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Abstract

Data exchange is the problem of taking data structured under a source schema and creating an
instance of a target schema that reflects the source data as accurately as possible. In this paper, we
address foundational and algorithmic issues related to the semantics of data exchange and to the
query answering problem in the context of data exchange. These issues arise because, given a source
instance, there may be many target instances that satisfy the constraints of the data exchange problem.

We give an algebraic specification that selects, among all solutions to the data exchange problem,
a special class of solutions that we calluniversal. We show that a universal solution has no more
and no less data than required for data exchange and that it represents the entire space of possible
solutions. We then identify fairly general, yet practical, conditions that guarantee the existence of
a universal solution and yield algorithms to compute a canonical universal solution efficiently. We
adopt the notion of the “certain answers” in indefinite databases for the semantics for query answering
in data exchange. We investigate the computational complexity of computing the certain answers in
this context and also address other algorithmic issues that arise in data exchange. In particular, we
study the problem of computing the certain answers of target queries by simply evaluating them on a
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canonical universal solution, and we explore the boundary of what queries can and cannot be answered
this way, in a data exchange setting.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

In data exchange, data structured under one schema (which we call asource schema)
must be restructured and translated into an instance of a different schema (atarget schema).
Data exchange is used in many tasks that require data to be transferred between exist-
ing, independently created applications. The first systems supporting the restructuring and
translation of data were built several decades ago. An early such system was EXPRESS
[30], which performed data exchange between hierarchical schemas. The need for systems
supporting data exchange has persisted over the years. Recently this need has become more
pronounced, as the terrain for data exchange has expanded with the proliferation of web
data that are stored in different formats, such as traditional relational database schemas,
semi-structured schemas (for example, DTDs or XML schemas), and various scientific
formats. In this paper, we address several foundational and algorithmic issues related to
the semantics of data exchange and to the query answering problem in the context of data
exchange.

1.1. The data exchange problem

In a data exchange setting, we have a source schemaSand a target schemaT, where we
assume thatSandT are disjoint. SinceT can be an independently created schema, it may
have its own constraints that are given as a set�t of sentences in some logical formalism
overT. In addition, we must have a way of modeling the relationship between the source
and target schemas. This essential element of data exchange is captured bysource-to-target
dependenciesthat specify how and what source data should appear in the target. These
dependencies are assertions between a source query and a target query. Formally, we have
a set�st of source-to-target dependenciesof the form∀x(�S(x) → �T(x)), where�S(x)
is a formula in some logical formalism overS and�T(x) is a formula in some (perhaps
different) logical formalism overT. We assume that all of the variables inx appear free in
�S(x). We point out that schema mapping tools, such as Clio [26,27], permit the (semi-)
automatic discovery of such source-to-target dependencies. Other data translation tools
permit restricted forms of such dependencies to be specified in a rule language and, in
certain cases, to be automatically derived from “correspondence” rules between objects
[3].

Consider a fixed data exchange setting determined byS, T, �st , and�t as above. This
setting gives rise to the followingdata exchange problem: given an instanceI over the
source schemaS, materialize an instanceJ over the target schemaT such that the target
dependencies�t are satisfied byJ, and the source-to-target dependencies�st are satisfied
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by I andJ together. The source schema may also have dependencies that we assume are
satisfied by the given source instance. Hence, the source dependencies do not play any direct
role in defining the semantics of data exchange.

The first crucial observation is that there may be many solutions (or none) for a given
instance of the data exchange problem. Hence, several conceptual and technical questions
arise concerning the semantics of data exchange. First, when does a solution exist? If many
solutions exist, which solution should we materialize and what properties should it have, so
that it reflects the source data as accurately as possible? Finally, can such a “good” solution
be efficiently computed?

We consider the semantics of the data exchange problem to be one of the two main issues
in data exchange. We believe that the other main issue is query answering. Specifically,
suppose thatq is a query over the target schemaT, andI is an instance over the source
schemaS. What does answeringq with respect toI mean? Clearly, there is an ambiguity
arising from the fact that, as mentioned earlier, there may be many solutionsJ for I and,
as a result, different such solutionsJmay produce different answersq(J ). This conceptual
difficulty was first encountered in the context ofincompleteor indefinitedatabases, where
one has to find the “right” answers to a query posed against a set of “possible” databases (see,
for instance,[32]). An incomplete database can be thought of as the set of all databases
that satisfy a certain specification, that is, all databases that are “possible” for the given
specification. In this sense, the data exchange problem can be viewed as the problem of
exchanging data between a source databaseI and an incomplete database representing all
target instancesJ that are solutions forI (they satisfy the specifications of the data exchange
problem), except that one is interested in actually materializing one of these solutions. Now,
suppose that a query is posed against an incomplete database. There is general agreement
that in this context, the “right” answers are thecertainanswers, that is, the answers that occur
in the intersection of allq(J )’s, asJ varies over all “possible” databases. This notion makes
good sense for data exchange as well, where, as discussed above, the “possible” databases
are the solutionsJ for the instanceI. It also has the benefit that the query semantics is
independent of the specific solution we select for data exchange. We thus adopt the certain
answers as the semantics of query answering in the data exchange setting and investigate
the complexity of computing the certain answers in the data exchange setting. A related
important question is whether the certain answers of a query can be computed by query
evaluation on the “good” target instance that we chose to materialize.

1.2. Data exchange vs. data integration

Before describing our results on data exchange, we briefly compare and contrast data ex-
change withdata integration. Following the terminology and notation in the recent overview
[21], adata integration systemis a triple〈G,S,M〉, whereG is theglobal schema, S is
the source schema, andM is a set ofassertionsrelating elements of the global schema
with elements of the source schema. BothG andS are specified in suitable languages that
may allow for the expression of various constraints. In this generality, a data exchange set-
ting (S,T,�st ,�t ) can be thought of as a data integration system in whichS is the source
schema,T and�t form the global schema, and the source-to-target dependencies in�st

are the assertions of the data integration system. In practice, however, most data integration
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systems studied to date are eitherlocal-as-view(LAV) systems orglobal-as-view(GAV)
systems[18,21,22]. In an LAV system, each assertion inM relates one element of the
source schemaS to a query (a view) over the global schemaG; moreover, it is typically
assumed that there are no target constraints (�t = ∅). In a GAV system the reverse holds,
that is, each assertion inM relates one element of the global schemaG to a query (a view)
over the source schemaS. Since the source-to-target dependencies�st relate a query over
the source schemaSto a query over the target schemaT, a data exchange setting generalizes
both an LAV and a GAV system. In fact, it can be thought of as aglobal-and-local-as-view
(GLAV ) system [17,21].

The above similarities notwithstanding, there are important differences between data ex-
change and data integration. As mentioned earlier, in data exchange scenarios, the target
schema is often independently created and comes with its own constraints. In data inte-
gration, however, the global schemaG is commonly assumed to be a reconciled, virtual
view of a heterogeneous collection of sources and, as such, it is often assumed to have no
constraints. There has been, however, some recent work that considered the impact of target
constraints in data integration. This research includes, in particular, the work of Duschka
et al. [12], which showed how to compute maximally contained query plans of target queries
in an LAV data integration system with target full dependencies, and the work of Calì et al.
[6], which studied the impact of key and foreign key constraints on query answering in a
GAV system. A more significant difference between data exchange and data integration is
that in a data exchange setting we have to actually materialize a finite target instance that best
reflects the given source instance. In data integration no such exchange of data is required.
For query answering, both data exchange and data integration use the certain answers as
the standard semantics of queries over the target (global) schema. In data integration, the
source instances are used to compute the certain answers of queries over the global schema.
In contrast, in a data exchange setting, it may not be feasible to couple applications together
in a manner that data may be retrieved and shared on-demand at query time. This may
occur, for instance, in peer-to-peer applications that must share data, yet maintain a high
degree of autonomy. Hence, queries over the target schema may have to be answered using
the materialized target instance alone, without reference to the original source instance.
This leads to the following problem in data exchange: under what conditions and for which
queries can the certain answers be computed using just the materialized target instance?

1.3. Motivation from Clio

The results presented here were motivated by our experience with Clio, a prototype
schema mapping and data exchange tool to whose development some of us have con-
tributed [26,27]. In Clio, source-to-target dependencies (forming a GLAV system) are
(semi)-automatically generated from a set of correspondences between the source schema
and the target schema; these dependencies can then be used in a data integration system
to compute the certain answers to target queries. Most of the applications we considered,
however, were decoupled applications that would have had to be rewritten to operate co-
operatively, as required in data integration. For this reason, early on in the development of
Clio, we recognized the need to go farther and, given a source instance, generate a single
“universal” target instance (satisfying the target dependencies) that was the result of the
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schema mapping. In designing the algorithms of Clio for creating the target instance, we
were guided mainly by our intuition rather than by formal considerations. It should be noted
that there is a long history of work on data translation that focuses on taking high-level,
data-independent translation rules and generating efficient, executable translation programs
[3,29,30]. Yet, we could not find a formal justification for the intuitive choices we made
in creating the target instance. In seeking to formalize this intuition and justify the choices
made in Clio, we were led to explore foundational and algorithmic issues related to the se-
mantics of data exchange and query answering in this setting. Clio supports schemas that are
relational or nested (XML). However, challenging issues already arise in the relational case.
For this reason, here we focus exclusively on data exchange between relational schemas;
extending this work to other types of schemas is the subject of on-going investigation.

1.4. Summary of results

In Section 2, we formally introduce the data exchange problem. We then give an algebraic
specification that selects, among all possible solutions for a given source instance, a special
class of solutions that we calluniversal. More precisely, a solution for an instance of the data
exchange problem is universal if it has homomorphisms to all solutions for that instance. We
show that a universal solution has “good” properties that justify its choice for the semantics
of the data exchange problem. We note that Calì et al. [6] studied GAV systems with key and
foreign key constraints at the target. By means of a logic program that simulates the foreign
key constraints, they constructed acanonical database, which turns out to be a particular
instance of our notion of universal solution.

Given the declarative specification of universal solutions, we go on in Section 3 to identify
fairly general, yet practical, sufficient conditions that guarantee the existence of a universal
solution and yield algorithms to compute such a solution efficiently. Towards this goal, we
use the concept of aweakly acyclicset of target dependencies; this concept is broad enough
to contain as special cases both sets of full tuple-generating dependencies (full tgds) [5]
and acyclic sets of inclusion dependencies [9]. In Section 3, we prove that if(S,T,�st ,�t )

is a data exchange setting such that�st is a set of tgds and�t is the union of a weakly
acyclic set of tgds with a set of equality generating dependencies (egds), then, given a
source instance, a universal solution to the data exchange problem exists if and only if a
solution exists. Moreover, for each data exchange setting(S,T,�st ,�t ) satisfying the above
conditions, there is a polynomial-time algorithm that, given a source instance, determines
whether a solution to the data exchange problem exists and, if so, produces a particular
universal solution, which we call acanonicaluniversal solution. These results make use of
the classicalchaseprocedure [5,23]. We note that, even though the chase has been widely
used in reasoning about dependencies, we have not been able to find any explicit references
to the fact that the chase can produce instances that have homomorphisms to all instances
satisfying the dependencies under consideration.

After this, in Sections 4 and 5, we study query answering in a data exchange setting.
We adopt the notion of the certain answers as the semantics of target queries (that is,
queries posed over the target schema) and we investigate two separate, but interlinked,
issues. The first issue is to determine for which target queries the certain answers can be
obtained using the materialized target instance alone, while the second is to analyze the
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computational complexity of computing the certain answers of target queries. Note that the
study of query answering in this context involves three different parameters: a data exchange
setting(S,T,�st ,�t ), a target queryq, and a source instanceI. Here, we focus on what
could be called (following Vardi’s[33] taxonomy) thedata complexityof target queries in
an arbitrary, but fixed, data exchange setting. This means that we have a fixed data exchange
setting(S,T,�st ,�t ) and, for each target queryq, we are interested in the computational
complexity of the following problem: given a source instanceI, find the certain answers of
qwith respect toI.

On the positive side, if the target queryq is a union of conjunctive queries, then it is
easy to show that the certain answers ofq can indeed be obtained by evaluatingq on an
arbitrary universal solution. Moreover, universal solutions are the only solutions possessing
this property; this can be seen as further justification for our choice to use universal solutions
for data exchange. It also follows that, whenever a universal solution can be computed in
polynomial time, the certain answers of unions of conjunctive queries can be computed in
polynomial time (in particular, this is true when the dependencies in�st and�t satisfy the
conditions identified in Section 3).

On the negative side, a dramatic change occurs when queries have inequalities. To begin
with, Abiteboul and Duschka [1] showed that in a LAV data integration system and with
conjunctive queries as views, computing the certain answers of conjunctive queries with
inequalities is a coNP-complete problem. Since this LAV setting is a special case of a data
exchange setting in which a canonical universal solution can be computed in polynomial
time, it follows that, unless P= NP, we cannot compute the certain answers of conjunctive
queries with inequalities by evaluating them on a canonical universal solution (or on any
other polynomial-time computable universal solution). We take a closer look at conjunctive
queries with inequalities by focusing on the number of inequalities. In [1], it was claimed
that in a LAV setting with conjunctive queries as views, computing the certain answers
of conjunctive queries with a single inequality is a coNP-hard problem. The reduction
given in that paper, however, is not correct; a different reduction in the unpublished full
version [2] shows that computing the certain answers of conjunctive queries with six (or
more) inequalities is a coNP-complete problem. We conjecture that the minimum number of
inequalities that give rise to such coNP-hardness results is two. Towards this, we show that
in the same LAV setting, computing the certain answers ofunionsof conjunctive queries
with at most two inequalities per disjunct is a coNP-complete problem. We also show
that the problem of computing the certain answers for unions of conjunctive queries with
inequalities remains in coNP, as long as we consider data exchange settings(S,T,�st ,�t )

in which �st is a set of egds and�t is a union of a set of egds with a weakly acyclic set
of tgds. In proving this upper-bound result, we make use of an extension of the chase that
can handledisjunctiveegds, in addition to tgds and egds. We call this chase thedisjunctive
chase; it is a special case of the chase with disjunctive embedded dependencies defined in
[10].

In contrast with the above-mentioned intractability results for the case of two inequali-
ties or more, we then show that for the data exchange setting, there is a polynomial-time
algorithm for computing the certain answers of unions of conjunctive queries with at most
oneinequality per disjunct (thus, the claim in [1] is false, unless P= NP). Moreover, even
when the link between the source and the target has been severed, the certain answers of
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unions of conjunctive queries with at most one inequality per disjunct can be computed
from a given universal solution in time polynomial in the size of the universal solution.
We point out, however, that this computation cannot be carried out by simply evaluating
such queries on a canonical universal solution. Thus, the question arises as to whether the
certain answers of unions of conjunctive queries with at most one inequality per disjunct
can be computed by evaluating some other (perhaps more complex) first-order query on
a canonical universal solution. We prove an impossibility result, which provides a strong
negative answer to this question. It shows that there is a simple conjunctive queryq with
one inequality for which there is no first-order queryq∗ such that the certain answers of
q can be computed by evaluatingq∗ on a canonical universal solution. The proof of this
theorem makes use of a novel combination of Ehrenfeucht-Fraïssé games and the chase.
This result shows that, although there is a polynomial-time algorithm for finding the certain
answers ofq, there is no SQL queryq∗ that returns the certain answers ofqwhen evaluated
by a database engine on a canonical universal solution.

There is another way to view this impossibility result. Abiteboul and Duschka’s co-
NP completeness result implies that if P�= NP, then there is a conjunctive queryq with
inequalities whose certain answers cannot be obtained by evaluating any first-order query
q∗ on a canonical universal solution. We prove that the same conclusion holds even without
the assumption that P�= NP. Moreover, it holds even for a queryqwith only one inequality,
where we showed that there is a polynomial-time algorithm for obtaining the certain answers,
and hence the assumption P�= NP cannot help.

2. The data exchange problem

A schemais a finite collectionR = {R1, . . . , Rk} of relation symbols. Each relation
symbol has anarity, which is a positive integer. A relation symbol of aritym is called
m-ary, and hasm distinct attributes, which intuitively correspond to column names. An
instance I over the schemaR is a function that associates to eachm-ary relation symbol
Ri anm-ary relationI (Ri). In the sequel, we will on occasion abuse the notation and use
Ri to denote both the relation symbol and the relation that interprets it. Given a tuplet
occurring in a relationR, we denote byR(t) the association betweent andR and call it a
fact. An instance can be conveniently represented by its set of facts. IfR is a schema, then
adependency overR is a sentence in some logical formalism overR.

Let S = {S1, . . . , Sn} andT = {T1, . . . , Tm} be two disjoint schemas. We refer toS
as thesourceschema and to theSi ’s as thesourcerelation symbols. We refer toT as the
target schema and to theTj ’s as thetarget relation symbols. Similarly, instances overS
will be calledsourceinstances, while instances overT will be calledtarget instances. IfI
is a source instance andJ is a target instance, then we write〈I, J 〉 for the instanceK over
the schemaS∪ T such thatK(Si) = I (Si) andK(Tj ) = J (Tj ), for i�n andj�m.

A source-to-target dependencyis a dependency of the form∀x(�S(x) → �T(x)), where
�S(x) is a formula, with free variablesx, of some logical formalism overS and�T(x) is
a formula, with free variablesx, over some logical formalism overT (these two logical
formalisms may be different). We use the notationx for a vector of variablesx1, . . . , xk.
We assume that all of the variables inx appear free in�S(x). A target dependency is a
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dependency over the target schemaT (the formalism used to express a target dependency
may be different from those used for the source-to-target dependencies). The source schema
may also have dependencies that we assume are satisfied by every source instance. Note
that source dependencies may play an important role in deriving source-to-target depen-
dencies[27] or in optimizing the evaluation of source queries; however, they do not play
any direct role in defining the semantics of data exchange, because we take the source
instance to be given. Hence, we do not include source dependencies in our formalism for
data exchange.

Definition 2.1. A data exchange setting(S,T, �st ,�t ) consists of a source schemaS, a
target schemaT, a set�st of source-to-target dependencies, and a set�t of target depen-
dencies. Thedata exchange problemassociated with this setting is the following: given a
finite source instanceI, find a finite target instanceJ such that〈I, J 〉 satisfies�st andJ
satisfies�t . Such aJ is called asolution for Ior, simply asolutionif the source instanceI
is understood from the context. The set of all solutions forI is denoted by Sol(I ).

Note that the input to a data exchange problem is a source instance only; the data exchange
setting itself (that is, source schema, target schema, and dependencies) is considered fixed.

For most practical purposes, and for most of the results of this paper,2 each source-to-
target dependency in�st is a tgd [5] of the form

∀x(�S(x) → ∃y�T(x, y)),

where�S(x) is a conjunction of atomic formulas overS and�T(x, y) is a conjunction
of atomic formulas overT. We assume that all of the variables inx appear in�S(x).
Note that these dependencies also subsume dependencies of the form∀x(∃x′�S(x, x

′) →
∃y�T(x, y)), where the formula�S(x, x

′) is a conjunction of atomic formulas overS, and
where all of the variables inxappear in�S(x), since the above formula is logically equivalent
to ∀x∀x′(�S(x, x

′) → ∃y�T(x, y)). Each target dependency in�t is either a tgd (of the
form shown below left) or an egd[5] (shown below right):

∀x(�T(x) → ∃y�T(x, y)) ∀x(�T(x) → (x1 = x2)).

In the above,�T(x) and�T(x, y) are conjunctions of atomic formulas overT, where all
of the variables inx appear in�T(x), andx1, x2 are among the variables inx. Note that
data exchange settings with tgds as source-to-target dependencies include as special cases
both LAV and GAV data integration systems in which the views are sound[21] and are
defined by conjunctive queries. It is natural to take the target dependencies to be tgds and
egds: these two classes together comprise the (embedded) implicational dependencies [13],
which seem to include essentially all of the naturally occurring constraints on relational
databases. However, it is somewhat surprising that tgds, which were originally “designed”
for other purposes (as constraints), turn out to be ideally suited for describing desired data
transfer.

2 Except for Proposition4.2.
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For simplicity of presentation, we do not allow for constants to occur anywhere inside
the tgds and egds. However, all results of this paper can be suitably extended for such
dependencies. Also, in the rest of the paper we will usually drop the universal quantifiers in
front of a dependency, and implicitly assume such quantification. However, we will write
down all existential quantifiers.

The next example shows that there may be more than one possible solution for a given
data exchange problem. The natural question is then which solution to choose.

Example 2.2. Consider a data exchange problem in which the source schema has three
relation symbolsP,Q,R, each of them with attributesA,B,C, while the target schema
has one relation symbolT also with attributesA,B,C. We assume that�t = ∅. The
source-to-target dependencies and the source instance are:

�st : P(a, b, c) → ∃Y∃Z T (a, Y, Z), I = {P(a0, b
′
0, c

′
0),

Q(a, b, c) → ∃X∃U T (X, b,U), Q(a′′
0, b0, c

′′
0),

R(a, b, c) → ∃V ∃W T (V,W, c), R(a′′′
0 , b

′′′
0 , c0)}.

We observe first that the dependencies in�st do not completely specify the target instance.
Indeed, the first dependency requires anA-value of a tuple inP to appear in theA column
of T, but it does not specify any particular values for theB andC attributes. It should be
noted that such incomplete specification arises naturally in many practical scenarios of data
exchange (or data integration for that matter; see[18,21]). For our example, one possible
solution is:

J = {T (a0, Y0, Z0), T (X0, b0, U0), T (V0,W0, c0)},
whereX0, Y0, . . . represent “unknown” values, that is values that do not occur in the source
instance. We will call such valueslabeled nullsand we will introduce them formally in
the next section. The second observation is that there may be more than one solution. For
example, the following are solutions as well:

J1 = {T (a0, b0, c0)}, J2 = {T (a0, b0, Z1), T (V1,W1, c0)}.
In the above,Z1, V1 andW1 are labeled nulls. Note thatJ1 does not use labeled nulls; instead,
source values are used to witness the existentially quantified variables in the dependencies.
SolutionJ1 seems to be less general thanJ, since it “assumes” that all three tuples required
by the dependencies are equal to the tuple(a0, b0, c0). This assumption, however, is not part
of the specification. Similarly, solutionJ2 has extra information that is not a consequence
of the dependencies in�st for the given source data. We argue that neitherJ1 norJ2 should
be used for data exchange. In contrast,J is the “best” solution: it contains no more and no
less than what the specification requires. We formalize this intuition next.

2.1. Universal solutions

In this section, we give an algebraic specification that selects, among all possible solutions,
a special class of solutions that we calluniversal. As we will see, a universal solution has
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several “good” properties that justify its choice for the semantics of data exchange. Before
presenting the key definition, we introduce some terminology and notation.

We denote by Constthe set of all values that occur in source instances and we call them
constants. In addition, we assume an infinite set Varof values, which we calllabeled nulls,
such that Var∩ Const= ∅. We reserve the symbolsI, I ′, I1, I2, . . . for instances over the
source schemaS and with values in Const. We also reserve the symbolsJ, J ′, J1, J2, . . .

for instances over the target schemaT and with values in Const∪ Var.
If R = {R1, . . . , Rk) is a schema andK is an instance overR with values in Const∪Var,

then Var(K) denotes the set of labelled nulls occurring in relations inK.

Definition 2.3. LetK1 andK2 be two instances overR with values in Const∪ Var.
1. A homomorphismh : K1 → K2 is a mapping from Const∪Var(K1) to Const∪Var(K2)

such that: (1)h(c) = c, for everyc ∈ Const; (2) for every factRi(t) ofK1, we have that
Ri(h(t)) is a fact ofK2 (where, ift = (a1, . . . , as), thenh(t) = (h(a1), . . . , h(as))).

2. K1 ishomomorphically equivalenttoK2 if there is a homomorphismh : K1 → K2 and
a homomorphismh′ : K2 → K1.

Definition 2.4 (Universal solution). Consider a data exchange setting(S,T,�st ,�t ). If I
is a source instance, then auniversal solution for Iis a solutionJ for I such that for every
solutionJ ′ for I, there exists a homomorphismh : J → J ′.

Example 2.5. The instancesJ1 andJ2 in Example2.2 are not universal. In particular, there
is no homomorphism fromJ1 toJand also there is no homomorphism fromJ2 toJ. This fact
makes precise our earlier intuition that the instancesJ1 andJ2 contain “extra” information.
In contrast, there exist homomorphisms fromJ to bothJ1 andJ2. Actually, it can be easily
shown thatJ has homomorphisms to all solutions. Thus,J is universal.

From an algebraic standpoint, being a universal solution is a property akin to being
an initial structure [25] for the set of all solutions (although an initial structure for a set
K of structures is required to haveuniquehomomorphisms to all other structures inK).
Initial structures are ubiquitous in several areas of computer science, including semantics
of programming languages and term rewriting, and are known to have good properties (see
[25]). The next result asserts that universal solutions have good properties as well.

Proposition 2.6. Let (S,T,�st ,�t ) be a data exchange setting.
1. If I is a source instance and J, J ′ are universal solutions for I, then J andJ ′ are

homomorphically equivalent.
2. Assume that�st is a set of tgds. Let I, I ′ be two source instances, J a universal solution

for I, andJ ′ a universal solution forI ′. ThenSol(I ) ⊆ Sol(I ′) if and only if there is a
homomorphismh : J ′ → J .Consequently, Sol(I ) = Sol(I ′) if and only if J andJ ′ are
homomorphically equivalent.

Proof. The first part follows immediately from the definitions. For the second part, assume
first that Sol(I ) ⊆ Sol(I ′). SinceJ ∈ Sol(I ), it follows thatJ ∈ Sol(I ′) and, hence, there is
a homomorphismh : J ′ → J becauseJ ′ is a universal solution forI ′. Conversely, assume
that there is a homomorphismh : J ′ → J . Let J ∗ be a solution forI. We must show that
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J ∗ is a solution forI ′, which amounts to showing that〈I ′, J ∗〉��st andJ ∗��t . SinceJ ∗
is a solution forI, we already have thatJ ∗��t , so it suffices to show that〈I ′, J ∗〉��st .
Consider a tgd∀x(�S(x) → ∃y�T(x, y)) in �st . We must show that〈I ′, J ∗〉�∀x(�S(x) →
∃y�T(x, y)). Since〈I ′, J ′〉 satisfies this tgd, it follows that for every vectora of constants
from I ′ such thatI ′��S(a), there is a vectorb of elements ofJ ′ such thatJ ′��T(a,b).
SinceJ is a universal solution forI, there is a homomorphismh∗ : J → J ∗. Hence, the
compositionh∗ ◦h is a homomorphism fromJ ′ toJ ∗. Since atomic formulas are preserved
under homomorphisms andh∗ ◦ h(a) = a, it follows that J ∗��T(a, h

∗ ◦ h(b)). Thus,
〈I ′, J ∗〉�∀x(�S(x) → ∃y�T(x, y)), as desired. �

The first part of Proposition2.6 asserts that universal solutions are unique up to homo-
morphic equivalence. The second part implies that ifJ is a universal solution for two source
instancesI andI ′, then Sol(I ) = Sol(I ′). Thus, in a certain sense, each universal solution
precisely embodies the space of solutions.

3. Computing universal solutions

Checking the conditions in Definition 2.4 requires implicitly the ability to check the
(infinite) space of all solutions. Thus, it is not clear, at first hand, to what extent the notion
of universal solution is a computable one.This section addresses the question of how to check
the existence of a universal solution and how to compute one (if one exists). In particular,
we show that the classical chase can be used for data exchange and that every finite chase,
if it does not fail, constructs a universal solution. If the chase fails, then no solution exists.
However, in general, for arbitrary sets of dependencies, there may not exist a finite chase.
Hence, in Section 3.2 we introduce the class of weakly acyclic sets of tgds, for which the
chase is guaranteed to terminate in polynomial time. For such sets of dependencies, we
show that: (1) the existence of a universal solution can be checked in polynomial time, (2)
a universal solution exists if and only if a solution exists, and (3) a universal solution (if
solutions exist) can be produced in polynomial time.

3.1. Chase: canonical generation of universal solutions

Intuitively, we apply the following procedure to produce a universal solution: start with
an instance〈I,∅〉 that consists ofI for the source, and of the empty instance for the target;
then chase〈I,∅〉 by applying the dependencies in�st and�t in some arbitrary order and for
as long as they are applicable. This process may fail (as we shall see shortly, if an attempt
to identify two constants is made) or it may never terminate. But if it does terminate and
if it does not fail, then the resulting instance is guaranteed to satisfy the dependencies and,
moreover, to be universal (Theorem 3.3).

We next define chase steps. Similar to homomorphisms between instances, a homomor-
phism from a conjunctive formula�(x) to an instanceJ is a mapping from the variablesx to
Const∪Var(J ) such that for every atomR(x1, . . . , xn) of �, the factR(h(x1), . . . , h(xn))
is in J. The chase that we use is a slight variation of the classical notion of chase with tgds
and egds of [5], except that here we chase with instances rather than symbolic tableaux.
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Definition 3.1 (Chase step). LetK be an instance.
(tgd) Letd be a tgd�(x) → ∃y�(x, y). Let h be a homomorphism from�(x) to K such

that there is no extension ofh to a homomorphismh′ from �(x)∧ �(x, y) toK. We say
thatd can be applied to K with homomorphism h.

LetK ′ be the union ofK with the set of facts obtained by: (a) extendingh to h′ such
that each variable iny is assigned a fresh labeled null, followed by (b) taking the image
of the atoms of� underh′. We say thatthe result of applying d to K with hisK ′, and

writeK
d,h−→ K ′.

(egd) Letd be an egd�(x) → (x1 = x2). Let h be a homomorphism from�(x) to K
such thath(x1) �= h(x2). We say thatd can be applied to K with homomorphism h. We
distinguish two cases.
• If both h(x1) andh(x2) are in Constthen we say thatthe result of applying d to K

with h is “failure”, and writeK
d,h−→ ⊥.

• Otherwise, letK ′ beK where we identifyh(x1) andh(x2) as follows: if one is a
constant, then the labeled null is replaced everywhere by the constant; if both are
labeled nulls, then one is replaced everywhere by the other. We say thatthe result of

applying d to K with hisK ′, and writeK
d,h−→ K ′.

In the definition,K
d,h−→ K ′ (including the case whereK ′ is ⊥) is called achase step. We

next define chase sequences and finite chases.

Definition 3.2 (Chase). Let � be a set of tgds and egds, and letK be an instance.

• A chase sequence of Kwith� is a sequence (finite or infinite) of chase stepsKi
di ,hi−→ Ki+1,

with i = 0,1, . . . , with K = K0 anddi a dependency in�.

• A finite chase of K with� is a finite chase sequenceKi
d,h−→ Ki+1,0� i < m, with the

requirement that either (a)Km = ⊥ or (b) there is no dependencydi of � and there is
no homomorphismhi such thatdi can be applied toKm with hi . We say thatKm is the
result of the finite chase. We refer to case (a) as the case of afailing finite chaseand we
refer to case (b) as the case of asuccessful finite chase.

In general, there may not exist a finite chase of an instance (cyclic sets of dependencies
could cause infinite application of chase steps). Infinite chases can be defined as well, but
for this paper we do not need to do so. Also, different chase sequences may yield different
results. However, each result, if not⊥, satisfies�.

For data exchange, we note first that, due to the nature of our dependencies, any chase se-
quence that starts with〈I,∅〉 does not change or add tuples inI. Then, if a finite chase
exists, its result〈I, J 〉 is such thatJ is a solution. Furthermore,J is universal, a fact
that does not seem to have been explicitly noted in the literature on the chase. The next
theorem states this, and also states that the chase can be used to check the existence of
a solution.

Theorem 3.3. Assume a data exchange setting where�st consists of tgds and�t consists
of tgds and egds.
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1. Let 〈I, J 〉 be the result of some successful finite chase of〈I,∅〉 with�st ∪ �t . Then J is
a universal solution.

2. If there exists some failing finite chase of〈I,∅〉 with�st ∪ �t , then there is no solution.

The proof of the theorem makes use of the following basic property of a chase step. (This
property was implicitly proved and used in[5,24], in slightly more restricted settings than
ours and in different contexts.)

Lemma 3.4. LetK1
d,h−→ K2 be a chase step whereK2 �= ⊥. Let K be an instance such

that: (i) K satisfies d and(ii) there exists a homomorphismh1 : K1 → K. Then there exists
a homomorphismh2 : K2 → K.

Proof. Case1:d is a tgd�(x) → ∃y�(x, y). By the definition of the chase step,h : �(x) →
K1 is a homomorphism. Composing homomorphisms yields homomorphisms; thus

h1 ◦ h : �(x) → K

is a homomorphism. SinceK satisfiesd, there exists a homomorphism

h′ : �(x) ∧ �(x, y) → K

such thath′ is an extension ofh1 ◦ h, that ish′(x) = h1(h(x)). For each variabley in y,
denote by�y the labeled null replacingy in the chase step. Defineh2 onVar(K2) as follows:
h2(�) = h1(�), if � ∈ Var(K1), andh2(�y) = h′(y) for y in y.

We need to show thath2 is a homomorphism fromK2 to K, which means thath2 maps
facts ofK2 to corresponding facts ofK. For facts ofK2 that are also inK1 this is true because
h1 is a homomorphism. LetT(x0, y0) be an arbitrary atom in the conjunction�. (Herex0
andy0 contain variables inx andy, respectively.) ThenK2 contains, in addition to any facts
of K1, a factT(h(x0),�y0). The image underh2 of this fact is, by definition ofh2, the fact
T(h1(h(x0)), h′(y0)). Sinceh′(x0) = h1(h(x0)), this is the same asT(h′(x0), h′(y0)). But
h′ homomorphically maps all atoms of�∧�, in particularT(x0, y0), into facts ofK. Thus,
h2 is a homomorphism.
Case2: d is an egd�(x) → (x1 = x2). As in Case 1,h1 ◦ h : �(x) → K is a

homomorphism. We takeh2 to beh1. We need to ensure thath1 is still a homomorphism
when considered fromK2 to K. The only way thath1 can fail to be a homomorphism on
K2 is if h1 mapsh(x1) andh(x2) into two different constants or labeled nulls ofK. But this
is not the case, sinceK satisfiesd and soh1(h(x1)) = h1(h(x2)). �

The proof of Theorem3.3 is based on Lemma 3.4 and on the observation that the identity
mapping is a homomorphism from〈I,∅〉 to 〈I, J ′〉, for every solutionJ ′. We give the full
details next.

Proof of Theorem 3.3.Part1: It follows from Definition 3.2 that〈I, J 〉 satisfies�st ∪�t .
Since�t uses only target relation symbols, it follows thatJ satisfies�t . Let J ′ be an
arbitrary solution. Thus,〈I, J ′〉 satisfies�st ∪ �t . Moreover, the identity mapping id:
〈I,∅〉 → 〈I, J ′〉 is a homomorphism. By applying Lemma 3.4 at each chase step, we
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obtain a homomorphismh : 〈I, J 〉 → 〈I, J ′〉. In particular,h is also a homomorphism
from J to J ′. Thus,J is universal.

Part 2: Let 〈I, J 〉 d,h−→ ⊥ be the last chase step of a failing chase. Thendmust be an egd
of �t , say�(x) → (x1 = x2), andh : �(x) → J is a homomorphism such thath(x1) and
h(x2) are twodistinctconstantsc1 and, respectively,c2. Suppose that there exists a solution
J ′. Following the same argument as in Part 1, we see that the identity homomorphism id:
〈I,∅〉 → 〈I, J ′〉 implies, by Lemma3.4, the existence of a homomorphismg : 〈I, J 〉 →
〈I, J ′〉. Theng ◦ h : �(x) → J ′ is a homomorphism. SinceJ ′ is assumed to satisfyd, it
must be the case thatg(h(x1)) = g(h(x2)) and thusg(c1) = g(c2). Homomorphisms are
identities on Const, and soc1 = c2, which is a contradiction. �

For Part 1 of Theorem 3.3, we refer to such a solutionJasa canonical universal solution.
In further examples and proofs, when suchJ is unique (up to isomorphism), we will also
use the termthe canonical universal solution. We now give a simple example that shows
that there need not be a unique canonical universal solution, even when there are no target
dependencies.

Example 3.5. Consider a data exchange problem where the source schema has two unary
relation symbolsP andQ, and the target schema has one unary relation symbolR. Let �st

consist of the two source-to-target dependenciesP(x) → R(x) andQ(x) → ∃YR(Y ), and
let�t = ∅. Let I = {P(a),Q(a)}. If we chase first with the first dependency, we obtain the
canonical universal solution{Q(a)}, with only one tuple. If we chase first with the second
dependency, we obtain the canonical universal solution{Q(Y),Q(a)} with two tuples, one
of which has a null. So there is not a unique canonical universal solution.

We note that a canonical universal solution is similar, in its construction, to the represen-
tative instance defined in the work on the universal relation (see[24]). It is also similar to
the canonical database of Calì et al. [6] defined in a more restricted setting, that of GAV
with key and foreign key constraints.

The following is an example of a cyclic set of inclusion dependencies for which there
is no finite chase; thus, we cannot produce a universal solution by the chase. Still, a finite
solution does exist. This illustrates the need for introducing restrictions on the class of
dependencies that are allowed in the target.

Example 3.6. Consider the data exchange setting(S,T,�st ,�t ) as follows (this scenario
is also graphically but informally shown in Fig.1). The source schemaS has one relation
DeptEmp(dpt_id ,mgr_name,eid ) listing departments with their managers and their
employees. The target schemaT has a relationDept (dpt_id , mgr_id , mgr_name) for
departments and their managers, and a separate relation for employeesEmp(eid ,dpt_id ).
The source-to-target and target dependencies are:

�st = { DeptEmp(d, n, e) → ∃M(Dept (d,M, n) ∧ Emp(e, d)) },
�t = { Dept (d,m, n) → ∃D Emp(m,D),

Emp(e, d) → ∃M∃N Dept (d,M,N) }.
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DeptEmp
dpt_id

eid

Dept

dpt_id
mgr_id
mgr_namemgr_name

Emp

eid
dpt_id

I  = {DeptEmp (CS, Mary, E003)}

Fig. 1. Data exchange with infinite chase.

Assume now that the source instanceI has one tuple inDeptEmp, for departmentCSwith
managerMary and employeeE003. Chasing〈I,∅〉 with �st yields the target instance:

J1 = {Dept (CS,M,Mary),Emp(E003,CS)},

whereM is a labeled null that instantiates the existentially quantified variable of the tgd, and
encodes the unknown manager id ofMary. However,J1 does not satisfy�t ; therefore, the
chase does not stop atJ1. The first tgd in�t requiresM to appear inEmpas an employee id.
Thus, the chase will addEmp(M,D) whereD is a labeled null representing the unknown
department in which Mary is employed. Then the second tgd becomes applicable, and so on.
It is easy to see that there is no finite chase. Satisfying all the dependencies would require
building an infinite instance:

J = { Dept (CS,M,Mary),Emp(E003,CS),Emp(M,D),

Dept (D,M ′, N ′), . . . }.
On the other hand, finite solutions exist. Two such examples are:

J ′ = {Dept (CS, E003,Mary),Emp(E003,CS)},
J ′′ = {Dept (CS,M,Mary),Emp(E003,CS),Emp(M,CS)}.

However, neitherJ ′ nor J ′′ are universal: there is no homomorphism fromJ ′ to J ′′ and
there is no homomorphism fromJ ′′ to J ′. We argue that neither should be used for data
exchange. In particular,J ′ makes the assumption that the manager id ofMary is equal to
E003, whileJ ′′ makes the assumption that the department in whichMary is employed is the
same as the department (CS) thatMarymanages. Neither assumption is a consequence of
the given dependencies and source instance. It can be shown that nofiniteuniversal solution
exists for this example.

We next consider sets of dependencies for which every chase sequence is guaranteed to
reach its end after at most polynomially many steps (in the size of the input instance). For
such sets of dependencies it follows that checking the existence of a solution, as well as
generating a universal solution, can be carried out in polynomial time.
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3.2. Polynomial-length chase

We first discuss sets offull tgds (tgds with no existentially quantified variables). It has
been proven in[5] that every chase sequence with a set� of full tgds has at most finite
length. Moreover every chase has the same result. It is simple to show that the length of the
chase is bounded by a polynomial in the size of the input instance (the dependencies and the
schema are fixed). Also, any set of egds can be added to� without affecting the uniqueness
of the result or the polynomial bound. Although full tgds enjoy nice properties, they are
not very useful in practice. Most dependencies occurring in real schemas are non-full, for
example, foreign key constraints or, more generally, inclusion dependencies [7]. It is well
known that chasing with inclusion dependencies may not terminate in general.Acyclic sets
of inclusion dependencies[9] are a special case for which every chase sequence has a length
that is polynomial in the size of the input instance. Such dependencies can be described
by defining a directed graph in which the nodes are the relation symbols, and such that
there exists an edge fromR to Swhenever there is an inclusion dependency fromR to S.
A set of inclusion dependencies is acyclic if there is no cycle in this graph. We define next
weakly acyclic sets of tgds, a notion that strictly includes both sets of full tgds and acyclic
sets of inclusion dependencies. This notion is inspired by the definition of weakly recursive
ILOG [20], even though the latter is not directly related to dependencies. Informally, a set
of tgds is weakly acyclic if it does not allow for cascading of labeled null creation during
the chase.

This concept first arose in a conversation between the last author and Deutsch in 2001.
Preliminary reports on this concept appeared independently in [15] (the conference version
of this article) and in [11] (in the latter paper, under the termconstraints with stratified-
witness).

Definition 3.7 (Weakly acyclic set of tgds). Let � be a set of tgds over a fixed schema.
Construct a directed graph, called thedependency graph, as follows: (1) there is a node for
every pair(R,A) with Ra relation symbol of the schema andA an attribute ofR; call such
pair (R,A) aposition; (2) add edges as follows: for every tgd�(x) → ∃y�(x, y) in � and
for everyx in x thatoccursin �:
• For every occurrence ofx in � in position(R,Ai):

(a) for every occurrence ofx in � in position(S, Bj ), add an edge(R,Ai) → (S, Bj )

(if it does not already exist);
(b) in addition, for every existentially quantified variableyand for every occurrence ofy

in � in position(T , Ck), add aspecial edge(R,Ai)
∗→ (T , Ck) (if it does not already

exist).
Note that there may be two edges in the same direction between two nodes, if exactly one
of the two edges is special. Then� isweakly acyclicif the dependency graph has no cycle
going through a special edge.

Intuitively, Part (a) keeps track of the fact that a value may propagate from position
(R,Ai) to position(S, Bj ) during the chase. Part (b), moreover, keeps track of the fact
that propagation of a value into(S, Bj ) also creates a labeled null in any position that has
an existentially quantified variable. If a cycle goes through a special edge, then a labeled
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Fig. 2. Dependency graphs for: (a) a set of tgds that is not weakly acyclic, (b) a weakly acyclic set of tgds.

null appearing in a certain position during the chase may determine the creation of another
labeled null, in the same position, at a later chase step. This process may thus continue
forever. Note that the definition allows for cycles as long as they do not include special
edges. In particular, a set of full tgds is a special case of a weakly acyclic set of tgds (there
are no existentially quantified variables, and hence no special edges).

Example 3.8. Recall Example3.6. The dependency graph of�t is shown in Fig. 2(a). The
graph contains a cycle with two special edges. Hence�t is not weakly acyclic and therefore
a finite chase may not exist (as seen in Example 3.6). On the other hand, let us assume that
we know that each manager of a department is employed by thesamedepartment. Then we
replace the set�t by the set�′

t , where

�′
t = { Dept (d,m, n) → Emp(m, d),

Emp(e, d) → ∃M∃N Dept (d,M,N) }.
The dependency graph of�′

t , shown in Fig. 2(b), has no cycles going through a special edge.
Thus,�′

t is weakly acyclic. As Theorem 3.9 will show, it is guaranteed that every chase
sequence is finite. For Example 3.6, one can see that the chase ofJ1 with �′

t stops with result
J ′′. Thus,J ′′ is universal. Note that forJ ′′ to be universal it was essential that we explic-
itly encoded in the dependencies the fact that managers are employed by the department
they manage. Finally, we remark that�′

t is an example of a set of inclusion dependen-
cies that, although weakly acyclic, is cyclic according to the definition of Cosmadakis and
Kanellakis [9].

We now state the main result regarding weakly acyclic sets of tgds.

Theorem 3.9. Let� be the union of a weakly acyclic set of tgds with a set of egds. Then
there exists a polynomial in the size of an instance K that bounds the length of every chase
sequence of K with�.

Proof. We give the proof for the case when� does not have any egds. The addition of egds
does not essentially change the argument and we leave the details to the interested reader.
For every node(R,A) in the dependency graph of�, define anincoming pathto be any
(finite or infinite) path ending in(R,A). Define therankof (R,A), denoted by rank(R,A),
as the maximum number of special edges on any such incoming path. Since� is weakly
acyclic, there are no cycles going through special edges. Thus rank(R,A) is finite. Let r
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be the maximum, over all positions(R,A), of rank(R,A), and letp be the total number
of positions(R,A) in the schema (equal to the number of nodes in the graph). The latter
number is a constant, since the schema is fixed. Moreover,r is at mostp. Thusr is not only
finite but bounded by a constant. The next observation is that we can partition the nodes in
the dependency graph, according to their rank, into subsetsN0, N1, . . . , Nr , whereNi is
the set of all nodes with ranki. Let n be the total number of distinct values (constants or
labeled nulls) that occur in the instanceK. Let K ′ be any instance obtained fromK after
some arbitrary chase sequence. We prove by induction oni the following claim:
For every i there exists a polynomialQi such that the total number of distinct values that

occur inK ′ at positions that are restricted to be inNi is at mostQi(n).
Base case: If (R,A) is a position inN0, then there are no incoming paths with special

edges. Thus no new values are ever created at position(R,A) during the chase. Hence, the
values occurring inK ′ at position(R,A) are among then values of the original instanceK.
Since this is true for all the positions inN0, we can then takeQ0(n) = n.
Inductive case: The first kind of values that may occur inK ′ at a position ofNi are

those values that already occur inK at the same position. The number of such values is at
mostn. In addition, a value may occur inK ′ at a position ofNi for two reasons: by being
copiedfrom some position inNj with j �= i, during a chase step, or by beinggenerated
as a new value (labeled null), also during a chase step. We count first how many values
can be generated. Let(R,A) be some position ofNi . A new value can be generated in
(R,A) during a chase step only due to special edges. But any special edge that may enter
(R,A) must start at a node inN0 ∪ · · · ∪ Ni−1. Applying the inductive hypothesis, the
number of distinct values that can exist in all the nodes inN0 ∪ · · · ∪ Ni−1 is bounded
by P(n) = Q0(n) + · · · + Qi−1(n). Let d be the maximum number of special edges that
enter a position, over all positions in the schema. Then for every choice ofd values in
N0 ∪ · · · ∪ Ni−1 (one value for each special edge that can enter a position) and for every
dependency in� there is at most one new value that can be generated at position(R,A).
(This is a consequence of the chase step definition and of how the special edges have been
defined.) Thus the total number of new values that can be generated in(R,A) is at most
(P (n))d × D, whereD is the number of dependencies in�. Since the schema and� are
fixed, this is still a polynomial inn. If we considerall positions(R,A) in Ni , the total
number of values that can be generated is at mostpi × (P (n))d ×D wherepi is the number
of positions inNi . LetG(n) = pi × (P (n))d ×D. Obviously,G is a polynomial.

We count next the number of distinct values that can be copied to positions ofNi from
positions ofNj with j �= i. Such copying can happen only if there are non-special edges
from positions inNj with j �= i to positions inNi . We observe first that such non-special
edges can originate only at nodes inN0 ∪ · · · ∪ Ni−1, that is, they cannot originate at
nodes inNj with j > i. Otherwise, assume that there existsj > i and there exists a non-
special edge from some position ofNj to a position(R,A) of Ni . Then the rank of(R,A)
would have to be larger thani, which is a contradiction. Hence, the number of distinct
values that can be copied in positions ofNi is bounded by the total number of values in
N0 ∪ · · · ∪Ni−1, which isP(n) from our previous consideration. Putting it all together, we
can takeQi(n) = n+G(n)+ P(n). SinceQi is a polynomial, the claim is proven.

In the above claim,i is bounded by the maximum rankr, which is a constant. Hence,
there exists a fixed polynomialQ such that the number of distinct values that can exist in
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K ′, over all positions, is bounded byQ(n). In particular, the number of distinct values that
can exist inK ′ at a single position is also bounded byQ(n). Then the total number of tuples
that can exist in one relation inK ′ is bounded byQ(n)p since the maximum number of
attributes in one relation is bounded byp (recall thatp is the total number of positions in the
schema). It follows that the total number of tuples that can exist inK ′, over all relations, is
at mosts ×Q(n)p, wheres is the number of relations in the schema. This is a polynomial
in n sinces andp are assumed to be constant. Finally, since every chase step with a tgd
adds at least some tuple toK ′, it follows that the length of any chase sequence is at most
s × (Q(n))p. �

Corollary 3.10. Assume a data exchange setting where�st is a set of tgds, and�t is the
union of a weakly acyclic set of tgds with a set of egds. The existence of a solution can be
checked in polynomial time. If a solution exists, then a universal solution can be produced
in polynomial time.

4. Query answering

As stated earlier, we adopt the notion of certain answers for the semantics of query
answering. We first give the formal definition of this notion and then address the problem
of whether and to what extent the certain answers of a query over the target schema can be
computed by evaluating some query (same or different) on a universal solution.

Definition 4.1. Let (S,T,�st ,�t ) be a data exchange setting.
• Let q be ak-ary query, fork�0, over the target schemaT andI a source instance. The
certain answers of q with respect to I, denoted bycertain(q, I ), is the set of allk-tuples
t of constants fromI such that for every solutionJ of this instance of the data exchange
problem, we have thatt ∈ q(J ).

• In particular, letq be a Boolean (that is, 0-ary) query over the target schemaT andI a
source instance. If we let truedenote the set with one 0-ary tuple and falsedenote the
empty set, thenq(J ) = trueandq(J ) = falseeach have their usual meanings for Boolean
queriesq. Note thatcertain(q, I ) = truemeans that for every solutionJ of this instance
of the data exchange problem, we have thatq(J ) = true; moreover,certain(q, I ) = false
means that there is a solutionJ such thatq(J ) = false.

On the face of it, the definition of certain answers entails a computation over the entire
set of solutions of a given instance of the data exchange problem. Since this set may very
well be infinite, it is desirable to identify situations in which the certain answers of a query
q can be computed by evaluatingq on a particular fixed solution and then keeping only
the tuples that consist entirely of constants. More formally, ifq is ak-ary query andJ is
a target instance, then let us defineq(J )↓ to be the set of allk-tuplest of constants such
thatt ∈ q(J ). We extend the notation to Boolean queries by agreeing that ifq is a Boolean
query, thenq(J )↓ = q(J ) (= trueor false).

A conjunctive queryq(x) over a schemaR is a formula of the form∃y�(x, y) where
�(x, y) is a conjunction of atomic formulas overR. If, in addition to atomic formulas, the
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conjunction�(x, y) is allowed to contain inequalities of the formzi �= zj , wherezi, zj are
variables amongx andy, we callq(x) a conjunctive query with inequalities.A union of
conjunctive queries(with inequalities) is a disjunctionq(x) = q1(x) ∨ · · · ∨ qn(x) where
q1(x), . . . , qn(x) are conjunctive queries (with inequalities).

The next proposition characterizes universal solutions with respect to query answering,
when the queries under consideration are unions of conjunctive queries. First, it shows that
certain(q, I ) = q(J )↓ wheneverJ is a universal solution andq is a union of conjunctive
queries. Concrete instances of this result in the LAV setting have been established in[1].
Another instance of this result has also been noted for the GAV setting with key/foreign
key constraints in [6]. The proposition shows that evaluation of conjunctive queries on an
arbitrarily chosen universal solution gives precisely the set of certain answers. Moreover,
the second statement of the proposition shows that the universal solutions are the only
solutions that have this property. This is further justification for using universal solutions
for data exchange.

Proposition 4.2. Consider a data exchange setting withSas the source schema, T as the
target schema, and such that the dependencies in the sets�st and�t are arbitrary.
1. Let q be a union of conjunctive queries over the target schemaT. If I is a source instance

and J is a universal solution, then certain(q, I ) = q(J )↓.
2. Let I be a source instance and J be a solution such that for every conjunctive query q

overT, we have that certain(q, I ) = q(J )↓. Then J is a universal solution.

Proof. Part 1: Let q be ak-ary query that is a union of conjunctive queries and lett be a
k-tuple of constants from the source instanceI. If t ∈ certain(q, I ), thent ∈ q(J ), since
J is a solution. Conversely, assume thatt ∈ q(J )↓. Thent consists only of constants. Also
there exists a conjunctive query∃y�(x, y) that is a disjunct ofq and a homomorphism
g : �(x, y) → J such thatg(x) = t . Let J ′ be an arbitrary solution. SinceJ is a universal
solution, there is a homomorphismh : J → J ′. Thenh ◦ g is a homomorphism from
�(x, y) to J ′. Homomorphisms are identities on constants, henceh(g(x)) = h(t) = t .
Thust ∈ q(J ′).
Part2: LetqJ be thecanonicalconjunctive query associated withJ (i.e.,qJ is the Boolean

conjunctive query obtained by taking the conjunction of all the facts ofJ in which the labeled
nulls are replaced by existentially quantified variables). Nowcertain(qJ , I ) = qJ (J )↓ =
qJ (J ), where the first equality follows from our assumption aboutJ, and where the second
equality follows from the fact thatqJ is a Boolean query. Since alsoqJ (J ) = true, we
havecertain(qJ , I ) = true. Therefore, ifJ ′ is an arbitrary solution, thenqJ (J ′) = true.
As first shown by Chandra and Merlin[8], this implies the existence of a homomorphism
h : J → J ′. Hence,J is universal. �

In the preceding Proposition 4.2, the queryq can be a finite or an infinite union of
conjunctive queries. Thus, this proposition holds for arbitrary Datalog queries.

The following result follows from Corollary 3.10 and Part 1 of Proposition 4.2.

Corollary 4.3. Assume a data exchange setting where�st is a set of tgds, and�t is the
union of a weakly acyclic set of tgds with a set of egds. Let q be a union of conjunctive
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queries. For every source instance I, the set certain(q, I ) can be computed in polynomial
time in the size of I.

Conjunctive queries with inequalities: The state of affairs changes dramatically when
conjunctive queries with inequalities are considered. The next proposition shows that there
is a simple Boolean conjunctive queryq with inequalities such that no universal solution
can be used to obtain the certain answers ofq by evaluatingq on that universal solution.
This proposition also shows that in this particular case, there is another conjunctive query
q∗ with inequalities such that the certain answers ofq can be obtained by evaluatingq∗ on
the canonical universal solution.

Proposition 4.4. Let S be a binary source relation symbol, T a binary target relation sym-
bol, S(x, y) → ∃z(T (x, z) ∧ T (z, y)) a source-to-target dependency, and q the following
Boolean conjunctive query with one inequality: ∃x∃y(T (x, y) ∧(x �= y)).

1. There is a source instance I such that certain(q, I ) = false, but q(J ) = true for every
universal solution J.

2. Let q∗ be the query∃x∃y∃z(T (x, z)∧ T (z, y)∧ (x �= y)). If I is a source instance and
J is the canonical universal solution, then certain(q, I ) = q∗(J ).

Proof. Part 1: Let I be the source instance withI (S) = {(a, a)}, wherea is some constant.
Note thatcertain(q, I ) = false, becauseJ1(T ) = {(a, a)} is a solution andq(J1) = false.
LetJbe an arbitrary universal solution.We will prove thatq(J ) = trueby showing thatJ (T )
must contain two tuples(a,X) and(X, a) with a �= X. Towards this goal, first note that
Jmust contain two tuples of the form(a,X) and(X, a), becauseJ is a solution. Consider
now the solutionJ2 with J2(T ) = {(a, b), (b, a)}, whereb �= a. SinceJ is a universal
solution, there is a homomorphismh from J to J2. It follows thatJ (T ) must contain two
tuples of the form(a,X) and (X, a) with X �= a, since, otherwise,(a, a) ∈ J (T ) and
(h(a), h(a)) = (a, a) �∈ J2(T ).
Part 2: Let I be a source instance andJ be the canonical universal solution (it is easy to

see that in this case, the canonical universal solution is unique up to isomorphism). We have
to show thatcertain(q, I ) = q∗(J ). For this, we consider two cases.
Case1: I (S) has a tuple(a, b) with a �= b. If J ′ is an arbitrary solution, thenJ ′(T )

contains two tuples(a,X) and(X, b). If X = a, thenJ ′(T ) contains(a, b) with a �= b; if
X �= a, thenJ ′(T ) contains(a,X) with a �= X. In either case, we have thatq(J ′) = true,
hencecertain(q, I ) = true. Moreover, in either case we have thatq∗(J ) = true, sinceJ,
being a solution, must contain two tuples of the form(a,X) and(X, b), anda �= b. Note
that the only property ofJwe used here was that it is a solution.
Case2: I (S) has no tuple(a, b)with a �= b. Hence,I (S) is a relation consisting entirely

of reflexive tuples(a, a). If J ′ is the solution withJ ′(T ) = I (S), thenq(J ′) = falseand,
consequently,certain(q, I ) = false. At the same time, the canonical universal solutionJ
consists of tuples of the form(a,Xa), (Xa, a) such that(a, a) ∈ I (S), where a different
labeled nullXa is used for each constanta. Consequently,q∗(J ) = false. �

In view of Proposition4.4, we address next the question of whether, given a conjunctive
query with inequalities, it is always possible to find a query (not necessarily the same) that
computes the certain answers when evaluated on a canonical universal solution.
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5. Query answering: complexity and inexpressibility

It is known that in LAV data integration systems, computing the certain answers of
conjunctive queries with inequalities is a coNP-hard problem[1]. It follows that in the data
exchange setting, it is not possible to compute the certain answers of such queriesq by
evaluatingq (or any associated queryq∗ with polynomial-time evaluation) on a canonical
universal solution or on any universal solution that is generated in polynomial time (unless
P = NP). In Section 5.1, we take a closer look at conjunctive queries with inequalities. First,
we show (Theorem 5.2) that, in the data exchange setting, the problem of computing the
certain answers for unions of conjunctive queries with inequalities is in coNP. Surprisingly,
we show (Theorem 5.12) that there is a polynomial-time algorithm that computes the certain
answers of unions of conjunctive queries with at most one inequality per disjunct. This is
an optimal result because we also show (Theorem 5.11) that it is coNP-hard to compute the
certain answers of unions of conjunctive queries with at most two inequalities per disjunct.

In the case of unions of conjunctive queries with at most one inequality per disjunct, the
certain answers can be computed in polynomial time from an arbitrary universal solution.
However, Section 5.2 shows (with no unproven complexity-theoretic assumptions such as
P �= NP) that there is a conjunctive queryq with one inequality whose certain answers
cannot be computed by rewritingq to a first-order queryq∗ and then evaluatingq∗ on
a canonical universal solution. We begin by formally introducing the decision problem
associated with the computation of the set of certain answers.

Definition 5.1. Let (S,T,�st ,�t ) be a data exchange setting.
1. Letq be ak-ary query over the target schemaT. Computing the certain answers of q

is the following decision problem: given a source instanceI overS and ak-tuple t of
constants fromI, is it the case thatt ∈ certain(q, I )?

2. Letq be a Boolean query over the target schemaT. Computing the certain answers of
q is the following decision problem: given a source instanceI overS, is it the case that
certain(q, I ) = true?

3. LetC be a complexity class andQ a class of queries over the target schemaT. We say
thatcomputing the certain answers of queries inQ is in C if for every queryq ∈ Q,
computing the certain answers ofq is in C. We say thatcomputing the certain answers
of queries inQ is C-completeif it is in C and there is at least one queryq ∈ Q such that
computing the certain answers ofq is aC-complete problem.

Thus, computing the certain answers of ak-ary queryq is a decision problem. One can also
consider a related function problem: given a source instanceI, find the setcertain(q, I ). The
latter problem has a polynomial-time reduction to the former, since there are polynomially
manyk-tuples fromI and so we can compute the setcertain(q, I ) by going over each such
k-tuplet and deciding whether or nott ∈ certain(q, I ).

5.1. Computational complexity

Since the complexity-theoretic lower bounds and inexpressibility results presented in
the sequel hold for LAV data integration systems with sound views defined by conjunctive



R. Fagin et al. / Theoretical Computer Science 336 (2005) 89–124 111

queries, we review the definition of this type of data integration system first. ALAV data
integration systemwith sound views defined by conjunctive queriesis a special case of a data
exchange setting(S,T,�st ,�t ) in which�t = ∅ and each source-to-target dependency in
�st is a tgd of the formSi(x) → ∃y�T(x, y), whereSi is some relation symbol of the source
schemaSand�T is an arbitrary conjunction of atomic formulas over the target schemaT.
In what follows, we will refer to such a setting simply as aLAV setting.

5.1.1. An upper bound
Abiteboul and Duschka[1] showed that in the LAV setting, computing the certain answers

of unions of conjunctive queries with inequalities is in coNP. We extend this by showing
that the same upper bound holds in the general data exchange setting, provided�st is a set
of tgds and�t is a union of a set of egds with a weakly acyclic set of tgds.

Theorem 5.2. Consider a data exchange setting in which�st is a set of tgds and�t is a
union of a set of egds with a weakly acyclic set of tgds. Let q be a union of conjunctive
queries with inequalities. Then computing the certain answers of q is incoNP.

We first note that, in the particular case when all the tgds in�t are full, the theorem can
be proved by using the “small model property”. Intuitively, the small model property says
that if there is a “witness” to the satisfaction or failure of some property, then there is a
“witness” of bounded size (essentially this argument was used in[1] for the LAV setting).
However, for the more general case when the tgds in�t may have existentially quantified
variables, the proof is more involved. It is based on an extension of the chase, that we call
thedisjunctive chaseand define shortly.

To decide whethert ∈ certain(q, I ), we substitutet into the queryq to obtain a Boolean
query. We thereby reduce the problem of deciding whethert ∈ certain(q, I ) for arbitrary
queriesq to the problem of deciding whethercertain(q, I ) = true for Boolean queriesq.
Hence, we can assume thatq is a Boolean query. We know thatq is equivalent to a query
of the formq1 ∨ q2, whereq1 is the disjunction of a setC of conjunctive queries with no
inequalities, andq2 is the disjunction of a setC′ of conjunctive queries each with at least
one inequality. Each element ofC′ has the form:

∃x
(
�(x) ∧

(∧
i

(x1
i �= x2

i )

))
,

where�(x) is a conjunction of atomic formulas. Hence, it is easy to see that the negation
of q2 is equivalent to the conjunction of a setE of formulas of the form:

∀x
(
�(x) →

(∨
i

(x1
i = x2

i )

))
.

We will call such formulasdisjunctive egds. As in the case of tgds and egds, for simplicity,
we will drop the universal quantifiers in front of a disjunctive egd. Note that an egd is a
particular case of a disjunctive egd where the right-hand side of the logical implication sign
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has only one equality. We observe next the following fact (easy to verify):

Lemma 5.3. The following statements are equivalent:
(1) certain(q, I ) = false.
(2) There exists a solutionJ ∗ for I such thatJ ∗ satisfies E andJ ∗ does not satisfy any of

the conjunctive queries in C.

Next we will show that the problem of deciding the above condition (2) is in NP, under
the conditions stated in Theorem5.2. Theorem 5.2 follows then immediately. To prove the
membership in NP of the aforementioned problem, we need to define first the disjunctive
chase. Deutsch and Tannen [10] introduced an extension of the classical chase in order to
make use, in the process of query optimization, of a very general class of dependencies
with disjunction, called disjunctive embedded dependencies (DEDs). For our purposes, we
need an extension only to deal with disjunctive egds, which are a particular case of DEDs.
Hence, the next definition is a particular case of the definition in [10]. We note, however,
that the subsequent properties of the chase that we prove and then use in this subsection
are new.

Definition 5.4 (Disjunctive chase step). LetK be an instance and letebe a disjunctive egd
�(x) → ((x1

1 = x2
1)∨ · · · ∨ (x1

l = x2
l )). Denote bye1, . . . , el the following egds obtained

from e: �(x) → (x1
1 = x2

1), . . . ,�(x) → (x1
l = x2

l ), and call them the egdsassociated
with e.

Lethbe a homomorphism from�(x) toK such thath(x1
1) �= h(x2

1), . . . , h(x
1
l ) �= h(x2

l ).
We say thate can be applied toKwith homomorphismh. Note that it is also the case that each
of e1, . . . , el can be applied toK with homomorphismh, by Definition3.1. For eachi =
1, . . . , l, letKi be the result of applyingei toKwith homomorphismh (i.e.,K

ei,h−→ Ki) ac-
cording to Definition 3.1. (Note that some of theKi ’s can be⊥.)We distinguish two cases:
• If all of K1, . . . , Kl are⊥ then we say thatthe result of applying e to K with his “failure”

and writeK
e,h−→ {⊥}, or simplyK

e,h−→ ⊥.
• Otherwise, letKi1, . . . , Kip be those elements in the set{K1, . . . , Kl} that are not⊥.

We say thatthe result of applying e to K with his the set{Ki1, . . . , Kip }, and write

K
e,h−→ {Ki1, . . . , Kip }.

Note that in the case whenehas only one term in the disjunction the above definition de-
generates to Definition3.1. Thus a chase step with an egd is a particular case of a disjunctive
chase step. For such chase steps, we will use, as convenience may dictate, either the notation

K
e,h−→ Ki1 as in Definition 3.1 or the full notationK

e,h−→ {Ki1}. In addition to chase steps
with (disjunctive) egds, we will continue to use chase steps with tgds as in Definition 3.1.

For such chase steps, we will use either the notationK
d,h−→ K ′ or the notationK

d,h−→ {K ′}.
We next define the finite disjunctive chase.

Definition 5.5 (Disjunctive chase). Let � be a set of tgds and egds and letE be a set of
disjunctive egds, and letK be an instance.
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• A chase tree of K with� ∪ E is a tree (finite or infinite) such that:
• the root isK, and
• for every nodeKj in the tree, let{Kj1, . . . , Kjr } be the set of its children. Then there

must exist some dependencyd in � ∪ E and homomorphismh such thatKj
d,h−→

{Kj1, . . . , Kjr }. 3

• A finite disjunctive chase of K with� ∪E is a finite chase tree with the requirement that
each leafKm satisfies either (a)Km = ⊥ or (b) there is no dependencyd in � ∪ E and
there is no homomorphismh such thatd can be applied toKm with h.

As with the traditional chase, there may not exist in general a finite disjunctive chase of
an instance. However, if the tgds involved are required to form a weakly acyclic set then
we can prove the following proposition, which is similar to Theorem3.9.

Proposition 5.6. Let� be the union of a weakly acyclic set of tgds with a set of egds. Let E
be a set of disjunctive egds, and let K be a instance. Then every chase tree of K with� ∪E

is finite. Moreover, there exists a polynomial in the size of K that bounds the depth of every
such chase tree.

Proof. LetE′ be the set of all egds that are associated with some disjunctive egd ofE. LetT
be an arbitrary chase tree ofK with �∪E. Then every path ofT that starts at the root forms
a chase sequence ofK, in the sense of Definition3.2, where the dependencies involved are
from � ∪ E′. Since the tgds in� form a weakly acyclic set, we can then use Theorem 3.9
to conclude that there exists a polynomial in the size ofK that bounds the length of every
such path. �

We prove next that condition (2) in Lemma 5.3 can be verified by checking first that a
universal solution exists (by Corollary 3.10 this can be done in polynomial time under the
given assumption that the tgds of the data exchange setting form a weakly acyclic set) and
then by using the disjunctive chase on the universal solution. More precisely, we prove the
following proposition.

Proposition 5.7. Assume a data exchange setting where�st is a set of tgds, and�t is the
union of a weakly acyclic set of tgds with a set of egds. Moreover, on the target schema,
assume a set E of disjunctive egds and a set C of Boolean conjunctive queries. Let I be a
source instance. Then the following are equivalent:
(i) There exists a solutionJ ∗ for I such thatJ ∗ satisfies E andJ ∗ does not satisfy any of

the conjunctive queries in C.
(ii) There exists a universal solution J for I, there exists a finite disjunctive chase T of J

with �t ∪ E, and there exists a leafJ ∗ �= ⊥ of T such thatJ ∗ does not satisfy any of
the conjunctive queries in C.

3 Note that such a chase step can be either a disjunctive chase step as in Definition5.4(if d is a disjunctive egd)
or a “traditional” chase step as in Definition3.1(if d is an egd or tgd, and so{Kj1, . . . , Kjr } is a singleton set).
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The proof of Proposition5.7 uses the following extension of Lemma 3.4, for the case
of a chase step with a (disjunctive) egd. To handle chase steps with tgds, the proof of
Proposition 5.7 will use directly Lemma 3.4.

Lemma 5.8. LetK
e,h−→ {Ki1, . . . , Kip } be a non-failing disjunctive chase step. LetK∗ be

an instance such thatK∗ satisfies e and there exists a homomorphismg : K → K∗. Then
there existsj ∈ {i1, . . . , ip} such thatg : Kj → K∗ is a homomorphism.

Proof. Assume that the disjunctive egde is: �(x) → ((x1
1 = x2

1) ∨ · · · ∨ (x1
l = x2

l )).
Thenh is a homomorphism from�(x) to K, and{i1, . . . , ip} is the set of those indicesj

among{1, . . . , l} such thatK
ej ,h−→ Kj andKj �= ⊥. We first note thatg ◦ h : �(x) →

K∗ is a homomorphism. SinceK∗ satisfiese, there exists somej ∈ {1, . . . , l} such that
g(h(x1

j )) = g(h(x2
j )). We show next thatj ∈ {i1, . . . , ip}. In other words,j is such that

Kj �= ⊥. Suppose towards a contradiction thatKj = ⊥. SinceKj is the result of applying
the egdej toK with homomorphismh, it must be the case thath(x1

j ) = c1 andh(x2
j ) = c2,

wherec1 andc2 are two distinct constants. On the other hand, we haveg(c1) = g(c2),
which impliesc1 = c2 (since homomorphisms preserve constants). We have thus reached
a contradiction. Hencej ∈ {i1, . . . , ip}. We need to ensure thatg is still a homomorphism
when considered fromKj toK∗. The only difference betweenKj andK is the identification
of h(x1

j ) andh(x2
j ) within Kj . Hence, the only way thatg can fail to be a homomorphism

onKj is if gmapsh(x1
j ) andh(x2

j ) into two different constants or labeled nulls ofK∗. But

this cannot happen, sinceg(h(x1
j )) = g(h(x2

j )). �

Proof of Proposition 5.7. We prove first that (i) implies (ii). Assume that (i) is true. Since
the tgds in�t form a weakly acyclic set, it is the case that any chase with�st ∪ �t of 〈I,∅〉
terminates (by Theorem 3.9). Moreover there can be no failing chase, since otherwise there
would be no solution at all, by Theorem 3.3, and hence (i) would be false. Thus, the result
of the chase (any chase) with�st ∪ �t provides a universal solutionJ.

Proposition 5.6 implies that a finite disjunctive chaseT of J with �t ∪ E must exist.
We prove next thatT contains a leaf satisfying the properties required in (ii). LetJ ∗ be
the instance guaranteed to exist by (i). SinceJ ∗ is a solution, it must be the case that
there exists a homomorphismg : J → J ∗. Applying either Lemma 5.8 or 3.4 at each
level in the chase tree, we must find inT a pathJ, J1, . . . , Jm, with Jm �= ⊥, such that
there exists a homomorphismgm : Jm → J ∗ and such that either (a)Jm is a leaf or (b)

Jm
e,h−→ ⊥, for somee in �t ∪ E and homomorphismh. Suppose towards a contradiction

that (b) is true. We note thatemust be a (disjunctive) egd for the chase step ofJm to fail.
Assuminge is �(x) → ((x1

1 = x2
1)∨ · · · ∨ (x1

l = x2
l )), we have thath is a homomorphism

from �(x) to Jm. Then, for everyj ∈ {1, . . . , l}, we have thath(x1
j ) andh(x2

j ) are two
distinct constants ofJm (otherwise the chase step would not produce⊥). We also have that
gm ◦ h is a homomorphism from�(x) to J ∗. Moreover, since homomorphisms preserve
constants, it follows thatgm(h(x1

j )) andgm(h(x2
j )) are two distinct constants ofJ ∗, for

every j ∈ {1, . . . , l}. This contradicts the fact thatJ ∗ satisfiese. Thus, we proved that
T contains a leafJm (Jm �= ⊥) such that there exists a homomorphismgm : Jm → J ∗.
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The existence ofgm ensures thatJm cannot satisfy any of the conjunctive queries inC, or
otherwiseJ ∗ would satisfy some conjunctive query ofC. Hence,Jm can play the role of
J ∗ required by (ii).

Finally, we prove that (ii) implies (i). We show that the leafJ ∗ guaranteed to exist, by
(ii), satisfies the requirements of (i). In particular,J ∗ satisfies the dependencies in�t andE
because it is a leaf in the chase tree. It is also easy to see that the disjunctive chase with�t∪E
does not affect the satisfaction of the source-to-target dependencies (i.e.,J ∗ continues to
satisfy�st , as the universal solutionJ does). �

Proof of Theorem 5.2. Based on Proposition 5.7 and Lemma 5.3, we can check that
certain(q, I ) = falseby checking that there exists a universal solutionJ for I, there exists a
finite disjunctive chaseTofJwith�t∪E and there exists a leafJ ∗ �= ⊥ofTsuch thatJ ∗ does
not satisfy any of the conjunctive queries inC.All this can be verified, non-deterministically,
in polynomial time. More precisely, suppose thatcertain(q, I ) = false. Then we produce,
in polynomial time (by Theorem 3.9), a universal solutionJ. Next we guess the sequence of
dependencies and homomorphisms to be applied during the disjunctive chaseas well asthe
branch that we pick at each step. We therefore non-deterministically find a finite disjunctive
chaseT andpath withinT leading to the “right” leafJ ∗. The sequence of guesses is of
polynomial length, by Proposition 5.6. Verifying thatJ ∗ is a leaf (i.e., that no dependencyd
in �t ∪E and no homomorphismhexist such thatdcan be applied toJ ∗ with h) can be done
in polynomial time. In addition, verifying thatJ ∗ does not satisfy any of the conjunctive
queries inCcan be done in polynomial time. Conversely, suppose thatcertain(q, I ) = true.
Then either no universal solution exists (and no solution exists) or a universal solution exists
but no sequence of guesses as above exists that could lead to acceptance. Hence, deciding
whethercertain(q, I ) = falseis in NP. Therefore, computing the certain answers, under
the conditions of Theorem 5.2, is in coNP.�

5.1.2. Lower bounds
Theorem 5.2 yields an upper bound in a fairly general data exchange setting for the com-

plexity of computing the certain answers of unions of conjunctive queries with inequalities.
It turns out, as we discuss next, that this upper bound is tight, even in fairly restricted data ex-
change settings. Specifically, computing certain answers for such queries is coNP-complete.
Therefore no polynomial algorithm exists for computing the certain answers when the input
is a universal solution, unless P= NP.

Abiteboul and Duschka [1] showed that in the LAV setting, computing certain answers of
conjunctive queries with inequalities is coNP-complete. They also sketched a proof which,
if correct, would establish that this problem is coNP-complete even for conjunctive queries
with a single inequality. Unfortunately, the reduction is erroneous. A correct reduction
cannot be produced without increasing the number of inequalities, since here we show that
in the LAV setting, there is a polynomial-time algorithm for computing the certain answers
of unions of conjunctive queries with at most one inequality per disjunct. Still, the result
of Abiteboul and Duschka [1] is correct; in fact, the unpublished full version [2] of that
paper contains a proof to the effect that in the LAV setting, computing certain answers of
Boolean conjunctive queries with six inequalities is coNP-complete. A different proof of
the same result can be extracted by slightly modifying the proof of Theorem 3.2 in van der
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Meyden[31]. Thus, the next result provides a matching lower bound for the complexity of
computing the certain answers of conjunctive queries with inequalities.

Theorem 5.9(Abiteboul and Duschka[1] ). In theLAV setting, computing the certain an-
swers of Boolean conjunctive queries with six or more inequalities iscoNP-complete.

It is an interesting technical problem to determine the minimum number of inequalities
needed to give rise to a coNP-complete problem in this setting.

Conjecture 5.10. In theLAV setting, computing the certain answers of Boolean conjunc-
tive queries with two inequalities iscoNP-complete.

We have not been able to settle this conjecture, but have succeeded in pinpointing the
complexity of computing the certain answers ofunionsof Boolean conjunctive queries with
at most two inequalities per disjunct.

Theorem 5.11. In theLAV setting, computing the certain answers of unions of Boolean
conjunctive queries with at most two inequalities per disjunct iscoNP-complete. In fact,
this problem iscoNP-complete even for the union of two queries the first of which is
a conjunctive query and the second of which is a conjunctive query with two
inequalities.

Proof. As mentioned earlier in this section, membership in coNP was first established by
Abiteboul and Duschka[1]. This membership also follows from Theorem 5.2 proved in
Section 5.1.1 for the more general data exchange setting. The coNP-hardness is established
by a reduction from the complement of POSITIVE-NOT-ALL-EQUAL-3SAT, which is the
following decision problem: given a 3CNF-formula� consisting entirely of positive clauses
(x ∨ y ∨ z), is there a truth assignment to the variables of� such that for every clause
of � at least one variable is assigned value “true” and at least one variable is assigned
value “false”? This problem is known to be NP-complete (for instance, this can be derived
easily from Schaefer’s [28] results on the complexity of GENERALIZED SATISFIABILITY

problems).
Before embarking on the description of the reduction, we give some intuition for one

of the key constructs in the reduction. Suppose that a database schema contains a binary
relation symbolL′ and consider an instance in whichL′(u,0) andL′(v,1) hold, where
u andv are two distinct elements. Suppose also that in this instance there is an elementt
such thatL′(u, t) andL′(v, t) hold. Consequently,uor v is guaranteed to have two distinct
L′-neighbors (it is possible that bothu andv have two distinctL′-neighbors). This will
make it possible to simulate disjunction and then extract a truth assignment. It should be
noted that variants of this construct were first used by van der Meyden [31].

Let Sbe the source schema consisting of a ternary relation symbolP, a ternary relation
symbolA, and a binary relation symbolL. Intuitively,Pwill consist of all triples of variables
occurring in clauses of a given 3CNF-formula, whileA andL will be used to assign truth
values to the variables of the formula. LetT be the target schema consisting of a ternary
relation symbolP ′, a ternary relation symbolA′, and a binary relation symbolL′. Let �st



R. Fagin et al. / Theoretical Computer Science 336 (2005) 89–124 117

be the set of the following four source-to-target dependencies:

P(x, y, z)→ P ′(x, y, z),
A(x, u, v)→A′(x, u, v),
L(u, v)→L′(u, v),

A(x, u, v)→ ∃ t (L′(u, t) ∧ L′(v, t)).
Finally, letq = q1 ∨ q2 be the union of the following two queries over the target schemaT:

q1 : − (∃x, u, v, t1, t2, t)(A′(x, u, v) ∧ L′(u, t1) ∧ L′(v, t2)
∧L′(u, t) ∧ L′(v, t) ∧ (t �= t1) ∧ (t �= t2)),

q2 : − (∃x1, x2, x3, u1, v1, u2, v2, u3, v3, t)(P
′(x1, x2, x3) ∧

3∧
i=1

(A′(xi, ui, vi) ∧ L′(ui, t) ∧ L′(vi, t))).

Given a positive 3CNF-formula�, let I� be the source instance defined as follows:
• The elements ofI� are: 0, 1, all variables of�, and for each variablex of �, two distinct

elementsux andvx (different such elements are used for different variables).
• The relations ofI� are:

I�(P )= {(x, y, z) : (x ∨ y ∨ z) is a clause of�},
I�(A)= {(x, ux, vx) : x is a variable of�},
I�(L)= {(ux,0), (vx,1) : x is a variable of�}.

We now claim that� is NOT-ALL-EQUAL satisfiable if and only ifcertain(q, I�) = false.
This means that we have to show that the following two statements are equivalent:

(1) There is a truth assignment such that, for every clause of�, at least one variable is
assigned value “true” and at least one variable is assigned value “false”.

(2) There is a target instanceJ that is a solution to the data exchange problem forI� and
is such thatq(J ) = false.

Of the two directions in the claimed equivalence above,(2) ⇒ (1) is the more interesting
one. Suppose thatJ is a solution such thatq(J ) = false, which means thatq1(J ) = false
andq2(J ) = false. SinceJ satisfies the source-to-target dependencies in�st , but fails to
satisfyq1, it follows that for every variablex, we have thatL′(ux,0) andL′(ux,1) hold
or thatL′(vx,0) andL′(vx,1) hold (it is conceivable that bothux andvx have 0 and 1 as
L′-neighbors). We now assign value trueto a variablex if L′(ux,0) andL′(ux,1) hold.
Using the fact thatq2(J ) = false, it is not hard to verify that, for each clause of�, at least
one variable is assigned value trueand at least one variable is assigned value false. �

5.1.3. A polynomial-time case
For unions of conjunctive queries with inequalities,Theorem5.11 delineates the boundary

of intractability, because the next theorem asserts that computing certain answers of unions
of conjunctive queries with at most one inequality per disjunct can be solved in polynomial
time by an algorithm that runs on universal solutions.

Theorem 5.12.Assume a data exchange setting in which�st is a set of tgds, and�t is the
union of a weakly acyclic set of tgds with a set of egds. Let q be a union of conjunctive
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queries with at most one inequality per disjunct. Let I be a source instance and let J be an
arbitrary universal solution for I. Then there is a polynomial-time algorithm with input J
that computes certain(q, I ).

Proof. As in the proof of Theorem5.2, we can assume without loss of generality thatq is a
Boolean query. We know thatq is equivalent to a query of the formq1 ∨ q2, whereq1 is the
disjunction of a setC of conjunctive queries with no inequalities, andq2 is the disjunction
of conjunctive queries with exactly one inequality. As in the proof of Theorem 5.2, we
note that the negation ofq2 is equivalent to the conjunction of a setE of disjunctive egds.
However, differently from that proof, we use next the fact thatq2 has exactly one inequality
per disjunct. Hence, it is easy to see that for each egd inE the number of equalities that
participate in the disjunction is one. Therefore,E is a set of egds in the traditional sense
(i.e., no disjunction).

We now describe the algorithm, and then show that it runs in polynomial time and is
correct. The algorithm is based on the chase, as in the proof of Theorem 5.2. However, since
there is no disjunction inE, the chase used is the traditional one (as defined in Section 3)
and not the disjunctive chase used in the proof of Theorem 5.2.

The algorithm begins by chasing the universal solutionJwith �t ∪ E.
1. If the chase fails (by trying to equate two constants), then halt and say thatcertain(q, I ) =

true.
2. If the chase does not fail, then call the resultK. See ifK satisfies at least one of the

conjunctive queries inC.
(a) If K satisfies at least one of the conjunctive queries inC, then halt and say that

certain(q, I ) = true.
(b) If K does not satisfy any of the conjunctive queries inC, then halt and say that

certain(q, I ) = false.
Since�st is a fixed set of tgds and�t is the union of a weakly acyclic set of tgds with a set of
egds, there is a polynomial-time algorithm for doing the chase (Theorem3.9). Moreover, it
is well known that for every first-order query (and in particular for every conjunctive query
with inequalities), there is a polynomial-time algorithm (and even a logspace algorithm) for
deciding satisfaction of the query on a given database. From these facts, it follows easily that
the algorithm described above runs in polynomial time. We now show that the algorithm is
correct.
Case1: The algorithm halts in step1. Since every solution is a homomorphic image of

J and satisfies�t , there is no solution that satisfiesE. By definition ofE, this tells us that
certain(q2, I ) = true, and hencecertain(q, I ) = true.
Case2: The algorithm halts in step2(a). SinceJ is a universal solution, it is easy to see

thatK is a universal solution for targets that satisfyE (in addition to the requirements on�st

and�t ). Thus, every solution that satisfiesE (that is, whereq2 fails) is a homomorphic image
of K. Also, if K satisfies some conjunctive query inC, then so does every homomorphic
image ofK. Putting these facts together, we see that ifK satisfies some conjunctive query
in C, then so does every solution that satisfiesE, that is, every solution whereq2 fails. So
if K satisfies some conjunctive query inC, then every solution whereq2 fails satisfies some
conjunctive query inC, and so satisfiesq1. Therefore, every solution satisfies eitherq2 or
q1, and hence satisfiesq. Hence,certain(q, I ) = true.



R. Fagin et al. / Theoretical Computer Science 336 (2005) 89–124 119

Case3:The algorithm halts in step2(b).As mentioned in Case 2,K is a universal solution
for targets that satisfyE. In particular,K is a solution for the original data exchange problem
(which does not includeE). SinceK does not satisfy any of the conjunctive queries inC, it
does not satisfyq1. On the other hand,K satisfies all of the egds inE, and hence does not
satisfyq2. Hence,K does not satisfyq. SinceK is a solution, it follows thatcertain(q, I ) =
false. �

Corollary 5.13. Assume a data exchange setting in which�st is a set of tgds, and�t is
the union of a weakly acyclic set of tgds with a set of egds. Let q be a union of conjunctive
queries with at most one inequality per disjunct. Then there is a polynomial-time algorithm
for computing the certain answers of q.

Proof. We construct a two-phase algorithm. First, a canonical universal solution is con-
structed, by the chase, in polynomial time (see Corollary3.10). Then we run, on this uni-
versal solution, the polynomial-time algorithm of Theorem 5.12, to compute the certain
answers. �

5.2. First-order inexpressibility

We just showed that, for every conjunctive query with one inequality, the certain answers
of the query can be evaluated in polynomial time. Here, we show that it is not possible
to always obtain the certain answers by evaluating some first-order query on a canonical
universal solution. Moreover, the certain answers may not be first-order definable over the
source schema. The proof of these results combines Ehrenfeucht-Fraïssé games with the
chase procedure.

Theorem 5.14.There exists a LAV setting and a Boolean conjunctive query q with one in-
equality for which there is no first-order queryq∗ over the target schema such that, for every
source instance I, there is some canonical universal solution J with
certain(q, I ) = q∗(J ).

Proof. The source schema consists of a unary relation symbolM, and two binary relation
symbolsR andQ. The target schema consists of a unary relation symbolN and a binary
relation symbolP. The set�st of source-to-target dependencies consists of:

M(x)→N(x),

Q(x, y)→ P(x, y),

R(x, y)→ ∃ z(P (x, z) ∧ P(z, y) ∧N(z)).

The set�t of target dependencies is empty. The queryq is:

∃x∃y∃z(P (x, y) ∧ P(y, z) ∧N(x) ∧N(z) ∧ (x �= z)).

We now define two source instancesI1 andI2, both based on a positive integer parameter
k that will be taken to be “sufficiently large” (explained later). BothI1 and I2 have the
same domain, which consists of the 4k + 2 distinct points (values)c, d, e1, . . . , e2k, f1,
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. . . , f2k. In bothI1 andI2, the unary relation corresponding toM contains the two points
c andd. In bothI1 andI2, the binary relation corresponding toR is the disjoint union of
two cycles, each of size 2k, where the first cycle contains the edges (tuples)(ei, ei+1) for
1� i < 2k, along with the edge(e2k, e1), and the second cycle contains the edges(fi, fi+1)

for 1� i < 2k, along with the edge(f2k, f1). The only difference betweenI1 andI2 is that
in I1, the binary relation corresponding toQ contains the two tuples(e1, c) and(ek, d),
whereas inI2, the binary relation corresponding toQ contains the two tuples(e1, c) and
(f1, d). Thus, inI1, the points connecting toc andd are in the same cycle (but “far apart”),
while in I2, the points connecting toc andd are in different cycles. Thus, if we ignore the
directions of the edges, thenc andd are connected by a path inI1, but not inI2.

It is easy to see that up to isomorphism, there is a unique canonical universal solutionJ1
for I1 and a unique canonical universal solutionJ2 for I2. That is, the order in which we
apply the chase steps does not matter. Furthermore, it is easy to see that in the canonical
universal solutionJ1 of I1, in addition to the constantsc, d, e1, . . . , e2k, f1, . . . , f2k,
there are nullse′1, . . . , e′2k, f ′

1, . . . , f
′
2k, such that the relation corresponding toP has the

following tuples:
• (ei, e

′
i ) for 1� i�2k,

• (e′i , ei+1) for 1� i < 2k,
• (e′2k, e1),
• (fi, f

′
i ) for 1� i�2k,

• (f ′
i , fi+1) for 1� i < 2k,

• (f ′
2k, f1),

• (e1, c),
• (ek, d).
Intuitively, this relation consists of two cycles, each of size 4k, along with two dangling
edges that point toc andd, respectively, and that each hang off the first cycle and are far
apart.

The relation corresponding toN in the canonical universal solutionJ1 contains the points
c, d, e′1, . . . , e′2k, f ′

1, . . . , f ′
2k. Thus, this relation containsc andd, along with the nulls.

Similarly, in the canonical universal solutionJ2 of I2, in addition to the constants
c, d, e1, . . . , e2k, f1, . . . , f2k, there are nullse′′1, . . . , e′′2k, f ′′

1 , . . . , f ′′
2k, such that the

relation corresponding toP has the following tuples:
• (ei, e

′′
i ) for 1� i�2k,

• (e′′i , ei+1) for 1� i < 2k,
• (e′′2k, e1),
• (fi, f

′′
i ) for 1� i�2k,

• (f ′′
i , fi+1) for 1� i < 2k,

• (f ′′
2k, f1),

• (e1, c),
• (f1, d).
Intuitively, this relation consists of two cycles, each of size 4k, along with two dangling
edges that point tocandd, respectively, where the two dangling edges hang off of different
cycles.

The relation corresponding toN in the canonical universal solutionJ2 contains the points
c, d, e′′1, . . . , e′′2k, f ′′

1 , . . . , f ′′
2k. Thus, this relation containsc andd, along with the nulls.
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Let q∗ be an arbitrary first-order query over the target schema. We now show that ifk
is sufficiently large, thenq∗(J1) = q∗(J2). We shall also show thatcertain(q, I1) = true
andcertain(q, I2) = false. This shows thatq∗ does not play the role demanded of it in the
statement of the theorem (namely, thatcertain(q, I ) = q∗(J )). The theorem then follows.

We begin by showing that ifk is sufficiently large, thenq∗(J1) = q∗(J2). This fol-
lows easily by making use of Ehrenfeucht-Fraïssé games, and in particular utilizing Hanf’s
technique[14].

We now show thatcertain(q, I1) = true. Note that¬q is equivalent to the egd

P(x, y) ∧ P(y, z) ∧N(x) ∧N(z) → (x = z).

To show thatcertain(q, I1) = true, it is sufficient to show that if we chaseJ1 with ¬q,
the chase fails. This is because, as it is easy to see, the failure of the chase implies that no
homomorphic image ofJ1, and hence no solution, can satisfy¬q.

In the chase, we first apply¬q toJ1 with the homomorphismhwhereh(x) = e′2k,h(y) =
e1, andh(z) = c, and thereby replacee′2k byc. We then apply¬q with the homomorphismh
whereh(x) = c (whiche′2k has been replaced by),h(y) = e1, andh(z) = e′1, and therefore
replacee′1 byc. We then apply¬q with the homomorphismhwhereh(x) = c (whiche′1 has
been replaced by),h(y) = e2, andh(z) = e′2, and therefore replacee′2 by c. Continuing in
this manner, we replacee′3, e′4, . . . , e′k−1 byc. Finally, we apply¬q with the homomorphism
hwhereh(x) = c (which e′k−1 has been replaced by),h(y) = ek, andh(z) = d, and try to
replaced by c, which leads to failure, as desired.

We close by showing thatcertain(q, I2) = false. It is sufficient to show that if we chase
J2 with ¬q, the chase does not fail. Indeed, the resultK2 of such a chase continues to satisfy
�st , and hence it is a solution. Furthermore,K2 satisfies¬q, that is,q(K2) = false.

It is straightforward to verify that the chase ofJ2 with ¬q does not fail and its result,K2,
is as follows. The relation corresponding toP has the following tuples:
• (ei, c) for 1� i�2k,
• (c, ei) for 1� i�2k,
• (fi, d) for 1� i�2k,
• (d, fi) for 1� i�2k,
• (e1, c),
• (f1, d).
The relation corresponding toN contains onlyc andd. This concludes the proof. �

It follows from the above proof that the result holds even if we allow the first-order
formulaq∗ to contain the predicate constthat distinguishes between constants and nulls.

The next result, of particular interest to query answering in the data integration context,
shows (by a slight modification of the proof of Theorem5.14) that for conjunctive queries
with just one inequality we cannot in general find any first-order query over thesource
schema that, when evaluated on thesourceinstance, computes the certain answers.

Theorem 5.15.There is a LAV setting and a Boolean conjunctive query q with one in-
equality, for which there is no first-order queryq∗ over the source schema such that
certain(q, I ) = q∗(I ) for every source instance I.
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Proof. Take the LAV setting, Boolean conjunctive queryq, and source instancesI1 andI2
exactly as in the proof of Theorem5.14. It is shown in that proof thatcertain(q, I1) = true
andcertain(q, I2) = false. Letq∗ be an arbitrary first-order query over the source schema. If
k is sufficiently large, thenq∗ cannot distinguish betweenI1 andI2, that is,q∗(I1) = q∗(I2).
This follows for the same reason that any given first-order query over the target schema
cannot distinguish betweenJ1 andJ2 in the proof of Theorem 5.14 ifk is sufficiently large.
In both cases, this indistinguishability follows easily by making use of Ehrenfeucht-Fraïssé
games, and in particular utilizing Hanf’s technique [14]. This shows thatq∗ does not play
the role demanded of it in the statement of the theorem (namely, thatcertain(q, I ) = q∗(I )).
The theorem then follows. �

6. Concluding remarks

Given a source instance, there may be many universal solutions. This naturally brings
up the question of whether there is a “best” universal solution, and hence a best solution
for data exchange. In a follow-up paper [16], we address this question and answer it by
considering the well-known notion of thecoreof a structure, a notion that was first studied
in graph theory (see, for instance, [19]), but has also played a role in conjunctive-query
processing [8].

In Theorem 5.14, we show that there is a conjunctive queryqwith one inequality whose
certain answers cannot be computed by rewritingq to a first-order queryq∗ and then
evaluatingq∗ on a canonical universal solution. But this leads to the question of whether
some other solution other than a canonical universal solution would have done the job.
That is, is there a transformationF that maps each source instanceI into a solutionF(I )
and a first-order rewritingq∗ such that the certain answers are given byq∗(F(I ))? This
question is investigated in [4], where it is shown that as long asF is “locally consistent”
(which means intuitively that points with similar neighborhoods in the source have similar
neighborhoods in the target), then there are first-order queriesqwith no such rewritingq∗.
It is also shown in [4] that in appropriate data exchange settings, the mappingsF that map
onto the canonical universal solution or onto the core are locally consistent. Therefore, the
results in [4] provide an extension of our Theorem 5.14. We feel that there is a need for
further investigation of how universal solutions can be used for query answering in the data
exchange setting.

Finally, we wish to go back to our original motivation from Clio, an XML-based schema
mapping tool. The results we presented here are about data exchange between relational
schemas. We would like to study data exchange between XML schemas and, in partic-
ular, investigate how the notion of universal solution can be extended to cover XML
schemas.
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