed positive cells showed essentially no expression of

the cardiac marker troponin T (cTnT) or smooth muscle

cell markers (a-smooth muscle actin [SMA] and smooth

muscle myosin heavy chain [SM-MHC]) (data not shown).

These results suggest that dsRed-expressing cells are in

an undifferentiated progenitor state after expansion on

Wnt3a feeder layers. When cultured in the absence of

feeder layers after FACS purification, a significant pro-

portion of dsRed+ progenitors differentiated either into

smooth muscle cells (4.5 ± 0.3%) or into cardiomyocytes

(5.8 ± 0.4%) (Figures 2P–2R), showing that these Wnt3a-

expanded embryonic isl1+ progenitors maintain their

capacity for directed differentiation.
C

We next performed, in isl1+ progenitors, immunostain-

ing analysis of activated b-catenin. Previous studies

have established a reliable Wnt signaling indicator mouse

strain, TOPGAL, which expresses b-gal under the control

of a LEF/TCF- and b-catenin-inducible promoter (Figure

S3A, DasGupta and Fuchs, 1999). Immunostaining

revealed that a significant population of isl1+ progenitors

was positive for b-gal expression in the OFT (Figures

S3B–S3E) and/or left atrial region (Figures S3B–S3H) of

an E10.5 TOPGAL heart, suggesting that isl1+ progenitors

possess active nuclear b-catenin transcriptional activity

in vivo. Taken together, these data strongly suggest that

the Wnt/b-catenin pathway plays a pivotal role in the

expansion of isl1+ progenitors.

Canonical Wnt Ligands Lead to a Marked Expansion

of Isl1+ Anterior Heart Field Lineage Cells

In order to further study the effect of Wnt/b-catenin on the

renewal and differentiation of isl1+ progenitors, we

decided to establish an ES cell system to provide a reliable

source of purified cardiac progenitor cells. We initially

generated an ES cell line in which eGFP was targeted to

the genomic isl1 locus, but this system proved suboptimal

as the GFP signal was not strong enough for FACS

detection.

Mef2c is a direct downstream target of isl1, and an

enhancer/promoter of this gene has been recently shown

to be specifically expressed within the isl1 domain of the

anterior heart field (AHF) (Dodou et al., 2004). Within the

minimally essential region of this enhancer/promoter two

isl1 binding sites were identified (Figure 3A), and point

mutations in these sites completely abrogated its

expression, showing the requirement of isl1 expression

for this enhancer/promoter to function (Dodou et al.,

2004).

The AHF enhancer/promoter (kindly provided by

Dr. Brian Black, UCSF) was used to generate a transgenic

mouse line that showed a GFP expression pattern that

was completely restricted to the AHF and its derivatives,

identical to that previously described (Figure 3A and

Dodou et al., 2004). ES cell lines were derived from these

transgenic mice. Following differentiation, these ES cell

lines showed areas of strong GFP expression by embryoid

body (EB) day 5 to 6, and by EB day 10, the majority of

GFP+ areas were beating. Figure 3B shows the FACS

profile of EB day 6 differentiated ES cells. When the

GFP+ cells were sorted and plated onto fibronectin-

coated slides, they demonstrated the ability to spontane-

ously differentiate into cardiomyocytes and smooth

muscle cells (Figures 3C and 3D). To confirm the AHF

identity of the GFP+ cells, we measured isl1 and mef2c

expression in freshly sorted GFP+ cells from EB day 6.

As seen in Figure 3E, there was a significant enrichment
embryos expanded on Wnt3a feeder layer. Scale bar, 25 mm. Spontaneous differentiation of dsRed+ progenitors into smooth muscle cells, revealed

by expression of SMA (P) and SM-MHC (Q). Differentiation of ds-Red+ progenitors driven by coculture with neonatal murine cardiomyocytes (R). Scale

bar: 25, 50, and 25 mm, respectively.
ell Stem Cell 1, 165–179, August 2007 ª2007 Elsevier Inc. 169
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Figure 3. Expansion of Isl1+ AHF Cells by a Wnt3a Feeder Layer

(A) Schematic diagram of the AHF construct, AHF-GFP transgenic mouse, and embryonic stem cell derivation strategy.

(B) FACS profile of EB day 6 differentiated AHF-GFP ES cells.

(C and D) cTnT and SM-MHC staining of sorted EB day 6 GFP+ cells. Scale bar, 25 mm.

(E) Quantitative PCR analysis showing the isl1 and mef2c expression levels normalized by GAPDH in freshly sorted GFP+ and GFP� cells from EB

day 6 differentiated AHF-GFP ES cells. Mean ± SD, n = 3.
170 Cell Stem Cell 1, 165–179, August 2007 ª2007 Elsevier Inc.
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of isl1 and mef2c message in the GFP+ compared to the

GFP� population.

To test the ability of Wnt/b-catenin signals to stimulate

the expansion of the ES-derived cardiac progenitors,

freshly sorted AHF-GFP+ cells were directly plated onto

control cells or cells stably secreting Wnt3a for 7 days.

As seen in Figure 3F, there was a significant enrichment

of isl1 expression in GFP+ cells plated on the Wnt3a feeder

layer compared with GFP+ cells plated on the control

layer. This observation was further confirmed by isl1

immunostaining (Figures 3G–3J).

We next performed studies on isl1+ AHF lineage cells to

investigate their ability to differentiate into cardiomyo-

cytes and smooth muscle cells following their expansion

by Wnt3a or BIO. As seen in Figures S4A–S4D, Wnt3a-

or BIO-expanded progenitor cells had similar ability to dif-

ferentiate into both cell lineages as control treated cells.

The Wnt/b-Catenin Pathway Regulates the

Prespecification, Expansion, and Differentiation

of Isl1+ Cardiovascular Progenitors

Because the CMC-derived cues lead to the prespecifica-

tion of isl1+ cardiovascular progenitors from mesodermal

precursors (Moretti et al., 2006) and activation of Wnt/b-

catenin signaling enhances cardiac commitment during

early phase of EB formation (Naito et al., 2006), we next

examined whether Wnt signals are capable of augmenting

the initial number of ES cell-derived isl1+ clones. In order to

do this, we used a previously described isl1-nlacZ knockin

ES cell line (Moretti et al., 2006). After 4.5 days of differen-

tiation, EBs were dissociated into single cells and plated at

low density on a CMC feeder layer. To score the effect of

the CMC feeder on the prespecification of mesodermal

precursors toward MICPs, we quantified the single b-

gal+ cells 24 hr after treatment with various reagents

(Figure 4A). Interestingly, the addition of Wnt3a-condi-

tioned medium resulted in a marked inhibition in the forma-

tion of MICPs (Figures 4B–4D), raising the possibility that

canonical Wnt ligands from CMC have an inhibitory effect

on this step. In order to investigate whether inhibition of the

Wnt signal leads to a higher rate of prespecification, we

tested the effect of Dkk1-conditioned medium finding

a significant increase of single b-gal+ cells (Figures 4E–4G).

These results suggest that the CMC feeder layer utilizes

a Wnt/b-catenin pathway to carefully titrate the number of

MICPs via a negative regulatory pathway that inhibits pre-

specification, a result that is consistent with previous

studies in other systems that have demonstrated that

the Wnt/b-catenin pathway can markedly inhibit cardio-

genesis (Marvin et al., 2001; Schneider and Mercola,

2001; Tzahor and Lassar, 2001).

Given the fact that the Wnt/b-catenin pathway can ex-

pand a hierarchy of isl1+ progenitors, we further hypothe-

sized that once mesodermal precursors have been com-
C

mitted to MICPs, the CMC-derived Wnt cues may

promote the expansion of these prespecified cardiovas-

cular progenitors. Thus, we cocultured mesodermal pre-

cursors arising from isl1-nlacZ knockin ES cells with the

CMC feeder layers for 3 days, during which the feeder

cells presumably prespecified a substantial number of

mesodermal precursors toward MICPs. We then added

either control- or Wnt3a-conditioned media and allowed

the coculture to proceed for another 3 days. We scored

the effect on promoting the expansion of these prespeci-

fied MICPs by comparing the size and homogeneity of

b-gal+ colonies. Interestingly, we frequently observed that

the addition of Wnt3a-conditioned medium resulted in

the formation of markedly expanded and relatively homo-

geneous b-gal+ colonies (Figure 4I). In contrast, treatment

with control-conditioned medium produced colonies that

generally had a significantly sparser distribution of b-gal+

cells (Figure 4H). Figure 4J shows the quantitative effect

of Wnt3a treatment versus control. To test whether the

canonical Wnt signal is required for the expansion of pre-

specified MICPs, we partially blocked the Wnt pathway with

Dkk1-conditioned media. While the control-conditioned

medium allowed a basal level of expansion of MICPs (Fig-

ure 4K), Dkk1 caused a marked reduction of the expansion

of the committed MICPs with primarily single b-gal+ cells

distributed within the colony (Figures 4L and 4M).

We next examined whether the Wnt/b-catenin pathway

regulates the differentiation of isl1+ cardiovascular progen-

itors. In order to obtain a purified population of cardiac pro-

genitors to perform these studies, we used freshly sorted

AHF-GFP+ cells from day 6 EBs as described in the previ-

ous section (Figure 3A). These cells were directly plated

onto fibronectin-coated slides and allowed to undergo

spontaneous differentiation. The presence of Wnt3a-con-

ditioned media resulted in a significant decrease of differ-

entiated cardiomyocytes, when compared with control

media (Figures 4N–4P), even though the total cell number

in both samples was comparable (data not shown). Con-

sistent with this observation, when AHF-GFP+ cells were

cocultured on a Wnt3a-secreting feeder layer, cardiomyo-

cyte differentiation was completely abrogated compared

to that on the control feeder (Figures 4Q and 4R).

Taken together, thesestudieshaveuncovereda triphasic

Wnt/b-catenin paradigm that represents a major compo-

nent of the molecular mechanism by which each specific

step—prespecification, renewal, and subsequent differen-

tiation—is differentially regulated during cardiogenesis.

Expression of a Stabilized Form of b-Catenin in AHF

Lineage Cells In Vivo Leads to a Markedly Expanded

Isl1+ Second Heart Field and Negatively Regulates

the Differentiation of Isl1+ Progenitors in OFT

To unravel the effects of Wnt/b-catenin on the renewal and

differentiation of isl1+ cardiovascular progenitors in vivo,
(F) Quantitative PCR analysis of isl1 expression in GFP+ and GFP� cells plated on cells stably expressing Wnt3a or control cells for 7 days. Mean ± SD,

n = 3.

(G–J) Isl1 immunostaining of GFP+ cells plated on control (G and H) or Wnt3a secreting feeder layer (I and J). Arrows point to isl1+ cells. Asterisks

indicate feeder cells. Scale bar, 25 mm.
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we examined the consequences of constitutively activat-

ing b-catenin in the isl1+ progenitors and their derivatives

in the AHF lineage cells. Previous studies have established

that various serine/threonine residues located in the

exon3 of b-catenin are the targets of phosphorylation of

GSK-3 and deletion of exon3 prevents this phosphoryla-

tion and subsequent degradation of b-catenin, thereby

generating a stabilized form (Logan and Nusse, 2004). A

mouse strain in which exon3 of b-catenin is flanked by

loxP sites was generated previously (Catnb+/lox(ex3), Har-

ada et al., 1999).

We decided to utilize a transgenic mef2c-AHF-Cre

mouse line, in which the Cre expression is controlled by

an enhancer/promoter region in the mef2c gene that ex-

clusively directs expression to the AHF and its derivatives,

and is dependent on isl1 for its expression (Verzi et al.,

2005; Dodou et al., 2004). Catnb+/lox(ex3) mice were

crossed with mef2c-AHF-Cre line to generate double het-

erozygous mef2c-AHF-Cre; Catnb+/lox(ex3) embryos (here-

after referred to as b-cat[ex3]AHF), in which Cre-mediated

removal of exon3 in the b-catenin gene results in the pro-

duction of a stabilized and constitutively active molecule

specifically in the AHF. We chose to analyze E9.5 em-

bryos, because the AHF and its derivatives give rise to

recognizable cardiac structures at this time. As shown in

Figures 5A–5C0, while the primary atrium and left ventricle

looked essentially normal in b-cat(ex3)AHF embryos, the

OFT appeared to have a morphogenic defect character-

ized by a marked dilation, with a larger cross-sectional

diameter, and truncated length when compared with

somite-matched controls, a defect that appeared with

complete penetrance (4/4). In addition, the mutants failed

to exhibit a distinct right ventricular structure, which was

readily appreciable in the control embryos. The rest of

the embryonic structures appear normal in the mutants

compared to controls (data not shown).

To further study the OFT abnormalities in b-cat(ex3)AHF

embryos, we performed coimmunostaining on sections

with antibodies for isl1 and SMA, a marker for embryonic

myocardium (Xu et al., 2004; Sun et al., 2007). Consistent

with the morphological defects observed in whole mount

embryos (Figures 5A–5C0), sections of the mutants

showed a relatively larger OFT with a discontinuous immu-

noreaction for SMA across the myocardial layer of the

OFT, while the control sections maintained uninterrupted
C

signals (Figures 5D–5F0 and Figures S5A–S5F0). Interest-

ingly, although all the isl1-expressing cells in the myocar-

dial layer of control OFT coexpressed SMA (Figure 5F and

Figures S5C and S5F), in agreement with a previous study

(Sun et al., 2007), there are a considerable number of isl1-

expressing cells negative for SMA in the mutant OFT

‘‘myocardial’’ layer (Figure 5F0 and Figures S5C0 and

S5F0). Given that cardiac progenitor cells from the AHF ex-

press cardiomyocytic markers once they migrate into the

OFT (Waldo et al., 2001), lack of SMA expression in the

isl1-expressing cells in the mutant raises an intriguing

possibility that gain of function of b-catenin in the isl1+

AHF progenitors inhibits their differentiation in the OFT.

This would be in full agreement with our in vitro results

showing inhibition of the differentiation of isl1+ cardiac

progenitors by canonical Wnt signals (Figures 4N–4R).

We next examined the effect of cell-autonomous

changes of the canonical Wnt pathway in the isl1+ AHF

in E9.5 b-cat(ex3)AHF embryos. Previous studies have

established that a substantial portion of the AHF is com-

posed of the pharyngeal mesoderm between the OFT

and the inflow tract (IFT) of the early embryonic heart

and that isl1-expressing cells mark a substantial amount

of AHF lineage (Waldo et al., 2001; Cai et al., 2003). Immu-

nostaining on sagittal sections of E9.5 embryos revealed

that the isl1+ pharyngeal mesodermal cells, as outlined

by the orange dashed line in Figures 5G–5H0, appeared

to be markedly expanded in the b-cat(ex3)AHF embryo

compared to that in the somite-matched litter-mate

control in both medial (Figures 5G and 5G0) and lateral

(Figures 5H and 5H0) regions. 3D reconstruction from se-

rial sections was next performed to better appreciate the

effect of the gain of function of b-catenin on the expansion

of the isl1+ AHF. Consistent with the results from the

representative lateral and medial sections, the isl1+ pha-

ryngeal mesoderm between the OFT and the IFT was

significantly enlarged in the mutant compared to the

control (Figures 5I and 5I0). To test whether the expansion

of the AHF in the mutant was associated with an increased

proliferation of isl1-expressing cells, we counted cells

double stained for isl1 and the mitotic marker, phosphor-

ylated histone H3 (pi-H3). The proportion of pi-H3 and

isl1 double positive cells in the AHF from the average of

two E9.5 mutant embryos was 15.8%, which was signi-

ficantly higher than that seen in control embryos (9.0%,
Figure 4. Regulation of the Prespecification, Expansion, and Differentiation of Isl1+ Cardiovascular Progenitors by the Wnt/

b-Catenin Pathway

(A) Schematic representation of the experimental strategy.

(B–D) Wnt3a treatment markedly inhibits the formation of MICPs. Control (B)- or Wnt3a-conditioned medium (C) was added to the coculture for 24 hr,

and single b-gal+ cells were scored after X-gal staining. Bar graph (D) represents mean values ± SEM, n = 5, ***p < 0.001.

(E–G) Dkk1 treatment significantly promotes the formation of MICPs. Control (E)- or Dkk1-conditioned medium (F) was added to the coculture for

24 hr, and single b-gal+ cells were scored after X-gal staining. Bar graph (G) represents mean values ± SEM, n = 3, *p < 0.05. Scale bar, 50 mm.

(H–M) Effects of the Wnt/b-catenin pathway on the expansion of prespecified MICPs. Single EB-derived precursors were plated on CMC and allowed

to grow for 3 days. Wnt3a (I) and Dkk1 (L) conditional media or their respective controls (H and K) were then added to the coculture for an additional

3 days prior to the assessment of b-gal+ colonies. (J and M) Bar graphs represent mean values ± SEM, n = 3. *p < 0.05, ***p < 0.001. Scale bars, 100 mm.

(N–R) Wnt3a inhibits cardiomyocyte differentiation of isl1+ AHF cells. AHF-GFP+ cells sorted on EB day 6 were plated on fibronectin-coated slides in the

presence of Wnt3a (O)- or control (N)-conditioned media. Following fixation and cTnT immunostaining, the total number of cTnT+ cells per well was

scored (P). AHF-GFP ES cells were sorted on EB day 6, and GFP+ cells were plated on control feeder layers (Q) or cells stably transfected with Wnt3a (R)

followed by immunostaining.
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Figure 6. Decreased Proliferation of the

OFT Myocardial Cells in Murine Embryos

with a Temporally Controlled Loss of

Function of b-Catenin

(A–C0) Representative transverse sections of

a control (Isl1-MCM/+; b-cat+/f [A–C]) and

a mutant (Isl1-MCM/+; b-cat�/f [A0–C0]) embryo

(E11.5) immunostained for pi-H3. (C) and (C0)

are the magnified views of the OFT for (B) and

(B0), respectively. Tamoxifen was injected to

pregnant females at E9.5, and embryos were

harvested at E11.5. Nuclei were marked by

DAPI. White arrows indicate proliferating myo-

cardial cells in OFT. Asterisks mark proliferat-

ing endocardial cells in OFT.

(D) Quantification of proliferating myocardial

cells in the OFT of control and mutant embryos.

Mean ± SEM, n = 3, ***p < 0.001. Scale bars,

100 mm in (A)–(B0) and 50 mm in (C) and (C0).
p < 0.01, c2 test). In contrast, there was no appreciable

difference in the proliferation rate of neuroepithelial

cells between mutants (11.6%) and controls (10.6%,

p = 0.42).

Decreased Proliferation of the OFT Myocardial Cells

in Murine Embryos with a Temporally Controlled

Loss of Function of b-Catenin

We next performed loss-of-function experiments as

shown in Figure 6. We crossed double heterozygous

isl1-MCM+; b-catenin+/� mice with b-catenin floxed
Ce
homozygous mice to obtain isl1-MCM+/�; b-cat�/f mu-

tants and isl1-MCM+/�; b-cat+/f controls. Tamoxifen was

injected into pregnant females at E9.5, and embryos

were harvested at E11.5. Pi-H3 immunostaining showed

a markedly decreased proliferation rate of myocardial

cells in the OFT of the mutant when compared to control

embryos (Figures 6A–6D). As myocardial cells in the OFT

are primarily derived from isl1+ secondary heart field

progenitors (Cai et al., 2003), these results strongly sug-

gest that b-catenin plays an important role in the prolifer-

ation of isl1+ lineage cells.
Figure 5. Abnormal OFT Morphology, Disrupted OFT Myocardial Differentiation, and Marked Expansion of Isl1+ Pharyngeal

Mesodermal Progenitors in Murine Embryos that Harbor a Constitutive Activation of b-Catenin within AHF Lineages

(A–C0) Anatomical morphology of the heart in a control (A–C) and a mutant (b-cat[ex3]AHF [A0–C0]) E9.5 embryo. The head and pharyngeal arches 1 to 2

were removed to allow an optimal view of the heart components. LV, left ventricle; RA, right side of the primary atrium; LA, left side of the primary

atrium. Scale bars, 500 mm.

(D–F0) Coronal sections through the OFT of a control (D–F) and a mutant (D0–F0) E9.5 embryo immunostained for isl1 and SMA. Boxed areas are mag-

nified on the right of the row. The yellow arrows indicate isl1+; sma+ cells, and the white arrows indicate isl1+; sma� cells. The cutting plane at the

medial part of the OFT is indicated on the schematic heart image. Scale bars: 25 mm in (D) and (D0), 50 mm in (E)–(F0 ).

(G–H0) Sagittal sections of a control (G and H) and a mutant (b-cat[ex3]AHF) (G0 and H0) E9.5 embryo immunostained for isl1 and pi-H3. The cutting

planes at the medial (G and G0) and lateral (H and H0) part of the embryos are indicated on the schematic heart image. The isl1+ cardiac progenitor

population between the cardiac OFT and IFT is outlined with orange dashed lines. The boxed area in each panel is magnified on the top-left corner. I,

II, III: first, second, and third pharyngeal arches; A, medial part of the primary atrium. Scale bars, 100 mm.

(I and I0) 3D reconstruction of isl1+ pharyngeal mesoderm between the cardiac OFT and IFT from serial sections (represented by the areas outlined by

orange dashed lines in [G]–[H0]). The control is represented in green and the mutant in red. Shown are ventral (1 and 10), dorsal (2 and 20), and left (3 and

30) views of the reconstructed structures.
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DISCUSSION

High-Throughput Chemical Screening and the

Identification of Key Steps in Cardiovascular Cell

Lineage Diversification

In the current study, we employed high-throughput

screening to identify a series of compounds that can trig-

ger renewal of the postnatal isl1+ progenitors. The ability

to reconstitute the CMC niche with FACS-purified isl1+

cardiovascular progenitors derived from murine ES cells

opens the possibility of developing new chemical screens

to identify additional renewal signals for isl1+ progenitors,

and pathways that drive their differentiation into cardiac,

smooth muscle, and endothelial cellular progeny. It will

be of particular interest to identify specific chemical

agents that might drive the directed differentiation of

MICPs into coronary arterial, cardiac muscle, and pace-

maker lineages, as this could ultimately lead to the large

scale engineering of certain heart tissue components

that have immediate clinical therapeutic value.

CMC and the Microenvironmental Cues for the

Renewal of a Hierarchy of Isl1+ Cardiovascular

Lineages

As described previously, a key step in amplifying isl1+ car-

diovascular progenitors was the ability to expand the rare

pool of these progenitors on CMC feeder layers derived

from the neonatal and embryonic heart. This feeder layer

allowed the renewal of isl1+ cardiovascular progenitors

with the maintenance of their multipotentiality. Because

these cells are normally found in the embryonic and post-

natal heart, the possibility exists that the CMC act as the

in vivo microenvironment that serves to inhibit differentia-

tion, activate their expansion, and maintain their multipo-

tency. Consistent with this notion, we found that there

was a preferential localization of clusters of isl1+ cells in

the neonatal mouse (Figures S6B and S6C) and human

heart (Figures S6F and S6G) in an in vivo microenviron-

ment of surrounding nonmyocytic CMC that most likely

serve as an insulator from triggers of cellular differentia-

tion. Because isl1+ progenitors are largely localized in

the secondary heart field and migrate into a region of dif-

ferentiating cardiac cells in the primordial heart tube, it is

possible that the isl1+ cardiovascular progenitors first

encounter this microenvironment early during the course

of cardiogenesis, and that this plays a critical role in the

maintenance of the multipotency of these precursors

that are destined to form distinct cell lineages in discrete

regions of the heart.

Canonical Wnt Signals Are a Major Component

of the CMC Microenvironment that Controls

the Renewal of a Hierarchy of Isl1+

Cardiovascular Progenitors

Through the use of chemical screening and a panel of

gain- and loss-of-function studies, we show that the

effects of canonical Wnt ligands appear to be sufficient

to renew the hierarchy of isl1+ cardiovascular progenitors,

as noted by studies on postnatal, embryonic, and ES cell
176 Cell Stem Cell 1, 165–179, August 2007 ª2007 Elsevier In
systems. Taken together, these results represent the

beginning of the molecular unraveling of the microenviron-

mental niche for the hierarchy of isl1+ cardiovascular pro-

genitors. While previous studies have established a role

for canonical Wnt signals in cardiac specification in ES

cells, there has been some controversy, as two studies

proposed a positive role of Wnts in this function (Naka-

mura et al., 2003; Naito et al., 2006) while another sug-

gested the opposite (Liu et al., 2007). This discrepancy

may largely be due to the reliance of these previous stud-

ies on differentiation assays of intact beating EBs that are

composed of a complex mosaic of embryonic cell types.

(Nakamura et al., 2003; Naito et al., 2006; Singh et al.,

2007; Liu et al., 2007). As such, it has proven difficult to

precisely pinpoint the exact molecular mechanism by

which Wnt ligands might exert control on the complex pro-

cess of cardiogenesis. Utilizing FACS-purified embryonic

and ES cell-derived cardiovascular progenitors, we have

provided evidence that Wnt signals emanating from the

CMC play a major role in cardiogenesis. The current stud-

ies attain a level of resolution of Wnt signaling on discrete

cell fate steps on specific subsets of isl1+ progenitor cell

lineages (the mesodermal precursors that give rise to

MICPs, where it is inhibitory, the MICP and bipotent pre-

cursors where it activates renewal, and the transitional

isl1+/sma+ cells in the myocardium of the OFT, where it

inhibits differentiation) (Figure 7). This underscores the

complexity of Wnt signaling within cardiogenesis and rein-

forces the notion that the use of single cell systems, such

as FACS-purified progenitors or ES cell-derived clonal

assays, coupled with classic in vivo gain- and loss-of-

function models, will be important to identify specific

cues that control the fate of cardiac progenitors. In this

regard, the in vivo constitutive activation of b-catenin

pathways within isl1+ AHF progenitors results in their mas-

sive accumulation, near complete inhibition of myocytic

differentiation, and the onset of severe OFT defects. The

requirement for Wnt/b-catenin signals is directly sup-

ported by the current findings of a decrease in the prolifer-

ative capacity of isl1+ derivatives in the OFT of murine

embryos that harbor a loss of b-catenin in isl1 lineage

cells. Taken together, these data suggest that defects in

Wnt/b-catenin pathways that control the renewal and dif-

ferentiation of isl1+ cardiovascular progenitors in the AHF

may be related to the onset of severe OFT abnormalities,

which constitute a major form of human congenital heart

disease.

Wnt/b-Catenin Pathways and Cardiovascular

Regenerative Medicine

One of the major limitations in cardiovascular regenerative

medicine relates to the difficulty of expanding clonal

cardiovascular progenitor populations, from either intact

human tissue, or ES cell-based systems. In particular,

the feasibility of utilizing human ES cells as a source for

differentiated cardiac myocytes has been limited largely

due to the inability to markedly enhance in vitro cardiogen-

esis, as less than 1% of the differentiated progeny enter

cardiac lineages. The current study suggests that the
c.
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Figure 7. Models of the Effects of Wnt/b-Catenin Signaling on the Renewal and Differentiation of Isl1+ Cardiac Progenitor Cells and

Their Progenies

(A) In vivo model. In the AHF of wild-type embryos, Wnt/b-catenin signaling promotes the proliferation of isl1+ cardiac progenitors, which are negative

for sma. The progenitors migrate to the OFT myocardium and undergo stepwise differentiation. While the cells in the distal part of the OFT start to

express sma, they remain positive for isl1. In contrast, in the proximal part of the OFT isl1 expression is lost in a considerable portion of the cells.

In the b-cat(ex3)AHF mutant, with augmented Wnt/b-catenin signaling in the AHF and its derivatives, there is an increased proliferation of the isl1+

cardiac progenitors in the AHF but inhibited differentiation of the progenitors and their progenies after they migrate to the myocardial layer of the OFT.

(B) A model of the roles of Wnt/b-catenin signals from CMC feeder on the prespecification, renewal, and differentiation of a hierarchy of isl1+ cardio-

vascular progenitors.
manipulation of Wnt signals might have a direct effect on

the isolation, cloning, and expansion of rare human isl1+

cardiovascular progenitors from either ES cells or intact

human heart tissue.

EXPERIMENTAL PROCEDURES

Isolation, Amplification, and Differentiation of Embryonic

Cardiovascular Progenitor Cells

For isolation of embryonic cardiovascular progenitors, we crossed

isl1-IRES-Cre mice (generously provided by Thomas M. Jessel) into

the Cre reporter strain Z/RED (Vintersten et al., 2004). Approximately

80 E8.5 embryos were dissected and dissociated into single cells by

treatment with a mix of 1 ml collagenase A&B (Roche) at 10 mg/ml dur-

ing 1 hr at 37�C followed by treatment with trypsin 0.25% for 5–10 min.
C

The dissociated cells were filtered through a 40 mm cell strainer (Fal-

con) and plated as single cells on the mitomycin-treated feeder layers,

stably transfected with Wnt3a, at a density of 10,000 cells/cm2 in

DMEM/F12 complete media for 7 days. Smooth muscle spontaneous

differentiation was performed as previously described (Moretti et al.,

2006).

Isolation and Culturing of Human Postnatal Cardiac Progenitors

Biopsies were cut in small pieces and washed in solution A (10 mM

HEPES, 35 mM NaCl, 10 mM glucose, 134 mM sucrose, 16 mM

Na2HPO4, 25 mM NaHCO3, 7.75 mM KCl, and 1.18 mM KH2PO4 [pH

7.4]), supplemented with 30 mM 2,3 butanedione 2-monoxime and

0.5 mM EGTA. The first digestion step was performed in solution A

supplemented with 0.5% BSA, 200 U/ml of collagenase type II (Wor-

thington), and 6 U/ml protease type XXIV (Sigma) for 20 min at 37�C

to remove red blood cells and cell debris. This was followed by four
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digestion steps performed in solution A supplemented with 400 U/ml

collagenase type II for 20 min at 37�C and centrifuged at 30 3 g for

1 min. The supernatant was neutralized from the collagenase by add-

ing 1/5 volume of newborn calf serum (NCS) and then centrifuged at

1300 rpm for 3–5 min. The pellet was resuspended in DMEM supple-

mented with 10% NCS, 5% FBS, and pen/strep, and cells were

seeded on chamber slides. BIO was added to the culture at different

doses and cultured for 4 days prior to immunostaining for isl1.

Generation of AHF-GFP ES Cell Lines

Timed matings were performed between AHF-GFP transgenic males

and C57Bl/6 females. On day 3.5 PC, the females were sacked and

the blastocysts flushed from the uterine horns using M2 medium

(Sigma-Aldrich, MO). After washing with M2 media, the zona pellucida

was removed with acidic Tyrode’s Solution (Sigma-Aldrich, MO) and

the blastocysts were further washed three times in M2 media. The

blastocysts were then adapted onto mouse embryonic feeder cells

(MEF) with derivation media (DMEM with 15% KOSR, pen/strep, pyru-

vate, nonessential amino acids, and leukemia inhibitory factor [LIF]

[Chemicon, CA]).

Production of Reagents for Wnt/b-Catenin Pathway

Wnt3a- or control-conditioned medium was produced as follows:

a Wnt3a-secreting cell line (ATCC) was allowed to grow to confluency

and subcultured at a 1:20 ratio prior to replenishment with fresh

medium. Three batches of conditioned medium were harvested every

48 hr. Dkk1-conditioned medium was produced by transiently

transfecting a Dkk1-expressing cDNA into the HEK293T cell line

with FuGENE 6 (Roche). The supernatant was harvested 72 hr after

transfection.

Supplemental Data

Supplemental Data include six figures and Supplemental Experimental

Procedures and can be found with this article online at http://www.

cellstemcell.com/cgi/content/full/1/2/165/DC1/.

ACKNOWLEDGMENTS

We would like to thank Dr. Brian Black (UCSF) for the AHF enhancer/

promoter construct and the AHF-Cre mice. We would also like to thank

Ying Shao, Haruko Nakano, and Sarah Woodard for their technical
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