Increasing levels of precipitating antibodies to Achromobacter xylosidans and Burkholderia multivorans reflect more aggressive pulmonary disease in chronically infected Cystic Fibrosis patients

B. Bugge1, T. Preselä2, H.K. Johansen2, K.G. Nielsen1, N. Hasbý2, 1Palm Service & Cystic Fibrosis Center, Dept. of Paediatrics, 2Dept of Microbiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark

Introduction: Absolute level and rapidly increasing levels of precipitating antibodies to Pseudomonas aeruginosa (PA) in chronic pulmonary infection in cystic fibrosis (CF) are correlated with degree of lung inflammation, tissue damage and poor prognosis. Precipitating antibodies to other Gram-negative bacteria may exhibit similar properties.

Aims: To assess the correlation between levels of precipitins to Achromobacter xylosidans (AX), and Burkholderia multivorans (BM) and lung function in chronically infected CF patients.

Methods: All patients with a diagnosis of chronic infection with either AX or BM as per 2005 were included. The correlation between level of precipitating antibodies and FEV1% predicted was assessed.

Results: 14 patients with chronic AX had median (range) FEV1% predicted of 66% (23 to 111%) and precipitin levels of 23 (3 to 40) showing statistically significant, but weak, negative correlation (r2 = 0.24, p < 0.05). Correspondingly, in 12 patients with chronic BM a statistically significant negative correlation (r2 = 0.65, p < 0.05) was shown between lung function: 63% (40 to 110%) and precipitin levels: 17 (8 to 25%)

Conclusion: Chronic infection with AX or BM, like PA, induces increasing levels of precipitins as markers of enhanced tissue damage as reflected in declining lung function. Precipitins to other Gram-negative bacteria than PA may function as markers of infection severity, treatment success or failure.

Exopolysaccharide production in the Burkholderia cepacia complex in response to growth on onion agar

J. Bartholdson1,2, D. Clarke3, D. Campopiano2, S. Fry3, J.R.W. Gowan4, 1Cystic Fibrosis Group, 2School of Chemistry, 3Institute of Molecular Plant Sciences, University of Edinburgh, UK

Aims: To investigate phenotypic responses to growth of the Burkholderia cepacia complex (Bcc) on agar medium containing onion extract.

Methods: A panel of Bcc strains was cultured for 4 days at 30°C on bacteriological agar containing homogenised onion extract as the sole nutrient. Bacterial colonies were then transferred to complex (Bcc) on agar medium containing onion extract.

Results: Unexpectedly, around 50% of previously "nonmucoid" Bcc strains produced a copious mucoid colonial phenotype on onion agar. The degree of mucoidy was particularly striking in B. cepacia strain ATCC 25416, which was used for further study. Results of SDS-PAGE analysis, ethyl acetate partition, paper electrophoresis, mass spectrometry and NMR were used to investigate the causative factor in the onion extract.

Conclusion: EPS production has been suggested as a potential virulence determinant in Bcc lung infection. Induction of EPS in the presence of "plant host extract" highlights the metabolite potential of the Bcc, and the ability of host factors to induce a phenotype which would be missed on routine culture. EPS production in Bcc may play a role in the pathogenesis of CF lung disease, similar to alginate in Pseudomonas aeruginosa. As the natural host, the onion model could also provide novel insights into the regulation and biosynthesis of virulence determinants in the Bcc.

Interest of measuring body composition to determine antibiotic dosing in Cystic Fibrosis

Y. Monte-1, A. Hoppé1, F. Troussier1, E. Darviet1, T. Urban1, B. Diquet2, J.L. Ginies1, 1Centre de Ressources et de Compétences pour la Mucoviscidose, 2Laboratoire de Pharmacologie, CHU, Angers, France

Aminosides are hydrophilic antibiotics. Loss of fat mass, a frequent occurrence in cystic fibrosis, thus corresponds to greater diffusion. This study investigated the influence of the mode used to calculate the dose, in kilograms of total body weight or lean body mass, on the accuracy of the expected serum concentration.

During 32 courses of antibiotic therapy in 16 patients, 10 girls and 6 boys with ages ranging from 9 to 20 years and weights ranging from 18 to 58 kg, 32 measurements of peak serum concentrations of aminoside were coupled to measures of lean body mass. Tobramycin was used in 29 cases at a dose of 122 mg/kg of total body weight and amikacin was used in the other 3 cases, also at a dose of 22:6 mg/kg of total body weight, both were administered once daily. Aminoside was given by a 30-min intravenous infusion and blood was drawn for peak serum concentration 30 minutes later. Lean body mass was assessed at the same time by measuring the impedance values with the Bodystat® QuadScan 4000.

The antibiotic serum concentrations were closely correlated with the dose expressed as kg of total body weight (r 0.75) and kg of lean body mass (r 0.81). The differences between the theoretical concentrations, calculated from the regressions established for the doses expressed in kg of total body weight and kg of lean body mass, and the real concentrations were greater, in 21 cases out of the 32, when the dose was expressed in kg of total body weight than when expressed as kg of lean body mass (p < 0.05).

The determination of body composition can be useful for more precise calculation of the correct dose of aminosides for patients with cystic fibrosis.