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ATP synthases are part of the sophisticated cellular metabolic network and therefore multiple interactions
have to be considered. As discussed in this review, ATP synthases form various supramolecular structures.
These include dimers and homooligomeric species. But also interactions with other proteins, particularly
those involved in energy conversion exist. The supramolecular assembly of the ATP synthase affects
metabolism, organellar structure, diseases, ageing and vice versa. The most common approaches to isolate
supercomplexes from native membranes by use of native electrophoresis or density gradients are introduced.
On the one hand, isolated ATP synthase dimers and oligomers are employed for structural studies and
elucidation of specific protein–protein interactions. On the other hand, native electrophoresis and other
techniques serve as tool to trace changes of the supramolecular organisation depending on metabolic
alterations. Upon analysing the structure, dimer-specific subunits can be identified as well as interactions
with other proteins, for example, the adenine nucleotide translocator. In the organellar context, ATP synthase
dimers and oligomers are involved in the formation of mitochondrial cristae. As a consequence, changes in the
amount of such supercomplexes affect mitochondrial structure and function. Alterations in the cellular power
plant have a strong impact on energy metabolism and ultimately play a significant role in pathophysiology. In
plant systems, dimers of the ATP synthase have been also identified in chloroplasts. Similar to mammals, a
correlation between metabolic changes and the amount of the chloroplast ATP synthase dimers exists.
Therefore, this review focusses on the interplay between metabolism and supramolecular organisation of ATP
synthase in different organisms.
ASA, ATP synthase associated;
250, Coomassie Brilliant Blue G-
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N,N′-dicyclohexylcarbodiimide;
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1. Introduction

Mitochondria and chloroplasts serve as power plants of living cells.
By generating the biological energy currency ATP, ATP synthases play
a decisive role in this process [1,2]. At the beginning of the 1960s, the
systematic study of isolated mitochondria by electron microscopy
commenced. In the micrographs, the so-called “elementary particles”
were among the first components unambiguously identified as
important units of mitochondrial function [3]. These particles, similar
to the structures shown in Fig. 1A, represent the ATP synthase [4].
They consist of a globular water-soluble subcomplex F1, responsible
for ATP synthesis (and hydrolysis) and a membrane embedded,
proton translocating subcomplex Fo (see Fig. 1C). The letter “o” results
from experiments in which ATP hydrolysis was inhibited by adding
oligomycin ([5], see Fig. 1C). Since that time, a lot of knowledge
accumulated, particularly about structure and function of F1 (e.g.
[6,7]). In contrast, the membrane integral part Fo is still experimen-
tally demanding and a high-resolution structure of the complete ATP
synthase (F1Fo) is lacking to date. To overcome technical hurdles,
pieces of information can be combined. On the one hand, single-
particle electron microscopy provides an overview of the holoenzyme
F1Fo and shows the three dimensional outline [8]. On the other hand, a
refinement is possible by docking high-resolution data of single
subunits or small buildings blocks thereof into this model, e.g. from
the membrane extrinsic region [9], from a complex of F1 with Fo
subunits [10] or from parts of the Fo complex [11,12]. Assembly of
such jigsaw pieces provides an insight into a fascinating nano-
machine, which unifies two mechanically connected biological
motors: a chemical and an electrical (ion-driven), F1 and Fo [13–16].
Besides this complex assembly, numerous subunits composing the
individual ATP synthase, sophisticated enzyme complexes have to be
considered in the complex cellular context. In recent years, the
perception of the cell is changing from randomly colliding enzymes to
a well-structured network [17]. This is also relevant to the ATP
synthase. Based on its function during oxidative phosphorylation (or
photophosphorylation), protein–protein interactionswith other energy
converting proteins are conceivable. Moreover, electron microscopy
reveals thatATP synthases are arrangedvicinal to eachother (see Fig. 1D
and [18,19]).
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We will discuss the supramolecular organisation of ATP synthases
(and other supercomplexes) and how it differs from mammals to
plants. Differences might arise in terms of structure and function.
Moreover it has to be revealed if the supramolecular organisation is
depending on the metabolic state and vice versa. Additionally, the
influence of the supramolecular organisation on development, ageing,
and cristae membranes has to be considered.

2. Composition and function of the ATP synthase

To synthesise ATP, an electrochemical proton gradient induces an
intramolecular rotation of hydrophobic subunits in the membrane
integral part of the ATP synthase [1,14,20,21]. The rotor subunits III (in
chloroplasts) or c (mitochondria or bacteria) are organised as a
cylinder-shaped oligomer IIIx/cx ([22–24], see Fig. 1B). A special
feature of the subunits III/c is their high hydrophobicity, they are
designated as proteolipids [25]. N,N′-dicyclohexylcarbodiimide
(DCCD) binds specifically to the subunits III/c and inhibits proton
translocation ([26,27], see Fig. 1C). When balancing the transforma-
tion of the electrochemical proton gradient into chemical energy, the
following calculation is used: a full turn of the oligomer IIIx/cx through
360° results in synthesis of three ATPmolecules, whereby the number
of protons is equivalent to the number of subunits. The quantity of
protons per ATP, the so-called coupling ratio, is an important value to
judge the energetic efficiency of ATP synthases and all upstream
processes (respiratory chain or photosynthesis) [28]. For mitochondria,
P. Mitchell and J. Moyle at first communicated H+/ATP ratios of 2 [29].
Subsequent studies reportedvalues between2and3.8 formitochondria,
for chloroplasts between 2 and 5 [30]. To date, the structurally
determined values are 3.3 and 2.7 for yeast and bovine heart
mitochondria, respectively [31,32]. For spinach chloroplasts the
H+/ATP ratio is significantly higher, 4.7 [33–39].

The interest in the membrane intrinsic part of the ATP-synthase is
enhanced by the research of the pharmaceutical industry, which
expects a new approach to develop novel drugs [40]. One focus is
directed towards neuronal ceroid-lipofuscinoses, the Batten disease
[41,42]. An important characteristic of this disease is the accumulation
of lipopigment, which consists largely of subunit c of the mitochondrial
ATP synthase [43]. Subunit c of persons with Batten disease is
trimethylated [44]. The other important application concerns tubercu-
losis, where mycobacteria are the pathogens which have infected
approx. a third of theworld's population.Diarylquinolines can inactivate
selectively the ATP synthases ofmycobacteria [45]. The target protein of
the treatment is the mycobacterial subunit c [46,47].

While the IIIx/cx oligomer forms the membrane embedded portion
of the H+-driven rotor, subunit γ is themain rotor component in F1. In
relation to this rotor, the subunits forming the peripheral stalk of the
ATP synthase function as a stationary element (stator). In the current
model of the ATP synthase, the stator is required to store energy
[2,48]. As another important function, the stator subunits participate
in the assembly of dimers/oligomers.
3. Supramolecular organisation of energy converting
membrane proteins

In contrast to aqueous systems employed for biochemical in vitro
studies, the concentration ofmacromolecules in the interiorof biological
cells is veryhigh. The protein concentration averages about 200–300 g/L
[49,50]. Such crowded environment establishes a basis for manifold
protein–protein interactions. Some of the interactions emerge random-
ly, but additionally scaffolding for well-organised protein networks is
put up. By arranging enzymes into stoichiometric complexes, specific
metabolic pathways (e.g. protein, glycogen, or lipid biosynthesis) can be
organised in a manner allowing the direct transfer of intermediates to
the next step of processing (substrate channelling). This kind of
organisation as “quinary” structures [51–53] allows the cell to increase
the efficiency of enzymatic reactions.

Veryhigh localprotein concentrations occur inbiologicalmembranes
[54] but also at its surface [55].Moreover, themembrane proteins have a
preferential orientation in the plane and across the lipid bilayer. As a
consequence, interactions of membrane proteins and formation of
protein complexes are facilitated [56,57]. Also lipids are involved in the
process of organisation and can form lattices [58]. Therefore, a
supramolecular array emerges in the membrane, as found for receptors
[59] or aquaporins [60]. The highest ratios of membrane proteins
compared to lipids occur in energy-transducing membranes. As a result
of this crowding, a large number of protein–protein interactions are
expected. Currently, supramolecular protein complexes are being
isolated and characterised from inner mitochondrial membranes
[38,61–67] and thylakoid membranes [68–70].

3.1. Isolation of supercomplexes

A gentle isolation procedure is the most important prerequisite for
the in-depth analysis of supramolecular structures. This aspect has to
be considered just from beginning the preparation of mitochondria
(e.g. [38,71]). In this context, especially the solubilisation of the native
membrane influences strongly the success of obtaining intact super-
complexes (see Fig. 2). Very mild solubilisation is achieved by non-
ionic detergents. Particularly digitonin, n-dodecyl-β-D-maltoside
(DDM) or Triton X-100 are very useful agents for this task. Digitonin
is isolated from foxglove (Digitalis purpurea) [72]. In addition to its
solubilisation properties [73,74], an important feature of digitonin is
the interaction with cholesterol [75–77]. In contrast to the natural
compound digitonin, DDM and Triton X-100 are produced by
chemical synthesis and are available in larger scale [78]. DDM proved
its worth for deciphering the structure of membrane proteins. A
multitudeof commondetergents are useful for solubilisation, purification
and crystallisation of membrane proteins [79–81]. But about 25% of all
procedures leading to crystals applied DDM [82]. In contrast to DDM,
which is frequently employed toobtain intact individual complexesof the
respiratory chain, Triton X-100 has the advantage of stabilising
supramolecular structure. A prerequisite for this stabilisation is to apply
Triton X-100 at low detergent to protein ratios [83,84].

Even with sophisticated biochemical equipment isolation and
structural characterisation of membrane proteins pose a challenge.
Especially in the case of multimeric protein complexes, the long-term
stability is an important issue [80]. This leads to restrictions regarding
the purification procedure. In contrast to X-ray crystallography with its
specific requirements in respect to the sample purity and homogeneity,
single-particle electron microscopy studies can be conducted subse-
quent to detergent-based solubilisation and crude purification [85,86].

One important tool for identification and separation of super-
complexes is blue-native electrophoresis (BN-PAGE, see Fig. 3). This
technique, pioneered by H. Schägger, employs the net-negatively
charged dye Coomassie Brilliant Blue G-250 to allow/improve the
migration of proteins in a gel matrix driven by an electric field [87].
Moreover, also fragile protein-protein interactions are maintained
allowing the electrophoresis of protein complexes and supercom-
plexes in native state. However, particularly in the case of supramo-
lecular structures of the ATP synthase, the omission of the dye can be
necessary. Even for monomeric ATP synthase, this dye leads to partial
dissociation into the subcomplexes F1 and Fo [88] and only ATP
synthases of some species are unaffected by this treatment [89]. For
applications with fragile complexes, clear or colourless native PAGE
(CN-PAGE) [90,91] or the variant high resolution CN-PAGE [92] are
the methods of choice (see Fig. 2). In native gels, protein complexes
and supercomplexes persist structurally and functionally intact
[93–95]. This condition allows detection of enzyme activities directly
in the gel (see Fig. 3) [96–98]. Moreover, a scale up of native PAGE
paves the way to isolate intact membrane protein complexes by



Fig. 1. ATP synthases and their supramolecular structures. A) Electron micrograph of chloroplast ATP synthase containing vesicles. Highly pure CF1Fo from spinach chloroplasts, according to
[249], was reconstituted at high protein to lipid ratio [94] into soy lecithin liposomes. This sample was stained negatively with 1% uranyl acetate and micrographs were recorded with a CCD
camera at a Tecnai Spirit electron microscope. B) Atomic force micrograph of the spinach chloroplast oligomer III14, taken from [33]. Reprinted by permission fromMacmillan Publishers Ltd:
NATURE405, 418–419, copyright 2000. C) Schematic viewof theATP synthase and interaction sites of the inhibitorsDCCDandoligomycin (structure of oligomycin B according to [250]),which
blockproton translocation.Differentpartsof theenzymecomplexareassigned.D)ArrangementofATPsynthases into supramolecular structures.Helically linkedF1Fo complexesaredepictedon
tubular cristae structures. This classic model was taken from [19]. ©The Rockefeller University Press. The Journal of Cell Biology, 1989, 108: 2233–2240. doi:10.1083/jcb.108.6.2233.
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elution [34,88,93,95,99,100]. Therefore, one path from biological
membranes to supercomplexes in buffer solution is to solubilise the
membranes by mild detergents, separate the proteins via native
electrophoresis and subsequently elute them from the gel (see Fig. 2).
By conducting this procedure, a protein complex is obtained in
solution which provides the opportunity for a variety of functional
and structural studies [99]. This approach has been applied to
respiratory chain supercomplexes of bovine heart [93,101], to
chloroplast ATP synthase monomers [34] but also to mitochondrial
ATP synthase dimers from potato [102]. An alternative way of
isolating respiratory chain supercomplexes is density gradient
centrifugation, as used for Arabidopsis thaliana, yeast, Zea mays, and
potato [102–105]. Here, the solubilised protein complexes are loaded
on a preformed sucrose or glycerol gradient and centrifuged to
separate the various species. While the loading capacity is superior to
preparative gels, the resolution is significantly lower. Fractions from
density gradients served as samples for the structural characterisation
of the ATP synthase dimer from bovine heart, the alga Polytomella, and



Fig. 2. Isolation of supramolecular structures of ATP synthases and respiratory chain supercomplexes. The choice of detergent for solubilisation determines the success of obtaining
intact supercomplexes. One of the mildest detergents is digitonin (structure drawn according to [251]). Most frequently, density gradient centrifugation and (preparative) native
electrophoresis are employed as purification steps subsequent to the solubilisation. Samples from density gradients can be directly employed for functional and structural studies.
Native gels are applicable for in-gel activity tests, but in depth study require elution of the supercomplexes from the gel matrix.
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yeast [106–109]. In contrast to preparative native PAGE and density
gradient centrifugation, the otherwise frequently employed chroma-
tography is something of a rarity in context with membrane protein
supercomplexes. One recent exception is the use of size exclusion
chromatography for the separation of different oligomeric form of the
ATP synthase [110].
3.2. Identification of supercomplexes of the ATP synthase

The first hints for a supramolecular organisation of ATP synthase
were provided by electron microscopy. Even in early studies of
mitochondria often a regular arrangement of ATP synthase particles
was described (e.g. [111–115]). Remarkably, also the row-like
organisation [115] and the preferred occurrence of the particles on
the convex side of curved tubuli [114] were recognised in these
micrographs. A detailedmodel of the arrangement of ATP synthases in
mitochondrial cristae membranes resulted from studies with rapid-
freeze deep-etch electronmicroscopy. Mitochondria of the unicellular
ciliate protozoon Parameciummultimicronucleatumwere examined by
this technique and demonstrated that F1 complexes are arranged as a
double row of particles (see [18,19] and Fig. 1D).

To date, native electrophoresis techniques are dominant in
detecting supercomplexes due to their simplicity and cost-efficacy.
In the first gel-based report of ATP synthase dimers, Triton X-100 was
employed for the solubilisation of yeast mitochondria [84]. But in case
of Triton X-100 the detergent to protein ratio has to be chosen
carefully. While 2.4 g/g is required for quantitative solubilisation,
isolation of the dimer succeeded at about 0.6 g/g but not at 2.4 g/g
[84,116]. Upon employing digitonin, the detergent to protein ratio can
be handled more flexible. In a wide range of 1.5–8.0 not only the
dimer is preserved, but also the solubilisation efficacy is very high
[116].

Schägger and Pfeiffer [116] also presented a second organism with
dimers of themitochondrial ATP synthase: cow.Meanwhile, the dimers
have been identified via native electrophoresis in mitochondria from a
large variety of organisms. The range of organisms covers the ciliate
Tetrahymena [117], green plants [102,118–120], algae [121,122] diverse
fungi (Podospora anserina, Neurospora crassa, Yarrowia lipolytica)
[123–128], but also rat [129–134] and human cell cultures [135,136].
Recently,more andmore organisms are added to this list, e.g.Drosophila
[137]. Our own research now includes the fish Nothobranchius furzeri
and here the ATP synthase dimers are also detected [138]. By BN-PAGE
and particularly CN-PAGE not only dimeric species of the ATP synthase
can be identified, but also higher oligomers, as described in yeast
[139] and mammals (rat and bovine) [91,129]. In the archaeon
Methanothermobacter thermautotrophicus a different kind of organisa-
tion was reported: homomeric supercomplexes of the ATP synthase
stalk subcomplex [140].

In addition to native electrophoresis as screening technique to
identify supramolecular assemblies of the ATP synthase, recently the
structural characterisation again grows in relevance to reveal more
details than the first electron microscopy studies listed at the
beginning of this section. In 2005 two studies were published with
single particle analysis of electron micrographs. The structure of
dimeric ATP synthase from bovine heart mitochondria displayed
connections between the hydrophobic as well as between hydrophilic
domains of ATP synthase monomers as dimerisation interfaces [108].
In contrast, in dimers from the algae Polytomella sp. the ATP synthase
had only contact sites in the hydrophobic domain [106]. Another
significant difference is the angle between the monomers, which was
approximately 40° for the bovine dimer and approximately 70° for

image of Fig.�2


Fig. 3. Detection of supramolecular structures of ATP synthases and analysis of their activity. ATP synthase from spinach chloroplasts [249,252] treated to destabilise CF1Fo to generate a
large proportion of CF1 and digitonin solubilised bovine heart mitochondria (BHM) with detergent to protein ratios from 0.5 to 4 g digitonin per g protein, according to [92] served as
samples. In A–C, 5 μg CF1Fo or 30 μg solubilised bovine heart mitochondria were applied to blue-native gels (T=3.5–12%, [253]). For molecular mass calibration, native high molecular
weightmarker (66–669 kDa) fromGEHealthcare (lane “standard”)was applied. A)Gel stainedwith Coomassie blueR-250. B)Gel incubated in a lead(II)nitrate-containing buffer to detect
ATP hydrolysis activity according to [96]. Several ATP synthase species were indicated: monomer (V1), dimer (V2), and oligomers (Vx). C) Gel blotted onto a PVDF membrane. The
membrane was incubated with a primary antibody against adenine nucleotide translocator (ANT; sc-9299 from Santa Cruz Biotechnology) and an alkaline phosphatase conjugated
secondary antibody. Bandswere visualised by incubation in BCIP/NBT solution. Arrows indicate supercomplexes of ANTwith ATP synthasemonomers and dimers. D) The specificity of the
ANT antibody was verified by Western blotting of a denaturing gel. 15 μg solubilised BHM were loaded on a SDS gel (T=14%). For molecular mass calibration, MagicMark XP from
Invitrogen (lane “standard”) was applied. SDS gel blotted onto a PVDFmembrane. Themembranewas incubatedwith the ANT primary antibody and a horseradish peroxidase conjugated
secondary antibody. Bands were visualised by incubation in West Dura Substrate (Pierce). Only one band is detected, located at the molecular mass of the ANT.
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Polytomella. A subsequent study revealed, that two categories of
dimers occur in Polytomella and in yeast: wide-angle dimers (70–90°)
and small-angle dimers (35–40°) [107]. The classification as true and
pseudo dimers lead to controversies which continue on [141,142].
Also the recently published single-particle analysis of the dimer from
yeast mitochondria, demonstrating an angle of ~45°, will resume the
discussion [109].

In addition to the study of isolated ATP synthase dimers, these
structures were also examined in their native environment, the inner
mitochondrial membrane. With atomic force microscopy rows of ATP
synthase dimers were revealed in yeast mitochondrial membranes
[143]. Advances in the electron microscopy techniques allowed to
refine the models derived from the studies before 1995. By cryo
electron tomography of rat liver and bovine heart sub-mitochondrial
particles, dimeric ATP synthase was found to be arranged in ~1 μm
long rows [144]. The dimers were proposed to enforce a strong local
curvature on the membrane, which could act as a proton trap [144].
For yeast mitochondria, a combination of negative stain electron
microscopy with cryo electron tomography studies was conducted
and resulted in a model of zipper-like dimer ribbons [145]. Whereas
the angle between ATP synthases varied from 30 to 55° in yeast
mitochondria [145], in mammalian mitochondria angles of 70° and
more occur [144]. For the yeast ATP synthase dimer, a dependency of
the angle from the state of the sample was observed. The solubilised
dimers exhibited larger angles than membrane bound ATP synthases,
indicating an increased flexibility of the Fo–Fo hinge due to the
presence of detergent [145]. Recently, by cryo electron tomography a
3D reconstruction of intact mitochondria of the algae Polytomella
could be generated, which show oligomeric ATP synthase at 5.7 nm
resolution [146]. In this reconstruction the angle between ATP
synthase monomers was 70°, very similar to the mammalian dimers.
Additionally, the 3D tomography data indicate a vicinity of the
peripheral stalks [146]. Therefore, besides themembrane integral part
Fo also extramembrane structures seem to be crucial for the stability
of ATP synthase dimers. This aspect includes not only mitochondrial
ATP synthase di-/oligomers, but also the dimer of the chloroplast
enzyme. In the chloroplast ATP synthase dimer, vanadate-ions as an
analogue of phosphate, which bind to the F1 part, lead to dissociation
of the dimer [147].
3.3. Subunit interactions in ATP synthase di-/oligomers

One main aspect of supramolecular structures of the ATP synthase
is which subunits stabilise dimers and oligomers, i.e. which portions
of the ATP synthase are the major contact sites.

3.3.1. Subunits e, g, k, and i
In the first electrophoresis-based report of ATP synthase dimers, the

subunits e, g, and kwere identified tobe important for dimerisation [84].
Additionally also subunit i is required [148]. In yeastmitochondria, these
four proteins belong to the membrane intrinsic Fo part of the ATP
synthase. Subunit e is known to form homodimers [149] and has been
structurally resolved in detail by NMR [150]. The C-terminal coiled-coil
region of subunit e functions to stabilise the ATP synthase dimer [151].
Another important domain for the dimerisation process is the GxxxG
motif in the transmembrane segment of subunit e [152]. The samemotif
is also found in subunit g and stabilises ATP synthase supercomplexes
[153]. Subunit e togetherwith g bind tomonomeric yeast ATP synthases
to initiate the assembly of ATP synthase dimers [154]. Upon changing
the amounts of subunit e relative to g, themorphology of mitochondrial
cristae is altered in yeast [155]. This finding points the way to decipher
potential functions of supramolecular ATP synthase assemblies:
Dimerisation and oligomerisation plays an important role in the
formation of mitochondrial cristae. Recent studies demonstrate a
variety of factors in context with the shaping of the mitochondrial
morphology. One aspect is that formation of cristae depends on the
antagonism of subunits e/g and the protein Fcj1 [110]. In addition to the
subunits e and g also the small subunits k and i are involved during
stepwise assembly of ATP synthase dimers. Subunit i organises the
incorporation of new subunits, while subunit k tightly binds to the
mature dimer and stabilises this complex [156].

3.3.2. The inhibitor protein IF1
Another component whose rule is discussed in context of ATP

synthase dimers is IF1. IF1 wasfirst discovered in bovine heart [157] and
is an inhibitor of the ATP hydrolysis activity of mitochondrial ATP
synthases [158]. The IF1 protein of mammals has homologues in yeast
and plant mitochondria [159]. But also in Paracoccus denitrificans and
related α-proteobacteria similar proteins have been identified [160].

image of Fig.�3
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The binding and release of IF1 to ATP synthases is regulated by ATP and
the membrane potential [161]. By utilising the membrane potential, IF1
conserves the ATP supply of the cell [162]. Onto identification of ATP
synthase dimers by BN-PAGE, a role of IF1 during dimerisation was
proposed [163]. But the exact function kept nebulous, because only two
years later, the dependence of the dimerisation on the presence of IF1
was challenged [164]. As affirmation, another group demonstrated in
the same year that formation of dimers of the mitochondrial ATP
synthase in yeast does not require the IF1 homologue Inh1 [165]. This
discussion was continued by a novel finding of IF1 promoting the
dimerisation of F1Fo [130].

3.3.3. The ASA subunit of algae
In the green algae Chlamydomonas reinhardtii, the mitochondrial

ATP synthase dimer was identified in 2003 independently by two
groups [121,122]. This green alga as well as its colourless close relative
Polytomella sp. have eminent peculiarities concerning the subunit
composition of the ATP synthase [166]. The Chlamydomonadales
algae have lost typical ATP synthase subunits as b, d, f, A6L, and F6 but
also subunits discussed above in context with dimerisation: e, g and
IF1 [167]. This loss is compensated by the gain of new subunits named
“ATP Synthase-Associated” proteins ASA 1–9 [167–169]. A potential
role of the ASA subunits is the stabilisation of dimeric ATP synthase,
because another feature of the algae mitochondrial ATP synthase is its
outstanding stability [121,168–170]. In the recent model of this ATP
synthase dimer, the ASA subunits occupy important positions in the
contact sites of the two monomers [142]. The modification of the ATP
synthase also lead to an exceptional resistance towards the inhibitor
oligomycin [171].

3.3.4. Role of the peripheral stalk
In mitochondrial ATP synthases, the peripheral stalk has a

significantly different subunit composition compared to homologues
from chloroplast or bacteria [172–174]. While bacterial ATP synthases
possess a dimer of b-subunits as peripheral stalk, inmitochondria only
one subunit b (subunit 4 in yeast) is present. Therefore, the
identification of two b-subunits in close vicinity is surprising and
indicates a role of this subunit in supporting ATP synthase-ATP
synthase interactions [175,176]. This subunit is located near to
subunit g, which suggests a concerted involvement of the peripheral
stalk together with the subunits e, g, i, and k during dimerisation
[177]. Even in yeast mutants, where the dimerisation subunit e is
lacking, a systematic association between ATP synthases occurs and
two b-subunits come in molecular proximity [178]. Particularly the
membrane integral domain is fundamental for this process [179]. This
domain consists of two transmembrane segments which were
connected by an intermembrane space loop. Not only the α-helical
parts but also the loop is important for the stability of supramolecular
species of themitochondrial ATP synthase [180]. Besides subunit b the
h-subunit is the second component of the peripheral stalk in
mitochondrial ATP synthases [181,182]. Both, b and h are involved
in the dimerisation of the ATP synthase, whereby the interactions of
the peripheral stalk subunits are presumably independent of subunits
e and g [183]. In addition to the structural role, the subunits of the
peripheral stalk also modulate the activity of the ATP synthase. In this
context, the peptidyl prolyl cis-trans isomerase cyclophilin D is of
particular importance [184]. Cyclophilin D binds to the ATP synthase
and decreases hydrolysis and synthesis activity [185]. As binding site,
the subunits OSCP, b, and d have been identified [186]. Upon
displacement of cyclophilin D by addition of cyclosporine A, the ATP
synthase is activated and a switch in the oligomeric assembly is
suggested [186]. Also in algae, the peripheral stalk of the mitochon-
drial ATP synthase is suggested to play a main role in stabilisation of
dimeric ATP synthases. Here, some ASA subunits substitute the
peripheral stalk subunits b, d, f, A6L, and F6 and may support the
dimerisation [167,168]. In the chloroplast ATP synthase of algae, the
subunits of the peripheral stalk are also proposed to be important
components during dimerisation [147].

3.4. Involvement of further subunits

While the participation of peripheral stalk subunits during dimerisa-
tion seems to be reasonable, some new observations are irritating: they
suggest an involvement of subunits directly responsible for the rotary
mechanism. One component is subunit γ, the central rotating entity.
During catalysis, whether ATP synthesis or hydrolysis, γ induces
conformational changes and is a basic component of the mechanism
[187–189]. TheN- andC-termini of subunitγ are also relevant during the
assembly process, for the formation of ATP synthase monomers and
dimers [190]. In the membrane integral Fo section, the transport of
protons is coupled to a rotational movement. While the c/III-oligomer
serves as proton-driven rotor in the recentmechanisticmodel, subunit a
provides the access and release channels for the protons [20,191,192].
Similar to the b-subunit of the peripheral stalk, subunit a can be
connected to a from another ATP synthase complex, showing the
proximity and a significant monomer–monomer interface in dimeric
ATP synthase [193]. When an ATP synthase dimer is being assembled,
the effect of subunits e/g and a on dimerisation is additive [194]. A
further look into the sequence of events during dimer assembly
demonstrates that primarly the dimers are formed and later the IF1
protein is incorporated [194].

4. Supramolecular assembly of the ATP synthase and the
organellar context

4.1. Interaction of ATP synthases with other proteins/protein complexes

Besides interactions of ATP synthases among themselves they are
part of a sophisticated network of interactions with other proteins. A
controversially discussed component is the so-called factor B, which is
suggested to be an additional subunit of the ATP synthase [195]. This
protein restores the energy coupling activity of the ATP synthase
complexes in submitochondrial particles depleted of their factor B
[195]. Meanwhile, the structure of factor B is known in detail [196]. A
putative function of this protein with about 175 amino acids could be
an optimisation of ATP synthesis under proton-limited conditions by
binding of factor B tetramers to ATP synthase dimers [197]. As a result
of this interaction, factor B is involved in the oligomerisation of ATP
synthases and may be crucial for the cristae morphology [198].

Protein–protein interactions play a key role in coordinating ATP
production and oxygen consumption in mitochondria. To adapt the
energy metabolism to varying environmental conditions the flux of
substrates has to be regulated. Important controlling steps are the
cytochrome c oxidase (complex IV of the respiratory chain) and
transport proteins (i.e. phosphate/proton exchange) [199]. To date it
is nebulous whether this regulation occurs kinetically [199] or by
direct contact of protein complexes [200].

The electrochemical proton gradient is the driving force for the
ATP synthase, but ATP formation also requires a sufficient supply with
the substrates ADP and phosphate. Both substrates are transported
across the mitochondrial membranes by specific carriers: the adenine
nucleotide translocator (ANT) and the phosphate carrier. The ANT is
present in high amount in mitochondria and can be found as common
contaminant in preparations of other mitochondrial proteins. There-
fore, unambiguous data is needed to demonstrate specific protein–
protein contact with the ANT. In the mid of the 1970s indications of a
close-by localisation of the ANT and the F1 subcomplex occurred
[201]. In bovine heart preparations, the translocator is detected in the
same density gradient fraction as the ATP synthase [202]. But in face of
these hints, several years passed by until specific interactions between
ATP synthases and transport proteins became increasingly clear.
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Upon isolationofmitochondria fromratheart, cristae-like vesicles can
be obtained by extensive subfractionationwhich allows extraction of the
so-called ATP synthasome [203]. This structure is a supercomplex of an
ATP synthase monomer with the ANT and the phosphate carrier. Similar
to the ATP synthase dimers and oligomers, which require adequate
handling to prevent dissociation, also for the ATP synthasome specific
treatment is essential. The choice of detergent influences strongly the
successful isolation of the ATP synthasome. A screening revealed that this
supercomplex canbeobtainedwith tridecyl-maltoside butnotwithDDM
[203]. In the ATP synthasome both carriers (as heterodimer) are located
adjacent to subunit c, as revealed by single-particle analysis [204]. The
ATP synthasome is not a special feature of rat, similar structures are also
reported in bovine heart [205,206].We employed antibodies to study the
interaction network of bovine heart ATP synthase in Western blots of
native gels. Our results affirm the presence of the adenine nucleotide
translocator in a complexwith thisATP synthase (see Fig. 3). Surprisingly,
the signal of theANTantibody is veryweak in complexeswithmonomers
of the ATP synthase as obvious in Fig. 3. But at the position of dimers/
oligomers the antibody labelling is much more pronounced, which is in
accordance with recent indications [206].

Besides mammals, ATP synthasome structures have been identified
also in evolutionary quite distinct organisms. Leishmania, which live as
intracellular parasites of insects and invertebrates, likewise possess a
complex of ATP synthase and the adenine nucleotide translocator [207].
Such ATP synthasomes allow an optimisation of ATP synthesis by
carrying substrates near to the catalytic centre of F1. Furthermore, the
just formed ATP will be removed from the ATP synthase to minimise
interference of the ATP synthesis reaction or to prevent unwanted ATP
hydrolysis. A study with rat liver mitochondria demonstrated that the
ATP synthasome is part of an even larger complex which includes the
succinate dehydrogenase and an ABC transporter [208]. Therefore,
secondary transporters are also included in the sophisticated interaction
network of the ATP synthase [209,210]. To demonstrate interactions of
the ATP synthasewith the succinate dehydrogenase in living organisms,
fluorescent fusion proteins have been expressed in Bacillus subtilis. This
study revealed a co-localisation of both enzyme complexes in discrete
membrane domains [211], which confirms the result for rat liver.
Besides ATP, phosphocreatine molecules are main carriers of energy
under physiological conditions. A connection of the ATP synthesis to the
production of this second energy carrier is proposed by the formation of
amitochondrial interactosome [212]. This interactosome is suggested to
consist of the ATP synthasome, the creatine kinase of themitochondrial
intermembrane space, the voltage-dependent anion channel VDAC and
tubulin [212]. Such an organisation allows an efficient regulation of
energyfluxes andencloses this system in thefilamentousnetworkof the
cell.

Similar to the optimisation of the metabolite transport by forming
a complex with carriers, also an improvement of proton transfer
towards the ATP synthase enhances the efficiency of this enzyme
complex. One way is to arrange the proton translocating complexes of
the respiratory chain near to the ATP synthase. Another way is a more
efficient proton migration along membrane surfaces [213,214]. Up to
now, no stable supercomplex of respiratory chain complexes with the
ATP synthase has been isolated, but several lines of evidence point to
interactions of the ATP synthase with the cytochrome c oxidase
(complex IV). In 1986, it was demonstrated that the incorporation of
subunit 9 of yeast (homologous to subunit c) into the mitochondrial
ATP synthase affects the assembly of complex IV [215]. Upon
modifying the yeast ATP synthase by a mutated subunit γ with the
redox regulatory region of chloroplasts, the activity of the cytochrome
c oxidase drops by 90% [216]. A correct proton transfer requires both
complexes in intact form. This is confirmed by the finding that the
biogenesis of complex IV is only completed successfully when the ATP
synthase is fully assembled and able to transport protons [217]. With
this regulatory mechanism the quantity of proton donors and
acceptors can be matched to the bioenergetic requirements.
In yeast, the dimerisation subunit g of the ATP synthase is crucial
for the interactions with complex IV. Upon deletion of subunit g, not
only ATP production decreases but also the activity of the cytochrome
c oxidase. In addition to g, also subunit e affects complex IV. For
maximum cytochrome c oxidase activity, both e and g have to be
present in the ATP synthase complex [218]. As a consequence of the
supramolecular organisation of the respiratory chain, alterations in
the ATP synthase can affect the function/assembly of complex IV
containing supercomplexes. In addition to a decreasing complex IV
activity, the composition of the IIIx–IVy supercomplexes changes once
both subunits e and g were deleted. Therefore, yeast mutants without
e and g exhibit more individual cytochrome bc1 complex (or complex
III dimers) and less IIIx–IVy supercomplexes [218]. But the interaction
of the ATP synthase with complex III is not a direct contact. This was
determined with differential scanning calorimetry and electron
paramagnetic resonance, which indicated only interactions of the
ATP synthase with the cytochrome c oxidase but not with the
cytochrome bc1 complex [219]. Interactions of the ATP synthase with
complex IV are not limited to mitochondria. In the electron transfer
chain of aerobic bacteria, some enzyme complexes are very similar to
the cytochrome c oxidase. In cyanobacteria, a mutual regulation of the
activity of the ATP synthase with the cytochrome b-563/c-554
complex occurs [220]. Alkaliphilic bacteria require a 1:1 stoichiometry
of the ATP synthase with a cytochrome caa3 complex to synthesise
ATP under conditions of very low proton motive force [221].

4.2. Formation of cristae and supramolecular organisation of ATP synthases

Even in the early electronmicrographs of mitochondria it is clearly
recognisable that ATP synthases are arranged near to tubular
membrane structures. In the model of cristae membranes derived
from rapid-freeze deep-etch electron microscopy (see Fig. 1 and
[18,19]) ATP synthase double rows (dimers) can be found in strongly
curved regions. A direct link between morphology and dimerisation
was identified upon growing yeast cells deficient in non-essential
subunits of the ATP synthase. A deletion of either subunits e or g leads
to an altered cristae morphology with numerous digitations and
onion-like structures [139]. The data suggests that the dimerisation is
involved in the control of the genesis of the inner mitochondrial
membrane [139]. When subunit γ was modified by fusion to a
fluorescent protein (DsRed) known as an in vivo crosslinker, yeast
cells expressing this fusion protein as a subunit of the mitochondrial
ATP synthase grew slower compared to control cells [222]. The cause
for this impaired growth is the elimination of the cristae structure
which is attended by the occurrence of artificial ATP synthase
tetramers [223]. In contrast to native ATP synthase oligomers, the
assembly of these tetramers was mediated through subunits not
normally associated with dimerisation, demonstrating the impact of
correct supramolecular organisation to cells in vivo indispensable for
normalmitochondrial function. In addition to the subunits e and g also
IF1 is important for formation of cristae: IF1 overexpression increases
the formation of dimeric ATP synthase complexes and the density of
mitochondrial cristae is increased [162].

The dimerisation subunits of the ATP synthase are key players in
organising the mitochondrial cristae structure but they are not
the only components [224,225]. Mitophilin is a critical organiser of
the mitochondrial cristae morphology in HeLa cells [226] and
Caenorhabditis elegans [227]. In yeast, Fcj1 is a homolog of themitophilin
protein and here the antagonism of Fcj1 and the ATP synthase subunits
e/g modulates the oligomeric state of the ATP synthase and controls
membrane curvature of cristae [110]. As proposed, Fcj1 interferes with
the formation of higher oligomers and thereby favours negative
membrane bending, i.e. convex structures [110]. In contrast, ATP
oligomers induce a positive curvature to the inner mitochondrial
membrane [144]. Therefore, one important pathway to regulate the
cristae morphology is the ATP synthase-mitophilin way [224]. The
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second mechanism involves dynamin-like GTPases and prohibitins
[228,229]. This system seems to basically rely on the size or the
proteolytic processing of the dynamin-like GTPase Opa1 (in human) or
Mgm1p (in yeast) [228,230]. Also this second way is connected to the
ATP synthase. Mgm1p serves as an upstream regulator of the
dimerisation subunit e (Tim11p) which affects protein stability, ATP
synthase assembly, and cristaemorphology [231]. While the stability of
respiratory chain supercomplexes is significantly affectedby cardiolipin,
previous data indicated that the lack of this anionic phospholipid had
little effect on the stability of dimeric ATP synthase [232]. In contrast,
recentdata suggest that also cardiolipin promotes theoligomerisation of
ATP synthases [137].

4.3. Activity of ATP synthase dimers and metabolic control of dimerisation

One important question in context with dimerisation of ATP
synthases is: are there any differences in the activity between
monomeric and dimeric/oligomeric species of the ATP synthase? A
putative role of the dimerisation could be the stabilisation of the
interaction within each ATP synthase by compensating rotational
torque [143]. In the case of the respiratory chain complexes, the
assembly to supercomplexes has been proven to boost the catalytic
activity (of the complexes I and III2 by complex IV [93] and of complex
I by III2 and IV [134]). To study the performance of the ATP synthase,
native gels can be directly employed to perform in-gel activity tests
which allow a comparison of different ATP synthase species in one
sample (see Fig. 3). Even if these tests only concern the hydrolysis
activity of the enzyme, they are a valuable tool in many studies. When
bovine heart mitochondria were incubated in three different buffer
systems, the monomer/dimer ratio, judged by the Coomassie dye
staining intensity, was constant [164]. But in all buffers the ATPase
activity of the dimer was almost zero whereas the monomer was
active and produced pronounced white lead phosphate bands in this
assay [164]. In contrast, in yeast mitochondria the ATP synthase dimer
displayed the most intense activity compared to the monomer [139].
An important aspect for this activity test is the kind of gel used for the
assay. While blue native gels are mild, the milder variant is CN-PAGE
[91,233]. The application of CN-PAGE not only facilitates the detection
of higher oligomers of the ATP synthase but also avoids the dye which
affects the stability of the enzyme complex [88,89,94] and leads to low
in-gel hydrolysis activities [96,234]. Moreover, when CN- instead of
BN-PAGE is used, the hydrolysis activity can be inhibited specifically
by adding oligomycin [91,232]. This variant of the assay allows
discrimination between intact ATP synthases with Fo fully coupled to
F1 and individual F1 sections which lost their sensitivity towards the
inhibitor. Upon deploying CN-PAGE, the ATPase activities of mono-
mers, dimers and oligomers in yeast and mammals were similar
[91,129,232]. During the studies of the in-gel ATPase activity more
factors were identified to be crucial. Also the detergent employed
during solubilisation has an influence on the activity. As shown for
bovine heart, Triton X-100 extracts have a lower activity than
digitonin-solubilised ATP synthase dimers [235]. This may also
explain why the Triton X-100 solubilised bovine heart dimer had
almost no ATPase activity in the study mentioned above [164]. In
addition, the assay temperature strongly affects the ATPase hydrolysis
test. While at 20 °C the activities of monomers and dimers are similar,
an increase of the temperature reveals significant differences [236]. At
30 and 37 °C dimers in heavy bovine heart mitochondria and
mitoplasts had greater specific activity than monomers, but not
dimers in submitochondrial particles [236]. This points to a role of
dimerisation in the regulation of the nanomotor function of the ATP
synthase [141]. A regulatory role is confirmed by studies of
phosphorylation of monomer vs. dimer. By an anti-phosphotyrosine
antibody the F1 γ subunit of bovine heart mitochondrial ATP synthase
was detected to be phosphorylated in the monomer but not in the
dimer [237]. In yeast, phosphorylation of a serine residue of the
dimerisation subunit g (see above) was found to be critical for the
dimerisation [238]. Exchange of this serine by a phosphomimetic
residue inhibited dimerisation, whereas exchange by alanine en-
hanced the level of dimerisation [238]. Experiments in yeast mutants
demonstrated a link between phosphorylation, dimerisation and
activity. A phosphomimetic mutation of a threonine residue in the β
subunit (involved in formation/maintenance of dimers) leads to a
decreased ATPase activity [239].

Since themain function of the ATP synthase is the production instead
of hydrolysis of ATP, the most interesting measurements are those in
synthesis direction. Such experiments were performed with yeast ATP
synthase reconstituted into vesicles and the ATP synthesis rate and ATP
yield was compared as a function of the ATP synthase concentration. A
conclusion of this studywas thatmonomeric ATP synthase catalyses high
rates of proton transport driven ATP synthesis and that dimerisation, if it
occurs, does not influence the ATP synthesis [240]. This observation is in
line with the result that deletion of the dimer subunits e and g has no
influence of the catalytic activity of the ATP synthase [84]. Maybe one
ambiguity of such measurements is the microenvironment. The ATP
synthase resides at the apex of cristae which should increase the local pH
gradient allowing ATP synthesis even under proton-limited condi-
tions [144]. This is in accordance to the finding that the mitochondrial
membrane potential is dependent on the oligomeric state of ATP
synthases [241]. In this study, a role for the supramolecular structures
of the ATP synthase in organising microdomains not only of the ATP
synthase but also of other supercomplexes within the inner membrane
was proposed, which should optimise metabolite channelling [241].

In contrast to the counterpart in yeast or mammals, the
mitochondrial ATP synthase dimer of green algae is particularly
stable [121,122,168,169]. Therefore, the comparison of the activity
monomer vs. dimer requires a specific treatment to monomerise the
dimer. One approach is incubation of the dimeric enzyme with
taurodeoxycholate [170]. The study of different features of both ATP
synthase species indicated a significantly higher stability of the dimer
and moreover demonstrated that the dimer is the active form of algae
mitochondrial ATP synthase [170]. Since algae not only contain
mitochondria but also chloroplasts, this circumstance enables a direct
comparison of two types of ATP synthases in the same organism.
When C. reinhardtii is cultivated at different growth conditions, the
proteomic pattern of many thylakoid membrane proteins changes
[122]. In addition, the various growth parameters varied had a
significant influence on the metabolic state of the green algae. But in
face of these changes, the composition of the chloroplast ATP
synthase, particularly the number of subunits in the cylinder-shaped
oligomer IIIx, remained constant [242]. Likewise, the dimer of the
mitochondrial ATP synthase displayed no alterations in subunit
composition [243]. In contrast, the supramolecular organisation of
the chloroplast ATP synthase varies. Whereas the mitochondrial ATP
synthase dimer of algae is very stable, the chloroplast homologue is
more susceptible towards environmental effects [147]. One important
factor is phosphate, which serves as substrate for the synthesis of ATP.
Phosphate binds to the catalytic centre of the ATP synthase at a
nucleotide-free catalytic site [244]. As a consequence, conformational
changes occur. When single F1 subcomplexes were studied in
hydrolysis direction, phosphate release drives the last 40° of the
120° step in the catalytic mechanism [245]. In case of the chloroplast
ATP synthase dimer of algae, this dimer dissociates into monomers
upon incubation with phosphate and vanadate (as transition-state
analogue of phosphate) but not by incubation with molybdate [147].
In contrast, the mitochondrial dimer is not affected by either
incubation. This suggests a distinct dimerisation mechanism for
mitochondrial and chloroplast ATP synthase and indicates that the
contact sites betweenmonomers may differ [147]. A main contact site
for the chloroplast ATP synthase dimer might be the peripheral stalk.
To study the regulation by cell physiological processes quantitatively,
stable isotope labelling of living C. reinhardtii cells and blue-native
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PAGE have been employed. By comparing to photoautotrophic
growth, an increased assembly of chloroplast ATP synthase dimers
on the expense of preexisting monomers during photomixotrophic
growth was observed, demonstrating a metabolic control of the
dimerisation process for the chloroplast enzyme [243].

Switching back to the mitochondrial ATP synthase again, the
interplay betweenmetabolism and dimerisation reveals upon analysing
changes of the (supramolecular) protein organisation dependent on age
or pathophysiological processes. In rat brain and liver, the abundance of
the intact ATP synthase decreases during ageing (1.5–2 fold)
[131,132,246,247], also in skeletal muscle [248] as well as in the fungus
P. anserina and in human cells [136,247]. One important indicator of
specific mitochondrial diseases is the presence of unbound F1 part in
increased amount [234]. Such F1 subcomplexes hydrolyse ATP and
shorten energy supply of the cell. During ageing, the abundance of
unbound F1 increases, as demonstrated for rat brain [131,132].
Surprisingly, the proportion of the ATP synthase monomer in
comparison to the oligomers in rat brain also changes during ageing
[38,131,132]. The findings establish the proton ATP synthase firmly as
one of the primemitochondrial targets of age-related changes. However
significant details, namely the correlation of supramolecular organisa-
tion, ATP synthase activity and the energy status of the cell, are still
nebulous and require intensified efforts of elucidation.

Demonstrated but not understood in molecular functional detail,
protein–protein interactions and homo/heteromeric assembly of super-
complexes, metabolomes and interactomes are of crucial importance for
metabolism.
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