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Abstract Although beta-amyloid (Ab) has been regarded as the principal toxic factor in the path-

ogenesis of Alzheimer’s disease (AD), it plays important physiological roles in phenomena such as

neuron survival, synaptic plasticity, and memory formation. There are numerous plausible reasons

to assume that all of the mentioned pathological and physiological functions of Ab may be partially

mediated via alpha 7 nicotinic acetylcholine receptor (nAChR). Agonistic and antagonistic aspects

of Ab on nAChRs may explain this paradox in peptide–receptor function. It seems that Ab shows

antagonistic effects on a7 nAChR in a dose-dependent manner, and its pathologic function may

partially correlate with antagonization of the receptor.

If this hypothesis is supported, the related mechanisms of neurotoxicity, neuroprotection, mem-

ory formation, and AD pathogenesis might be identified. In addition, such knowledge helps make a

more valid interpretation of neuron signaling and a better design of AD animal models. In addition,

it may provide new insights into AD therapy development via reducing the amount of Ab and

inhibiting peptide aggregation.
ª 2014 Tehran University of Medical Sciences. Published by Elsevier Ltd.
D license.
Introduction

Alzheimer’s disease (AD) is the most common type of demen-
tia and affects the quality of life in the elderly accounting for
50–60% of all senile dementia cases [1]. Numerous factors
have been introduced to contribute to the emergence and dete-

rioration of AD. Beta-amyloids (Ab) are fundamental constit-
uents of senile plaques and considered as major pathological
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entities in AD [2]. b and c secretases are responsible for the
sequential cleavage of the amyloid precursor protein (APP)
and the production of Ab protein [3].

In young brain and normal conditions, there is an equilib-
rium between production and elimination of Ab which main-
tains Ab in steady-state levels [4] and this equilibrium is

regulated through a cascade of degradative enzymes [5] In
aging, pathologic conditions, and excitotoxicity, Ab formation
and clearance [6] are impaired which eventually leads to Ab
accumulation [4]. Accumulation phase starts with low molecu-
lar weight fractions of Ab (monomer, dimers, or trimers) and
continues with larger oligomers or insoluble amyloid fibrils.
Various factors such as biochemical structure, chaperoning

intermediations, and generalized enzymatic dysfunction are
partially involved [3].

Being permeable to Ca2+ and Na+, nicotinic acetylcho-

line receptors (nAChRs) are a family of ligand-gated ion
channels [7]. a7 subtype of nAChRs is highly permeable to
Ca2+ ions and has been known to be of great importance

because of their functions [8,9]. They have also been sug-
gested to accelerate the progression of AD and are highly
expressed in sections involved in cognitive processes

[10,11]. a7 subtype can be found in presynaptic, postsynap-
tic, and non-synaptic sites [12].

As AD progresses, both accumulation of Ab and expres-
sion of a7 nAChR can be observed in the basal forebrain

cholinergic system. Interestingly, the alteration of a7 nAChR
expression has been held responsible for the impairment of
cholinergic neurotransmission [13]. In addition, recent stud-

ies have demonstrated that Ab has a high affinity to nAC-
hRs [14,15] and a7 nAChR which contribute to the
initiation and development of amyloid pathology in the

AD brain [16].
Furthermore, Ab could also be found in the brain of

healthy people and is suggested to play vital physiological roles

[17]; impairment in Ab production would lead to neuronal
death [18]. Moreover, Ab plays a regulatory role in ion channel
expression, neuronal excitability [19], synaptic plasticity [20],
and memory formation [17,21]. Interestingly, synthetic Ab
monomers not only protect already-developed neurons against
excitotoxic death but also guarantee the endurance of develop-
ing neurons [22]. Majority of these actions are mediated via a7
nAChRs, while most experimental evaluations show that both
partial and full a7 nAChR agonists have positive effects on
human cognitive functioning [23].

Furthermore, both agonistic and antagonistic effects of Ab
on the a7 nAChR have frequently been mentioned in different
researches [24–27]. Surprisingly, these contradictory functions
may lead to either toxicity or neuroprotective effects through

different cellular signaling pathways [28,29] Such complicated
interactions of Ab–nAChR and related mechanisms need to be
clarified and discovered.
Fig. 1 Schema of Ab–a7 nAChR interaction at various concen-

trations of Ab.
The hypothesis

Ab concentrations in the brain of healthy people have been re-

ported to amount to picomole values, whereas in AD patients,
these concentrations increase to nanomole quantities [30]
which may trigger the formation of insoluble plaques.
However, prior to insoluble plaque formation, numerous
varied conformations occur converting Ab peptides into
monomers, oligomers, globulomers, protofibrils, and aggre-

gated forms [31]. In addition, the molecular weight of oligomer
peptides is distributed over a wide range (from <10 to
>100 kDa), with structural polymorphism seen in oligomers

of similar sizes [3].
In physiologic conditions and at low concentrations, this

peptide can be found in monomer and soluble forms and it

not only has no neurotoxicity [22] but also exhibits neuropro-
tective properties. Neuroprotection might be mediated through
agonistic effects of Ab monomers on a7 nAChRs, which in
turn could prompt internal protective signaling pathways such

as extracellular signal-regulated kinase (ERK), mitogen-
activated protein kinase (MAPK) [29], and phosphatidyl
inositol-3-kinase (PI-3-K) pathways [22].

Moreover, it seems that increase in Ab levels and oligomer-
ization and accumulation of Ab during AD might hinder the
neuroprotective properties of a7 nAChR through its antago-

nistic effects that might be related to three-dimensional, phys-
ical, and morphological characteristics of oligomers [30]
(Fig. 1).

Considering their high Ca2+ permeability, important roles
of a7 nAChRs have been suggested in modulation of neuro-
transmitter release, neuroprotection, neurotoxicity, and gene
expression [8]. In addition, nanomole concentrations of Ab
might inhibit Ca2+ responses, while, picomole concentrations
directly evoke constant surges in presynaptic Ca2+ through
nAChRs leading to either physiologic neuroprotection or

pathologic signaling of AD [17].

Evaluation of the hypothesis

To evaluate the interaction of Ab and a7 nAChR, a combina-
tion of some molecular and electrophysiological tests is neces-
sary. For this purpose, the a7 nAChR sequence should be
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transfected into the appropriate neural cells such as NG108-15.
Next, engineered neurons should be cultured in fortified

media. In order to investigate receptor–peptide interaction,
diluted concentrations of Ab (physiologic and pathologic
concentrations) should be added to the culture. Later, cell

viability can be determined by 3-(4,5-dimethylthiazol-2-yl)-2,
5-diphenyl tetrazolium bromide (MTT) assay, while a7
nAChR-related internal signaling pathways such as those

involving ERK, MAPK, and PI-3-K can be assessed using
western blot technique.

Furthermore, electrophysiological methods such as the
patch-clamp method are attractive choices for ion channel

evaluations. Moreover, the number of ion channel-targeted
agents would necessitate monitoring of compound activity
using electrophysiological techniques [32].
Discussion and conclusion

As a probable functional target for picomolar Ab, homomeric

a7 nAChRs potentially interact with Ab to adjust their presyn-
aptic function and possibly activate a7 nAChRs via extracellu-
lar domain of the receptor [33].

Functional activity and upregulation of a7 nAChRs are
responsible for Ab-induced neuronal hyperexcitation and
probably pathogenesis of AD [34], indicating the direct corre-

lation between a7 nAChRs and Ab. Furthermore, the activa-
tion of a7 nAChRs by Ab regulates some of the
unanticipated pharmacologic pathways. Wu et al. argued that
the transient surge in dopamine discharge induced by Ab is

facilitated by activation of a7 nAChRs which in turn would
lead to the disruption of synaptic signaling; this may have an
effect on AD [35].

The above-mentioned interactions suggest that a7 nAChR
stimulatory medications might control Ab–a7 nAChR patho-
genic signaling mechanisms in patients with AD [36]. Accord-

ing to Kroker et al., Ab oligomers decrease long-term
potentiation (LTP) in a concentration-dependent manner with
a maximum effect at 100–1000 nM concentration and a7
nAChR partial agonist (SSR180711) increases the Ab-induced
LTP reduction [37].

Therefore, it seems that AD pathogenesis at primary
stages may be partially mediated through antagonization

of a7 nAChR by Ab. Although some studies have shown
that Ab increases neuroprotection via agonistic effect on
a7 nAChR, this only occurs under physiological conditions

and picomolar concentrations. Hence, we hypothesized that
Ab may show antagonistic effects on a7 nAChR in a
dose-dependent manner. If this hypothesis pans out, more

accurate judgments can be made on the physiologic and
pathologic interactions of Ab–a7 nAChR. Consequently,
the identification of the mechanisms of neurotoxicity, neuro-
protection, memory formation, and AD pathogenesis might

be facilitated. In addition, knowledge of agonistic and
antagonistic effects of Ab at different concentrations could
promote better perception of neuron signaling and lead to

the development of more accurate designs of AD models
in animals. These ongoing discussions provide new insights
into working out strategies for the development of AD ther-

apy via reducing the amount of Ab and inhibiting peptide
aggregation.
Overview box

First Question: What do we already know about the

subject?

Many theories have been developed on the role of Ab
in the development of cognition dysfunction. It is believed
that high concentrations of Ab lead to the formation of

senile plaques disrupting neuronal function. Although
its complicated molecular function is poorly understood,
the possible interaction between a7 nAChR and Ab is
one of the major controversies in the field of neuroscience.

Second Question: What does your proposed theory add

to the current knowledge available, and what benefits does

it have?

This hypothesis introduces a novel possible molecular
mechanism in the AD pathogenesis based on varied con-

centrations of Ab and a7 nAChR. In addition, knowledge
of agonistic and antagonistic properties of Ab at different
concentrations could promote better perception of neuro-

nal signaling and lead to the development of new strate-
gies for approaching towards an appropriate AD
therapy via the reduction of Ab amount and inhibition
of peptide aggregation.

Third question: Among numerous available studies, what

special further study is proposed for testing the idea?

For this purpose, the a7 nAChR sequence should be
transfected into the appropriate neural cells. In order to
investigate receptor–peptide interaction, diluted concen-

trations of Ab should be added to the culture. Later, cell
viability can be determined by the MTT assay, while, a7
nAChR-related internal signaling pathways such as those

involving ERK, MAPK, and PI-3-K can be assessed using
western blot technique. Additionally, electrophysiological
methods like patch-clamp method are considered attrac-
tive choices for ion channel evaluations.
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