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Abstract

Let g be a Kac–Moody algebra and b1,b2 be Borel subalgebras of opposite signs. The intersection
b = b1 ∩ b2 is a finite-dimensional solvable subalgebra of g. We show that the nilpotency degree of [b,b] is
bounded above by a constant depending only on g. This confirms a conjecture of Y. Billig and A. Pianzola
[Y. Billig, A. Pianzola, Root strings with two consecutive real roots, Tohoku Math. J. (2) 47 (3) (1995)
391–403].
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Let A be a generalized Cartan matrix, let g be a Kac–Moody algebra of type A with Cartan
decomposition g = h ⊕ ⊕

α∈Δ gα and W be its Weyl group. For each w ∈ W we set Δ(w) =
{α ∈ Δ+ | w.α < 0} and gw = 〈gα | α ∈ Δ(w)〉. It is known that Δ(w) is finite and that gw is a
finite-dimensional nilpotent subalgebra of g. The main result of this paper is the following:

Theorem 1.1. The nilpotency degree of gw is bounded above by a constant depending on A, but
not on w.
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This statement was conjectured in [BP95, Conjecture 1]. In view of [Tit87, Proposition 1],
it is equivalent to its group theoretic counterpart, which can be stated as follows. Let G be the
complex simply connected Kac–Moody group of type A. For each α ∈ reΔ, let Uα be the one-
parameter subgroup of G with Lie algebra gα and for all w ∈ W , let Uw = 〈Uα | α ∈ Δ(w)〉.

Theorem 1.2. The nilpotency degree of Uw is bounded above by a constant depending on A, but
not on w.

The latter statement holds not only for the complex Kac–Moody group G, but in fact for
any split or almost split Kac–Moody group over an arbitrary field: this follows from a reformu-
lation of Theorem 1.1 in terms of root systems (see Proposition 2.2 below) together with the
description of commutation relations in Kac–Moody groups [Mor87, Theorem 2]. The following
consequence of Theorem 1.2 was pointed out to me by B. Rémy:

Corollary 1.3. Let G be a split or almost split Kac–Moody group over a finite field Fq . Then
there exists a constant N ∈ N, depending only on G, such that every element of G is either of
infinite order or of order smaller than N .

It is useful to keep in mind the group-side of the theory. For example, in the case where A is
of finite or affine type, Theorem 1.2 is an immediate consequence of the fact that the group G is
linear (modulo center). On the other hand, for any other type of generalized Cartan matrix, the
group G is known to be nonlinear [Cap06a, Theorem 7.1]. Our proof of Theorem 1.1 is based
on a reduction to the affine case. The main tools are, on the one hand, the classification of pairs
of real roots whose sum is a real root, due to Y. Billig and A. Pianzola [BP95], and, on the other
hand, on some sufficient conditions on a set of roots to generate an affine subsystem, which were
established in [Cap06b].

We remark that the bound on the nilpotency degree of gw that could be extracted from the
proof below is far from sharp. It is likely that a much sharper bound could be expressed as an
affine function of the maximal size of a Cartan submatrix of finite type of A. In fact, the proof
below supports the intuition that the sharp bound depends actually on the size of submatrices of
finite type of A, rather than on the size of A itself.

2. Nilpotent sequences in root systems

2.1. Definition

A set of roots Φ ⊂ Δ is called prenilpotent if there exist w,w′ ∈ W such that w.Φ ⊂ Δ+
and w′.Φ ⊂ Δ−. In particular Φ ⊂ reΔ. The set Φ is called closed if for all α,β ∈ Φ such that
α + β is a root, we have α + β ∈ Φ . Since the intersection of any collection of closed subsets is
closed, it makes sense to consider the closure of a set of roots. The following lemma is obvious:

Lemma 2.1. The closure of any prenilpotent set of roots is prenilpotent.

Proof. The closure of a set Φ is contained in (
∑

α∈Φ Z+α) ∩ Δ. �
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A sequence of roots (βk)k=1,...,n is called nilpotent if it satisfies the following conditions:

(NS1) The set {β1, . . . , βk} is prenilpotent.
(NS2) For each k = 1, . . . , n, we have

∑k
i=1 βi ∈ Δ.

For all α,β ∈ Δ, we have [gα,gβ ] ⊂ gα+β . Furthermore for each w ∈ W , the prenilpotent set
Δ(w) is closed. Therefore, the subalgebra gw splits as a direct sum gw = ⊕

α∈Δ(w) gα . It is easy
to deduce from these basic facts that the nilpotency degree of gw coincides with the maximal
possible length of a nilpotent sequence of roots contained in Δ(w). Therefore, the following
statement is equivalent to Theorems 1.1 and 1.2 and can be viewed as its root system version:

Proposition 2.2. The supremum of the set of lengths of nilpotent sequences of roots in Δ is finite.

The proof of Proposition 2.2 is deferred to Section 2.3. We first need to collect a series of
subsidiary results: this is the purpose of the next subsection.

2.2. On infinite root systems and their geometric realizations

We freely use the standard notation and terminology on infinite root systems which can
be found in [MP95, Chapter 5]. We view Δ as the root system of a set of root data D =
(A,Π,Π∨,V ,V ∨, 〈·,·〉) over R and denote by W its Weyl group. We assume that the set Π

is finite. Moreover, we need to consider a geometric realization of reΔ; we henceforth denote
by X the interior of the Tits cone X∨ ⊂ V ∨. Recall that X is W -invariant and that the induced
action is properly discontinuous [MP95, Chapter 5, Proposition 15]. For each root α ∈ reΔ, we
set D(α) = {x ∈ X | 〈α,x〉 > 0} and ∂α = {x ∈ X | 〈α,x〉 = 0}. The set ∂α is called a wall; it is
the trace on X of a hyperplane of V ∨ and it cuts X into two nonempty convex open cones, called
half-spaces, namely D(α) and D(−α). Note that walls and half-spaces are convex. The notion
of convexity will be crucial to our purposes.

Remark. Instead of the interior of the Tits cone, we might equally use the Davis complex as-
sociated with the Weyl group W . This also provides a convenient geometric realization of reΔ,
which has no linear structure but is instead equipped with a W -invariant CAT(0)-metric. This
allows to define walls and half-spaces and yields an appropriate notion of (geodesic) convexity.
The 1-skeleton of the Davis complex is nothing but the Cayley graph of W with respect to its
canonical Coxeter generating set S. This graph may be embedded in the interior of the Tits cone
by considering as vertex set the W -orbit of a point in the interior of the fundamental Weyl cham-
ber and this makes it easy to pass from one viewpoint to the other. In the present note, we keep
the Tits cone viewpoint throughout, but we will be led to quote references which use rather the
Davis complex as a preferred geometric realization.

The following lemma collects a few basic facts on pairs of roots:

Lemma 2.3. Let α,β ∈ reΔ.

(i) The subsystem generated by α and β is finite if and only if ∂α meets ∂β .
(ii) D(α) ⊂ D(β) or D(α) ⊃ D(β) if and only if 〈α,β∨〉〈β,α∨〉 � 4 and 〈α,β∨〉 > 0.

(iii) The pair {α,β} is prenilpotent if and only if one of the following assertions holds:
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• D(α) ⊂ D(β),
• D(α) ⊃ D(β),
• α �= −β and the subsystem generated by α and β is finite.

Proof. (i) follows from [MP95, Chapter 5, Proposition 14] and the fact that any finite subgroup
of W fixes a point of X.

(ii) We may assume α �= ±β , otherwise the desired assertion is obvious. In that case, we
have D(α) ⊂ D(β) or D(α) ⊃ D(β) only if the subsystem generated by α and β is infi-
nite in view of (i). Since α �= ±β , this in turn is equivalent to 〈α,β∨〉〈β,α∨〉 � 4. Now, if
〈α,β∨〉 < 0, then 〈β,α∨〉 < 0 by [MP95, Chapter 5, Proposition 8] and it readily follows
that D(α) ∩ D(β) ⊂ D(rβ(α)) ∩ D(rα(β)). On the other hand, if D(α) ⊂ D(β), then, trans-
forming by rβ , we obtain D(rβ(α)) ⊂ D(−β) whence D(rβ(α)) ∩ D(α) = ∅. Similarly, if
D(α) ⊃ D(β) then D(rα(β)) ∩ D(β) = ∅. This shows that if D(α) ⊂ D(β) or D(α) ⊃ D(β)

then 〈α,β∨〉 > 0. The converse statement follows because, if D(α) �⊂ D(β) and D(α) �⊃ D(β),
then D(−α) ⊂ D(β) or D(−α) ⊃ D(β).

(iii) We may assume that the subsystem generated by {α,β} is infinite, otherwise the desired
assertion is easy. For any root α ∈ reΔ, we have α > 0 if and only if the half-space D(α) contains
the Weyl chamber. Now the claim readily follows. �
Lemma 2.4. There exists a constant K , depending only on the generalized Cartan matrix A,
such that the following condition holds. Given a prenilpotent pair {α,β} ⊂ reΔ such that α + β

is a root, then 〈α,β∨〉 � K .

Proof. Follows from [BP95, Proposition 1 and Theorem 1]. �
Lemma 2.5. For any integer n, there exists a constant L(n), depending on the generalized Cartan
matrix A, such that any prenilpotent set of at least L(n) roots contains a subset {α1, . . . , αn} of
cardinality n such that D(α1) � D(α2) � · · · � D(αn).

Proof. It is shown in [NR03, Lemma 3] that there exists a constant L(2) such that any set of
more than L(2) walls contains a pair of parallel walls (i.e. nonintersecting walls). Combining this
with Ramsey’s theorem (see [GRS80, Section 1.1, Theorem 1]), it follows that for any integer
n, there exists a constant L(n) such that any set of more than L(n) walls contains a set of n

pairwise parallel walls. Let now Φ be a prenilpotent set of roots of cardinality greater than L(n).
Hence Φ contains a subset Φ0 of cardinality n such that the elements of ∂Φ0 = {∂α | α ∈ Φ0}
are pairwise parallel. Since Φ0 is prenilpotent, it follows from Lemma 2.3(iii) that the elements
of {D(α) | α ∈ Φ0} are totally ordered by inclusion. Thus they form a chain, as desired. �
Lemma 2.6. There exists a constant M , depending on the generalized Cartan matrix A, such
that the following property holds. Let α,α′, β0, . . . , βn ∈ reΔ be real roots such that:

(1) The subsystem generated by {α,α′, β0} is finite of rank 2. (Equivalently: we have ∅ �= ∂α ∩
∂α′ ⊂ ∂β0.)

(2) D(β0) � D(β1) � · · · � D(βn).
(3) For each i = 1, . . . , n, the subsystem generated by {α,βi} (respectively {α′, βi}) is finite.

(Equivalently: the wall ∂βi meets both ∂α and ∂α′.)
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If n � M , then the subsystem generated by {α,α′, β0, . . . , βn} is of irreducible affine type;
furthermore, it is contained in (a conjugate of ) a parabolic subsystem of affine type of Δ.

In particular the subsystem generated by {β0, . . . , βn} is of affine type and rank 2.

Proof. See [Cap06b, Theorem 8]. �
We will need to appeal to Lemma 2.6 several times in the proof of Proposition 2.2. The

following lemma will be helpful when checking that the hypotheses of Lemma 2.6 are satisfied.

Lemma 2.7. We have the following:

(i) Let {α,α′, γ } ⊂ Δ be a prenilpotent set such that D(α) � D(α′) or D(α) � D(α′) and
〈α,γ ∨〉 < 0. If ∂rγ (α) meets ∂α′, then so does ∂γ .

(ii) Let {α,α′, β,β ′} ⊂ Δ be a prenilpotent set such that D(α) � D(α′) and D(β) � D(β ′). If
∂β and ∂β ′ both meet ∂α′ and if ∂β ′ meets ∂α, then ∂β meets ∂α. Similarly, if ∂β and ∂β ′
both meet ∂α and if ∂β meets ∂α′, then ∂β ′ meets ∂α′.

Proof. (i) Up to replacing {α,α′, γ } by the prenilpotent set {−α,−α′,−γ }, we may assume
without loss of generality that D(α′) � D(α). Since 〈α,γ ∨〉 < 0, it readily follows that D(α) ∩
D(γ ) ⊂ D(rγ (α)). Assume now that ∂γ does not meet ∂α′. Then we have D(α′) � D(γ ) by
Lemma 2.3(iii) because, in view of Lemma 2.3, the wall ∂γ meets ∂α and moreover we have
D(α′) � D(α). It follows that D(α′) ⊂ D(α) ∩ D(γ ) � D(rγ (α)). In particular the wall ∂α′
does not meet ∂rγ (α).

(ii) Suppose that ∂β and ∂β ′ both meet ∂α′ and that ∂β ′ meets ∂α. Now assume in order to
obtain a contradiction that ∂β does not meet ∂α. Then, by Lemma 2.3 we have D(α) ⊂ D(β)

or D(α) ⊃ D(β). Since ∂β meets ∂α′ and D(α) ⊂ D(α′), we have in fact D(α) ⊂ D(β). On
the other hand, since ∂β ′ meets ∂α, it follows that D(α) ∩ D(−β ′) is nonempty. We deduce
∅ �= D(α)∩D(−β ′) ⊂ D(α) ⊂ D(β). This contradicts the fact that D(β) ⊂ D(β ′) which implies
D(β) ∩ D(−β ′) = ∅.

The other assertion follows by considering the prenilpotent set {−α,−α′,−β,−β ′}. �
The next lemma provides useful sufficient conditions which ensure that a root belongs to a

given parabolic subsystem of affine type:

Lemma 2.8. Let Φ ⊂ Δ be a parabolic subsystem of affine type and let α ∈ Δ. Then we have
α ∈ Φ provided that one of the following conditions is fulfilled:

(i) There exist β,β ′ ∈ Φ such that D(β) � D(α) � D(β ′).
(ii) There exist β1, . . . , β8, γ ∈ Φ such that the elements of {∂β1, . . . , ∂β8} are pairwise parallel,

the wall ∂α meets ∂βi for all i = 1, . . . ,8 and 〈α,γ ∨〉 �= 0.
(iii) There exist β1, . . . , βn ∈ Φ such that D(α) � D(β1) � · · · � D(βn) and 〈βn,α

∨〉 < n
2 .

Proof. (i) follows from [Cap06b, Proposition 16 and Lemma 17].
(ii) follows from [Cap06b, Lemma 11, Proposition 16 and Lemma 22].
(iii) Assume that β1, . . . , βn ∈ Φ are roots such that D(α) � D(β1) � · · · � D(βn) and sup-

pose that α /∈ Φ . We must prove that 〈βn,α
∨〉 � n .
2
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Since Φ is of affine type, the condition D(β1) � · · · � D(βn) implies that the group
〈rβ1 , . . . , rβn〉 is infinite dihedral [Cap06b, Theorem D and Proposition 14] and, hence, the sub-
system Φ0 generated by {β1, . . . , βn} is affine of rank 2. Let β0 ∈ Φ0 be the root such that
{−β0, β1} is a basis of Φ0, and define inductively β−k = −rβ−k+1(β−k+2) for all k > 0. Thus,
for all k � 0, we have β−k ∈ Φ , D(β−k) ⊂ D(β−k+1) and {−β−k, β−k+1} is a basis of Φ0. Note
moreover that for all k > 0, we have 〈βk,α

∨〉 > 0 by Lemma 2.3(ii). We claim that there exists
k � 0 such that 〈β−k, α

∨〉 � 0.
Suppose the contrary. If the wall ∂α meets at least 8 elements of {∂β−k | k > 0}, then we

obtain α ∈ Φ by (ii). Therefore, we may assume that ∂α is parallel to almost every element of
{∂β−k | k > 0}. Suppose now that ∂β−k ⊂ D(α) for some k > 0. Since 〈β−k, α

∨〉 > 0, we have
D(β−k) ⊂ D(α) ⊂ D(β1) by Lemma 2.3(ii) and, hence, we obtain α ∈ Φ by (i). Therefore, we
may assume that D(α) ⊂ D(β−k) ⊂ D(β1) for almost every k > 0. Let x ∈ ∂α and y ∈ ∂β1 be
any points. It follows from the above that the segment [x, y] meets ∂β−k for almost every k � 0,
which contradicts [MP95, Chapter 5, Propositions 6 and 7]. This proves the claim.

Let now i = min{k � 0 | 〈β−k, α
∨〉 � 0}. Hence {−β−i , β−i+1} is a basis of Φ0 and moreover

〈β−i , α
∨〉 � 0 and 〈β−i+1, α

∨〉 � 1. Define φ1 = β−i+1, φ′
1 = rβ−i+1(βi) and for all k > 0, set

φk+1 = rβ−i+1rβ−i
(φk) and φ′

k+1 = rβ−i+1rβ−i
(φ′

k). Thus we have D(β−i+1) = D(φ1) � D(φ′
1) �

D(φ2) � D(φ′
2) � · · · and moreover {φ ∈ Φ0 | D(β−i+1) ⊂ D(φ)} = {φk,φ

′
k | k > 0}. In partic-

ular, we have βn ∈ {φk,φ
′
k} for some k � n

2 .
Since {−β−i , β−i+1} is a basis of Φ0, we may write φk = xk.(−β−i ) + yk.β−i+1 for some

nonnegative integers xk , yk ; similarly φ′
k = x′

k.(−β−i ) + y′
k.β−i+1 for some x′

k, y
′
k ∈ Z+. Since

Φ0 is of affine type, an easy computation shows that yk+1 − yk (respectively y′
k+1 − y′

k) is a con-
stant positive integer (it is independent of k). In particular, the sequence (yk) (respectively (y′

k))
is a linear function of k with positive integral coefficient and, hence, we have yk � k (respectively
y′
k � k) for all k > 0. It follows that

〈
φk,α

∨〉 = xk.
〈−β−i , α

∨〉 + yk.
〈
β−i+1, α

∨〉

� yk

� k.

Similarly, we obtain 〈φ′
k, α

∨〉 � k. Since βn ∈ {φk,φ
′
k} for some k � n

2 , we finally obtain
〈βn,α

∨〉 � n
2 . �

2.3. Proof of Proposition 2.2

Assume, in order to obtain a contradiction, that Δ contains nilpotent sequences of arbitrarily
large length. Therefore, by Lemma 2.5, given any integer n, there exists a nilpotent sequence
(βi)i=1,...,k such that the set {D(β1), . . . ,D(βk)} contains a chain of half-spaces of length n.
Assume now that k is fixed and let I ⊂ {1, . . . , k} be a subset of maximal possible cardinality
such that {D(βi) | i ∈ I } is a chain of half-spaces. Provided that k is large enough, we may
assume that |I | is arbitrarily large.

For every i ∈ {1, . . . , k}, we set

I (i) = {j ∈ I | j < i}
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and

J (i) = {
j

∣∣ 1 � j < i,
〈
βj ,β

∨
i

〉
< 0

}
.

Note that for all j ∈ J (i), the wall ∂βj meets ∂βi by Lemma 2.3, since the pair {βi,βj } is
prenilpotent.

Claim 1. For each i ∈ I , we have |J (i)| � |I (i)|−K
3 , where K is the constant of Lemma 2.4.

By (NS1) and Lemma 2.4, we have
∑i−1

j=1〈βj ,β
∨
i 〉 � K . On the other hand, for each j ∈ I

we have 〈βj ,β
∨
i 〉 � 1 by Lemma 2.3(ii) and for all j ∈ J (i), we have 〈βj ,β

∨
i 〉 � −3. We deduce

successively:

K �
∑

j∈I (i)

〈
βj ,β

∨
i

〉 +
∑

j<i, j /∈I

〈
βj ,β

∨
i

〉

�
∣∣I (i)

∣∣ +
∑

j∈J (i)

〈
βj ,β

∨
i

〉

�
∣∣I (i)

∣∣ − 3
∣∣J (i)

∣∣.

Claim 2. Let m be an integer such that |I | > 4m. Suppose that I possesses an element i such
that |J (i)| � L(4m) and m > M , where L (respectively M) is as in Lemma 2.5 (respectively
Lemma 2.6). Then there is a set Iaff ⊂ {1, . . . , k} of cardinality m, such that {D(βi) | i ∈ Iaff} is
a chain of half-spaces and the subsystem generated by {βi | i ∈ Iaff} is of affine type and rank 2,
and is contained in a parabolic subsystem of affine type.

By assumption, there exist 4m elements λ1, . . . , λ4m ∈ J (i) such that D(βλ1) � · · · �

D(βλ4m
). Let γ1 = βi + 〈βi,β

∨
λ1

〉βλ1 and γ4m = βi + 〈βi,β
∨
λ4m

〉βλ4m
. Note that, by Lemma 2.1,

the set {β1, . . . , βk} ∪ {γ1, γ4m} is prenilpotent. Let also I− = {j ∈ I | D(βj ) � D(βi)} and
I+ = {j ∈ I | D(βi) � D(βj )}.

Suppose first that there exists a subset I0 ⊂ I− of cardinality m such that for each j ∈ I0,
the wall ∂βj meets ∂γ1. Since λ1 ∈ J (i) and since the pair {βi,βλ1} is prenilpotent, it follows
from Lemma 2.3 that {βi,βλ1} generates a finite subsystem. Furthermore, by Lemma 2.7(i), the
wall ∂βλ1 meets ∂βj for all j ∈ I0. Therefore, Lemma 2.6 ensures that {βj | j ∈ I0} generates an
affine subsystem of rank 2 which is contained in a parabolic subsystem of affine type. Thus we
are done in this case.

Suppose similarly that there exists a subset I0 ⊂ I+ of cardinality m such that for each j ∈ I0,
the wall ∂βj meets ∂γ4m. Then, by the same argument as in the preceding paragraph, we conclude
that {βj | j ∈ I0} generates an affine subsystem of rank 2 which is contained in a parabolic
subsystem of affine type. Thus we are done in this case as well.

Suppose now that there exists a subset I1 ⊂ I− of cardinality m such that for each j ∈ I1 and
for each j ′ ∈ {2, . . . ,m}, the wall ∂βj meets ∂βλj ′ . If for some j ′ ∈ {2, . . . ,m}, the wall ∂γ1 is
parallel to ∂βλj ′ , then it follows from Lemma 2.7(ii) applied to {βi,βj ,βλ1 , γ1} that ∂γ1 meets
∂βj for all j ∈ I1. Thus we are reduced to a case which has already been settled. Therefore, we
may assume that ∂γ1 meets ∂βλ ′ for all j ′ ∈ {2, . . . ,m}. In that case, Lemma 2.6 implies that
j
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{βλ1, . . . , βλm} generates a subsystem of affine type and rank 2 which is contained in a parabolic
subsystem of affine type.

Suppose similarly that there exists a subset I1 ⊂ I+ of cardinality m such that for each j ∈ I1
and for each j ′ ∈ {3m + 1, . . . ,4m − 1}, the wall ∂βj meets ∂βλj ′ . Then, by the same argument
as in the preceding paragraph using γ4m instead of γ1, we conclude that {βλ3m+1 , . . . , βλ4m

} gen-
erates an affine subsystem of rank 2 which is contained in a parabolic subsystem of affine type.
Thus we are done in this case as well.

Let us now define I ′ ⊂ I to be the subset consisting of all those j s such that ∂βj meets
∂βλj ′ for some j ′ ∈ {m + 1, . . . ,3m}. By Lemma 2.7(ii), if j ∈ I ′ ∩ I− then ∂βj meets ∂βλj ′
for all j ′ ∈ {1, . . . ,m}. It follows that we may assume |I ′ ∩ I−| < m, otherwise we are reduced
to a case which has already been settled. Similarly, if j ∈ I ′ ∩ I+ then ∂βj meets ∂βλj ′ for all
j ′ ∈ {3m+1, . . . ,4m} and, as above, we may assume that |I ′ ∩ I+| < m. Since I = I− ∪{i}∪ I+,
it follows that I ′ = (I ′ ∩I−)∪{i}∪ (I ′ ∩I+) and, hence, the last case which remains to be treated
is when |I ′| < 2m. Note that, by definition, the set {∂βj | j ∈ I\I ′}∪{∂βλm+1 , . . . , ∂βλ3m

} consists
of pairwise parallel walls. Therefore, the set {D(βj ) | j ∈ I\I ′} ∪ {D(βλm+1), . . . ,D(βλ3m

)} is a
chain of half-spaces of length |I | − |I ′| + 2m > |I |. This contradicts the maximality property
of I , thereby showing that this last case does not occur.

Claim 3. Suppose that there exists a set Iaff = {λ1, . . . , λn} ⊂ {1, . . . , k} of cardinality
n > 6.L(8) + 2K + 6 such that D(βλ1) � · · · � D(βλn) and {βλ1 , . . . , βλn} generates an affine
subsystem of rank 2 which is contained in a parabolic subsystem of affine type, where L is the
function of Lemma 2.5. Then there exists a nilpotent sequence (β ′

j )j=1,...,k′ , such that the set
{β ′

1, . . . , β
′
k′ } contains {βλj

| j = x + 1, x + 2, . . . , n − x}, where x = 6.L(8) + 2K + 6, and is
contained in a parabolic subsystem of affine type of Δ.

We make the following definitions:

i := min{λj | j = x + 1, x + 2, . . . , n − x}, k′ := k − i + 2,

β ′
1 := βi, β ′

2 :=
i−1∑

j=1

βj

and β ′
j := βi+j−2 for all j = 3, . . . , k′.

The set {β ′
1, . . . , β

′
k′ } is prenilpotent by Lemma 2.1, thus the sequence (β ′

j )j�k′ satisfies
(NS1). It also satisfies (NS2) because so does (βj )j�k . Hence (β ′

j )j�k′ is a nilpotent se-
quence. Furthermore, it follows from the definition that the set {β ′

1, . . . , β
′
k′ } contains {βλj

|
j = x + 1, x + 2, . . . , n − x}. Let Φ ⊂ Δ be the parabolic subsystem of affine type contain-
ing {βλ1 , . . . , βλn}. We now show by induction on m that {β ′

j | j = 1, . . . ,m} is contained in Φ .
This is true by hypothesis for m = 1, hence the induction can start.

Let m > 1. Note that by induction, we have
∑m−1

j=1 β ′
j ∈ Φ and moreover 〈∑m−1

j=1 β ′
j , β

′∨
m 〉 �= 0

by (NS2). Therefore, if ∂β ′
m meets at least 8 elements of {∂βλ1, . . . , ∂βλn}, then we have β ′

m ∈ Φ

by Lemma 2.8(ii) and we are done. We henceforth assume that ∂β ′
m meets at most 7 elements of

{∂βλ1, . . . , ∂βλn}.
If ∂β ′

m meets some element of {∂βλ8 , . . . , ∂βλn−7}, then by the above the triple {∂βλ1,

∂β ′
m, ∂βλn} consists of pairwise parallel walls since walls are convex. Moreover, since ∂βλj

⊂
D(βλn)\D(βλ1) for all j = 2, . . . , n − 1 and since ∂β ′

m meets ∂βλj
for some such j , we obtain
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∂β ′
m ⊂ D(βλn)\D(βλ1). Finally, we deduce from Lemma 2.3(iii) that D(λ1) � D(β ′

m) � D(λn).
By Lemma 2.8(i), this implies that β ′

m ∈ Φ .
It remains to consider the case when ∂β ′

m meets no element of {∂βλ8 , . . . , ∂βλn−7}. Thus the set
{D(β ′

m),D(βλ8), . . . ,D(βλn−7)} is a chain of half-spaces by Lemma 2.3(iii) and we may assume
that either D(β ′

m) � D(βλ8) or D(β ′
m) � D(βλn−7), otherwise we may conclude again using

Lemma 2.8(i). Define J ′(m) := {j < m | 〈β ′
j , β

′∨
m 〉 < 0}. Note that 1 /∈ J ′(m) otherwise ∂β ′

m

would meet ∂β ′
1 by Lemma 2.3. Note that for all j ∈ J ′(m), we have 〈β ′

j , β
′∨
m 〉 � −3 in view of

Lemma 2.3. Therefore, since 〈∑m−1
j=1 β ′

j , β
′∨
m 〉 � K by (NS2) and Lemma 2.4, we deduce:

〈
β ′

1, β
′∨
m

〉
� K −

m−1∑

j=2

〈
β ′

j , β
′∨
m

〉

� K −
∑

j∈J ′(m)

〈
β ′

j , β
′∨
m

〉

� K + 3
∣∣J ′(m)

∣∣.

If K + 3|J ′(m)| < x−6
2 , then we obtain β ′

m ∈ Φ by Lemma 2.8(iii), as desired. Otherwise,
we have |J ′(m)| � x−2K−6

6 = L(8) by the definition of x. Therefore, the set J ′(m) contains
8 elements j1, . . . , j8 such that the walls ∂β ′

j1
, . . . , ∂β ′

j8
are pairwise parallel. By Lemma 2.3, the

wall ∂β ′
m meets ∂β ′

j for each j ∈ J ′(m), since the pair {∂β ′
j , ∂β

′
m} is prenilpotent. Furthermore,

we have {β ′
j | j ∈ J ′(m)} ⊂ Φ by induction. We finally conclude that β ′

m ∈ Φ by Lemma 2.8(ii).
We are now ready to obtain a final contradiction. The above claims show that the existence of

nilpotent sequences of arbitrarily large length in Δ implies the existence of nilpotent sequences
of arbitrarily large length, entirely contained in parabolic subsystems of affine type of Δ. Note
that there are only finitely many orbits of such subsystems under the Weyl group action. Thus
there must exist nilpotent sequences of arbitrarily large length, entirely contained in some fixed
parabolic subsystem of affine type of Δ. As mentioned in the introduction, this is impossible
because it contradicts the fact that Kac–Moody groups of affine type are linear modulo center.
Here are some more details.

Linearity of affine Kac–Moody groups follows from their well-known realization as matrix
groups over rings of Laurent polynomials: if G is the complex simply connected Kac–Moody
group of untwisted affine type X(1) (notation of [Kac90, Chapter 4]) and G denotes the simple
simply connected algebraic group scheme of type X, then there is a central homomorphism
ϕ :G → G(C[t, t−1]) by [Tit83, Section 7.3]. Using the divisibility of the subgroup Uw < G,
it follows that the Zariski closure of ϕ(Uw) in G(C[t, t−1]) is connected. Since it is moreover
nilpotent, it is contained in a Borel subgroup of G. Therefore, the nilpotency degree of Uw is
bounded from above by the solvability degree of Borel subgroups of G, which is of course
independent of w. A similar argument also applies to the case of twisted affine groups, since
these can be viewed as almost split forms of untwisted affine groups [Tit83, Section 7.3] and,
hence, are linear as well.

An alternative way to prove that the length of nilpotent sequences in a root system Δ of
affine type is uniformly bounded, is to use the description of real roots in Δ provided by [Kac90,
Proposition 6.3].

This result shows that if (βj )j=1,...,k is a nilpotent sequence of Δ, then (βj )j=1,...,k is a nilpo-
tent sequence of the finite (possibly nonreduced) root system reΔ, where α �→ α denotes the
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orthogonal projection introduced in [Kac90, §6.2]. In particular, every nilpotent sequence of Δ

is of length at most | reΔ|.

3. A bound on the order of torsion elements in Kac–Moody groups over finite fields

We briefly indicate how Corollary 1.3 can be deduced from Theorem 1.2.
Since an almost split Kac–Moody group over a finite field can be embedded in a split one

[Rém02, Chapter 11], it suffices to consider the split case. Let thus G be a split Kac–Moody group
over a finite field Fq . Recall that any finite subgroup of G is contained in the intersection of two
finite type parabolic subgroups of opposite signs [CM06, Corollary 3.8]. Now, the intersection
of two such parabolic subgroups has a Levi decomposition [Rém02, §6.3.4] (see also [CM06,
Proposition 3.6]): it can be written as a semi-direct product L � U where L is a finite type Levi
subgroup, namely the intersection of two opposite parabolic subgroups of finite type, and U is
conjugate to a subgroup Uw for some w. Since G has finitely many orbits of pairs of opposite
parabolic subgroups (for the action by conjugation), it follows that the order of the finite subgroup
L is bounded above by a constant depending only on G. Thus the corollary will be proven if we
show that the order of any element of Uw is bounded above by a constant which is independent
of w. In view of [Tit87, Proposition 1], each factor group of the descending central series of
Uw is isomorphic to a direct product of root subgroups. In particular, such a factor group is an
elementary abelian p-group, where p is the characteristic of Fq . In particular, the order of any
element of Uw is bounded above by pn, where n is the length of the descending central series
of Uw . By Theorem 1.2 (see also the comment following its statement in the introduction), the
number n is bounded above by a constant depending only on G, and the desired assertion follows.
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