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Abstract
Trawl-doors are a large part of the fluid flow resistance of trawlers fishing gear and has con-
siderable effect on the fuel consumption. A key factor in reducing that consumption is by
implementing computational models in the design process. This study presents a robust two
dimensional computational fluid dynamics models that is able to capture the nonlinear flow
past multi-element hydrofoils. Efficient optimization algorithms are applied to the design of
trawl-doors using problem formulation that captures true characteristics of the design space
where lift-to-drag ratio is maximized. Four design variables are used in the optimization pro-
cess to control the fluid flow angle of attack, as well as position and orientation of a leading-edge
slat. The optimization process involves both multi-point space mapping, and mixed modeling
techniques that utilize space mapping to create a physics-based surrogate model. The results
demonstrate that lift-to-drag maximization is more appropriate than lift-constraint drag mini-
mization in this case and that local search using multi-point space mapping can yield satisfactory
design at low computational cost. By using global search with mixed modeling a solution with
higher quality is obtained, but at a higher computational cost than local search.

Keywords: Trawl-doors, computational fluid dynamics, surrogate-based optimization, space mapping,
kriging interpolation.

1 Introduction
Optimization of trawl-door shapes is a key in minimizing the fuel consumption of fishing trawlers
(Jonsson, 2012; Hermannsson, 2014). Due to the complex fluid flow past the trawl-doors,
accurate computational fluid dynamics (CFD) models are required to resolve the figures of
merit (the forces acting on the trawl-doors). High cost of the CFD simulations renders the
optimization problem computationally challenging when using conventional techniques.

This paper presents an application of surrogate-based optimization techniques to hydrody-
namic shape optimization of trawl-doors. The approach exploits construction of fast data-driven
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surrogate models developed from space-mapping-corrected variable-fidelity CFD simulations.
The resulting surrogate model provides an accurate representation of the design space at a
relatively low cost since it is constructed using fast physics models. The surrogate is iteratively
optimized and updated using the local optimum as an infill point. The algorithm is applied to
lift-to-drag maximization and lift-constrained drag minimization of multi-element trawl-doors
involving four design variables controlling the angle of attack and the trailing-edge slat position
and orientation. The optimized shapes are obtained at a relatively low cost.

2 Problem Formulation

The objective of this work is to optimize the shape and configuration of trawl-doors, where they
are treated as an independent system. The conventional trawl-doors are not considered since
recent studies have revealed that airfoil-shaped trawl-doors, as proposed by Jonsson (2012) and
Hermannsson (2014) are much more efficient than the conventional shape. Here we consider
trawl-doors that are constructed from airfoil-shaped elements with multi-element configurations.
Three sets of configurations are presented, main element with leading-edge slat, trailing edge
flap or both as shown in Fig. 1.

In this study there are two different objective function formulations. On one hand, we
minimize the drag coefficient for a constant lift coefficient as done in Leifsson et al. (2015),
and on the other we maximize the lift-to-drag ratio. The first objective is written as:
min Cd(x) s.t. Cl(x) = const., where Cl is the lift coefficient, Cd is the drag coefficient,
and x is the vector of design variables. The second objective is written as: max Cl(x)/Cd(x).

In this work, the shape of each element and the free-stream velocity V∞ is held constant
through the optimization process. The inclination and position of the leading-edge flap and
the trailing-edge slat, as well as angle of attack are designable parameters. Then the vector
of design variables for multi element trawl-door with leading-edge slat and trailing-edge flap
can be written as x = [ xslat/c yslat/c θslat xflap/c yflap/c θflap α ]

T
, where xslat/c is the

slat leading-edge position on the x-axis, yslat/c is the slat leading-edge position on the y-axis,
θslat is the inclination of the slat relative to the x-axis, xflap/c is the flap leading edge position
on the x-axis, yflap/c is the flap leading-edge position on the y-axis, θflap is the inclination of
the flap relative to the x-axis, α is the angle of attack relative to the x-axis and c is the chord
length of the main element. Throughout this study the shape of the elements are normalized,
so that c = 1. All design variables are subjected to bounds, that is l ≤ x ≤ u, where u is the
upper bound of the design variable vector and l is the lower bound.

θslat

yslat/c

xslat/c xflap/c

V∞
α θflap yflap/c

x

y

Figure 1: Two dimensional view of multi-element trawl-door constructed from airfoil shaped
elements
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3 Computational Fluid Dynamics Modeling

This section describes the computational fluid dynamics (CFD) modeling for trawl-door flow
analysis in two-dimensions. In particular, the governing equations, computational grid, and
flow solver are described. Furthermore, the section gives results of grid independence studies,
and validation results.

3.1 Governing Equations

The flow is assumed to be steady, incompressible, viscous, and turbulent. Governing equations
are the Reynolds-Averaged Navier-Stokes (RANS) equations with Menter’s Shear-Stress Trans-
port (SST) k−ω turbulence model. Refer to Tannehill and Anderson (1997) for further details
on the governing equations and the SST k − ω turbulence model.

3.2 Flow Solver

The flow solver is coupled velocity-pressure-based formulation. The spatial discretization
schemes are second order for all flow variables and the gradient is found by node based Green-
Gauss method. Due to complex flow condition at high angles of attack a pseudo-transient option
and high-order relaxation terms are used to obtain stable convergence. The solution controls
were set with flow Courant number as 40, momentum and pressure relaxation factors were 0.10.
The under relaxation factors for both turbulent kinetic energy and specific dissipation rate were
set to 0.8, while higher order term relaxation factor for flow variables were set to 0.25.

3.3 Computational Grid

The goal was to have a grid with good quality and that could be generated both automati-
cally and robustly according to updated geometries proposed by the optimizer. Unstructured
triangular grid was chosen, it is generated more automatically and robustly when dealing with
complex geometries than structured grids Mavriplis (1997). The far-field was configured with
a box-topology, extending 100 main element chord-lengths c in all directions from the leading
edge of the main element that was located in the center of the box. The far-field has to be
located relatively far away from the trawl-door so that the flow generated by the boundary
conditions is fully developed at the trawl-door for consistency of the flow solution. The trian-
gular grid is clustered around the trawl-door geometry, and grows in size as it gets closer to
the far-field where the maximum size is defined as 10c. The initial size of the triangular grid,
closest to the trawl-door is defined by the spacing between elements of the prismatic inflation
layer that is extruded from all geometry surfaces. The role of the inflation layer is to capture
characteristics of the boundary-layer and spacing between elements in stream-wise direction is
determined by performing a grid convergence study. 10 prismatic layers were extruded from the
geometry with exponential growth ratio of 1.2 and the initial layer height were set to 2.5e−5
for the optimized geometries so that the non-dimensional wall distance y+ < 1. An example
grid is given in Fig. 2.

3.4 Convergence Study

Figure 3a shows a grid convergence study for a trawl-door with a NACA 2412 main element and
a NACA 3210 leading edge slat placed at x = −0.18 y = −0.08. The length of the slat is 20%
of the length of the main element and at an angle of 35◦. The assembly is placed at an angle of
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(a) Farfield (b) Close-up to the trawl-door

Figure 2: Example grid for multi-element trawl-door.
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Figure 3: Grid convergence study.

attack of 5◦ and the velocity were set at 2m/s. It can be seen that the first three grid triplets
consists of coarse and unreliable grids inheriting high uncertainties. The uncertainty reduces
as the grids get finer and the solution more stabled, until it reaches a minimum at grid triplet
seven where the solution is considered converged. For that reason grid number 9 with 4,800
elements distributed over the main element in stream-wise direction, resulting in total number
of approximately 517,000 elements was chosen for the optimization process for this geometry.
Figure 3b shows how the computational time increases as the total number of elements grow,
resulting in a computational time of 170 minutes for the chosen grid.

4 Optimization Methodology

In this section, we describe the optimization methodology. In particular, we describe the gen-
eral surrogate-based optimization algorithm, and surrogate construction for local and global
searches. The local search is performed using multi-point output space mapping surrogates,
and the global search with space-mapping-enhanced kriging surrogate models.
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4.1 Surrogate-Based Optimization Algorithm

The optimization problem, discussed in Section 2, is cast as a nonlinear constrained minimiza-
tion:

x∗ = arg min
x

H(f(x)) s.t. g(x)) ≤ 0, (1)

where f is the high-fidelity model response, H is the objective function, and g is an inequality
constraint. The model response f(x) = [Cl,f Cd,f ]

T where Cl,f and Cd,f are the lift and drag
coefficients obtained by the high-fidelity model. For lift-to-drag maximization the objective
function takes the form H(f(x)) = −Cl,f (x)/Cd,f (x), and for drag minimization H(f(x)) =
Cd,f (x) with g(x) = Cl,t − Cl,f (x) where Cl,t = const..

In this work, we solve (1) by using the surrogate-based optimization (SBO) concept (Queipo
et al., 2006; Forrester and Keane, 2009; Koziel, 2011; Koziel et al., 2013). The idea behind SBO
is to replace direct optimization of an expensive computational model by an iterative process
in which a sequence of designs approximating the solution to the original optimization problem
is generated by means of optimizing a fast yet reasonably accurate representation of the high-
fidelity model, referred to as a surrogate. In each iteration, the surrogate model is updated
using the high-fidelity model evaluation at the most recent design (and, sometimes, some other
suitably selected designs). Formally speaking, the surrogate-based optimization process can be
written as (Koziel et al., 2013)

x(i+1) = arg min
x

H(s(i)(x)) (2)

where x(i), i = 0, 1, . . . , is a sequence of approximate solutions to the original problem (1),
whereas s(i) is the surrogate model at the ith iteration. x(0) is the initial design.

The main prerequisite for the process (2) to be computationally efficient is the surrogate
model s being significantly faster than the high-fidelity model f. At the same time, the surrogate
has to be sufficiently accurate (in terms of representing the high-fidelity model). In case of local
search methods, reasonable accuracy is only requested in the vicinity of the current design x(i).
If both conditions are satisfied, the algorithm (2) is likely to quickly converge to the high-fidelity
model optimum x∗.

4.2 Local Search with Multi-Point Output Space Mapping Surrogates

A generic multi-point space mapping surrogate at iteration i in the SBO algorithm (2) (Koziel
et al., 2006)

s(i)(x) = s(x,p(i)), (3)

where the parameters p are found by parameter extraction by solving a nonlinear minimization
problem of the form

p(i) = arg min
P

i∑
k=0

wi,k ‖ f(x(k))− s(x(k),p) ‖2, (4)

where wi,k are weighting coefficients. The surrogate s can be constructed based on the model
inputs x, and p (input space mapping (Koziel et al., 2006)), or based the model outputs
(output space mapping (Koziel and Leifsson, 2012)). In both cases, a low-fidelity model c is
used in place of the high-fidelity model f. c can be derived from simplified physics models,
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coarse model discretization, or a combination of the two (see, e.g., (Leifsson and Koziel, 2015)).
The minimization problem (4) aligns the surrogate model with the high-fidelity model using
samples of both the high- and low-fidelity models gathered locally during the search process,
i.e., minimized the difference of f and s in a least square sense using the samples at each design
iteration k = 0, 1, . . . , i.

For aero/hydrodynamic output responses from CFD models, Koziel and Leifsson (2012)
suggested the following multi-point output space mapping surrogate form

s(i)(x) = A(i) ◦ c(x)+D(i)+q(i) =
[
al

(i)Cl.c(x) + dl
(i) + ql

(i) ad
(i)Cd.c(x) + dd

(i) + qd
(i)
]T

,

(5)
where ◦ denotes component-wise multiplication, c is the low-fidelity model, and the response
correction parameters A(i) and D(i) are obtained by solving

[
A(i),D(i)

]
= arg min

[A,D]

i∑
k=0

‖ f(x(k))− A ◦ c (x(k)) + D ‖2 . (6)

The response scaling improves the matching for all points previously iterated. The additive
response correction term q(i) is defined as (Koziel and Leifsson, 2012)

q(i) = f(x(i))−
[
A(i) ◦ c(x(i)) + D(i)

]
(7)

to make sure that there is perfect matching between the surrogate and the high-fidelity model
at zero order consistency condition x(i), s(i)(x(i)) = f(x(i)).

The response correction parameters A(i), D(i) and the response scaling q(i) can be calculated
analytically (Koziel and Leifsson, 2012)

[
al

(i)

dl
(i)

]
= (CT

l Cl)
−1CT

l Fl

[
ad

(i)

dd
(i)

]
= (CT

d Cd)
−1CT

d Fd

(8)

where

Cl =

[
Cl.c(x(0)) Cl.c(x(1)) · · · Cl.c(x(i))

1 1 · · · 1

]T

Fl =

[
Cl.f (x(0)) Cl.f (x(1)) · · · Cl.f (x(i))

1 1 · · · 1

]T (9)

and

Cd =

[
Cd.c(x(0)) Cd.c(x(1)) · · · Cd.c(x(i))

1 1 · · · 1

]T

Fd =

[
Cd.f (x(0)) Cd.f (x(1)) · · · Cd.f (x(i))

1 1 · · · 1

]T (10)
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This is the least-square optimal solution to the linear regression problem Cla
(i)
l +d

(i)
l = Fl and

Cda
(i)
d + d

(i)
d = Fd, equivalent to (6).

4.3 Global Search with Space-Mapping-Corrected Kriging Surrogate
Models

Koziel and Bandler (2007) suggested creating a surrogate by mixing data-driven methods
(Queipo et al., 2006; Forrester and Keane, 2009) with physics-based surrogate models (Koziel
et al., 2013; Leifsson et al., 2015). In this work, we follow the approach by (Koziel and Ban-
dler, 2012) for modeling of microwave devices and construct a global surrogate model using
kriging interpolation (Forrester and Keane, 2009) and enhance it with space mapping (Koziel
and Leifsson, 2012). More specifically, the low-fidelity model c is used to construct the kriging
model and the output space mapping technique is used correct it using a limited amount of
high-fidelity model f samples.

Using (5), the output space mapping surrogate is then given by

s(i)(x) = A(i) ◦ s̃(x) + D(i) =
[
al

(i)Cl.s̃(x) + dl
(i) ad

(i)Cd.s̃(x) + dd
(i)
]T

, (11)

where s̃ = [Cl.s̃ Cd.s̃]
T is the kriging surrogate model. The parameters A(i) and D(i) are still

calculated using (8)-(10), but with s̃ in place of c.
Kriging is a Gaussian process based modeling method, which is compact and cheap to

evaluate Journel and Huijbregts (1981); Simpson et al. (2001); Kleijnen (2009); Rasmussen and
Williams (2005). In its basic formulation, kriging assumes that the function of interest is of the
following form Journel and Huijbregts (1981); Simpson et al. (2001)

f(x) = g(x)Tβ + Z(x), (12)

where g(x) = [g1(x) g2(x) . . . gK(x) ]T are known (e.g., constant) functions, β = [β1β2 . . . βk]
T

are the unknown model parameters (hyperparameters), and Z(x) is a realization of a nor-
mally distributed Gaussian random process with zero mean and variance σ2. The regression
part g(x)Tβ is a trend function for f, and Z(x) takes into account localized variations. The
covariance matrix of Z(x) is given as

Cov
[
Z(x(i))(x(j))

]
= σ2R

([
R(x(i),x(j))

])
, (13)

where R is a p × p correlation matrix with Rij = R(x(i),x(j)). Here, R(x(i),x(j)) is the
correlation function between sampled data points x(i) and x(j). The most popular choice is the
Gaussian correlation function

R(x,y) = exp

[
−

n∑
k=1

θk |xk − yk|
]
, (14)

where θk are the unknown correlation parameters, and xk and yk are the kth components of
the vectors x and y, respectively. The kriging predictor is defined as

s̃(x) = g(x)Tβ + rT (x)R−1(F − Gβ), (15)

where r(x) =
[
R(x,x(1)) . . . R(x,x(p))

]T
, F =

[
f(x(1)) f(x(2)) . . . f(x(p))

]T
, and G is a p×K

matrix with Gij = gj(x(i)). The vector of model parameters β can be computed as β =
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(GTR−1G)−1GTR−1f. Model fitting is accomplished by maximum likelihood for θk Journel
and Huijbregts (1981).

5 Numerical Example

This section presents the results of a numerical example illustrating the proposed approach
applied to the design of a trawl-door shape with a main element and a leading-edge slat.

5.1 Description

The high-fidelity model has about 517,000 elements (grid 9). The flow solver convergence criteria
were set to 5,000 iterations, or when residuals had dropped by six orders of magnitude. The
low-fidelity model is the same as the high-fidelity one, but with a coarser mesh discretization
and relaxed convergence criteria. The selected grid has about 15,000 elements (grid 4) and
the model is considered converged after a fixed number of 500 flow solver iterations. The low
fidelity model is on average around 78 times faster than the high-fidelity one.

The problem formulation is discussed in Section 2. We perform two local searches using
multi-point output space mapping (described in Section 4.2), one for each objective function
setup (as described in Section 4.1), and one global search (described in Section 4.2).

The flow speed is set to 2 m/s. The search space is defined as: −0.35 ≤ xflap/c ≤ −0.17,
−0.08 ≤ yflap/c ≤ 0.07, 10 ≤ θflap ≤ 40 deg, 5.0 ≤ α ≤ 35 deg. The initial design is set as
xflap/c = −0.2, yflap/c = −0.08, θflap = 25 deg and α = 8 deg.

5.2 Results

Table 1 summarizes the optimization results. When all the optimization results are ex-
amined, they all yield satisfactory results. In all of the cases, optimum results for de-
sign variable xslat/c is within the range of −0.200 ≤ xslat/c ≤ −0.205 and yslat/c within
−0.0558 ≤ xslat/c ≤ −0.0800 whether the objective is to maximize Cl/Cd or minimize Cd.
Even though the consistency is not as good between simulation results for design variables θ
and α, the solutions are considered valid. The reason is that there are more than one equally
good solutions for the problem at hand.

The highest lift-to-drag ratio of 82.1 is obtained by using global search. However, the
difference between the two search methods is negligible considering the numerical noise present
in the simulations. The case where the objective is to minimize Cd for given lift is not considered
comparable in context of lift-to-drag values. Even though the nature of the problem requires
the solution to be on top part of the lift-to-drag curve it is not constraint to the highest point.

If computational efficiency of the optimization runs is examined, the global search needs
the longest computational time. The reason is a high number of low-fidelity evaluations, even
though the low-fidelity model is computationally inexpensive compared to the high-fidelity one
the high number of 900 evaluations take over 63 hours to compute. The advantages of this
method are that the number of evaluations are directly related to the size of the search space
(i.e., a smaller search space may translate to fewer evaluations). Another advantage is that only
one high-fidelity evaluation is needed after the kriging surrogate has been constructed. Figure
4 shows the space-mapping-corrected kriging surface.

There is also much difference in computational time of the optimization process using multi-
point SM. The case that minimizes Cd needs much higher number of both low- and high-fidelity
evaluations. In that optimization run, the low-fidelity model is of lower quality than in the other
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Table 1: Numerical results.

Local Search I Local Search II Global Search

Objective min Cd, Cl ≥ 1.2 max Cl/Cd max Cl/Cd

x/cslat -0.200 -0.200 -0.205
y/cslat -0.0630 -0.0800 -0.0558
θ [deg] 24.1 29.3 25.5
α [deg] 8.38 12.3 10.7
Cl 1.20 1.67 1.48
Cd 0.0150 0.0204 0.0180
Cl/Cd 78.4 81.8 82.1
Evaluations HF/LF 14/400 4/83 1/900
Runtime gain ratio ≈ 78 ≈ 18 -
Total runtime [hours] ≈ 55 ≈ 19 ≈ 67

(a) The black dot represents the optimum solution (b) Closer view

Figure 4: Slice parallel to the xslat/c, yslat/c surface of the kriging model at optimum location
of θ = 20.5 deg. and α = 10.7 deg.

cases, but instead the computational time for each low-fidelity evaluation is much lower. This
difference is also affected by the objective value needed for the model to be converged.

6 Conclusion

A computationally efficient optimization methodology for the hydrodynamic design of multi-
element trawl-door shapes using high-fidelity two-dimensional CFD models has been presented.
Our approach exploits variable-fidelity models corrected using space mapping, and kriging in-
terpolation surrogates. Numerical design studies of multi-element trawl-door shapes illustrate
that satisfactory designs can be obtained at a low computational cost.
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