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Abstract 

Given three n-element sequences a,,b, and c, of nonnegative real numbers, the aim is to find 
two permutations (p and $ such that the sum c:==, a,hgcj,cic,, is minimized (maximized, respec- 
tively). We show that the maximization version of this problem can be solved in polynomial 
time, whereas we present an NP-completeness proof for the minimization version. We identify 
several special cases of the minimization problem which can be solved in polynomial time. and 
suggest a local search heuristic for the general case. 

Kqwords: Three-dimensional assignment problems; Decomposable cost coefficients; Complexity: 
Special cases; Heuristics 

1. Introduction 

The general axial three-dimensional assignment problem, 3AP for short, is well 

known to be NP-hard [13]. For this type of problem, only implicit enumeration 

methods are known. The first branch and bound methods are due to Vlach [ 161 and 

Pierskalla [ 141, a primal-dual implicit enumeration method based on a graph theoretic 

approach was designed by Hansen and Kaufman [ 111. FrGhlich [9] and Burkard and 

Frohlich [6] improved the bounding technique by using subgradient optimization. Re- 

cently polyhedral approaches were applied to this problem by Balas and Saltzman [3] 

(see [7] for further literature concerning 3APs). 

Since 3AP is NP-hard, the computational complexity of the 3AP when restricted to 

special cases is of interest: 

Crama and Spieksma [8] considered 3APs where the cost coefficients fulfill some 

special triangle inequalities. Though the triangle inequalities make the problem easier 

to approximate, it does not remove the NP-hardness from the problem [S]. 

Since the classical two-dimensional assignment problem becomes simpler. if its cost 

coefficients c’,i can be decomposed into cl, = aibi (see Section 2), we consider in this 

* Corresponding author 

0166.2 I8X/96/$15.00 0 1996 Elsevier Science N.V. All rights reserved 

SSDI 0166-218X(95)00031-3 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82384597?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


124 R.E. Burkurd et al. I Discrete Applied Mathematics 65 (1996) 123-139 

paper the three-dimensional case with decomposable cost coefficients dljk = aibjCk. SO, 

given three n-element sequences ai, bi and c, of nonnegative numbers, our problem 

consists in finding two permutations 4 and $ such that the sum c:=, a,bg(i)c$(i) attains 

its minimum (maximum, respectively). This problem can be formulated as 3AP in the 

following way: 

n n n 

min (max) c c c a, . bj . ck . xi/k 

n n 

subject to C C XiJk = 1 Vk = I,...,n, 
;=, j=, 

r=l k=l 

where Xjjk E { 0, 1). 

Although the minimization and the maximization look very similar at a first glance, 

their computational complexity is totally different. In Section 2, we present a polynomial 

time algorithm for the maximization version. In Section 3, we give an NP-completeness 

proof for the minimization version, and show that this version of the problem is in- 

herently hard to approximate. In Section 4, various polynomially solvable cases for 

the minimization version are inspected. Section 5 deals with some structural properties 

of the cost coefficients and Section 6 contains a promising local search heuristic and 

computational results. 

2. The maximization case 

In order to achieve a “good” solution method for maximizing EYE, aibd(i)ci(i), we 

turn back to the simpler two-dimensional problem. For two dimensions, the way of 

rearranging two n-element sequences a, and b; such that their scalar product becomes 

maximum is well understood and summarized in the following proposition. 

Proposition 2.1 (Hardy, et al. [12]). Let a, and b, be two n-element sequences of 

real numbers sorted in nondecreasing order and let 4 be an arbitrary permutation of 

{ 1,. . . , n}. Then vve have 

2 aibn-i+l d 2 aibdcl) d 2 sib, 
r=l i=I i=l 

for all permutations #. 
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We use Proposition 2.1 to prove the following lemma. 

Lemma 2.2. Gicetz three srquences a;, h, and c, corzsisting of’ n nonnegufi~~c~ turttthc~r.s 

.sorted in non&creasing order, then 

Proof. For two permutations C#I and $ we define a function 

h(&,$) := I{(i,j) : 1 <i -c .j<n,$(i) > @(j)}l 

+l{(i,j) : 1 di < j<n,$(i) > $(.i)}l 

to count the total number of inversions in $ and $. The following three observations 

are obvious. 
(i) h($, $) 3 0 for all permutations C$ and $, 

(ii) h( 4, Ic/) = 0 iff C#I and I/J are the identical permutation I, 
(iii) h(q5,$)<n(n - 1). 

Let us assume that (4,$) gives an optimal solution to the maximization problem 

with (4, $) # (I, I). Then we have h(d)‘,, $) > 0 telling us that there are at least two 

indices in < i? such that in the corresponding terms u,,bd(,, )c~(,,) and u,~~~,,,,)c~(,,, the 

following holds: &il) > &il) or $(il) > ~&is). But then we construct a new solution 

(&$, by : 

i 

min{4(& h(b(i2)1, i = il, 

J,(i) := max{b(il), $(i2)}. i = iz. 

4(i), otherwise. 

and 

J(i) := 

( 

min{$(& ), ti(i2)1, i = i,, 

max{$(il),G(&)}, i = i?, 

*(i), otherwise. 

But then h(&, 6) < h(+b, $) and using Proposition 2.1 and the nonnegativity of the 

elements. we get 

So (4, $) is an optimal solution, too. Hence, it is possible to construct a sequence 

{($,3${)}~1, f pt’ l o o lma solutions with strictly decreasing values h(., .). By observa- 

tion (iii) above, after a finite number of transformations the optimal solution (I. I) is 

reached. n 

Lemma 2.2 can be generalized in a straightforward way to higher-dimensional axial 

assignment problems with m sequences pj “. 



126 R.E. Burkard et al. I Discrete Applied Mathematics 65 (1996) 123-139 

Theorem 2.3. Let (j) p1 be m n-element sequences with nonnegative elements sorted 

increasingly and let b,i be m arbitrary permutations of ( I,, . . , n>. Then we have that 

We conclude this section with the following two remarks. 

Remark 1. The array D defined as dijk := -a;b,ck fulfills the three-dimensional Monge 

property as first proposed by Aggarwal and Park [I, 21. Therefore, Lemma 2.2 and 

also Theorem 2.3 can be seen as a special case of a more general result of Bein et 

al. [4]. These authors have shown that the lexicographical greedy algorithm solves the 

d-dimensional transportation problem if and only if the cost array possesses the Monge 

property. 

Remark 2. If we look at the corresponding bottleneck problem, where the sum in 

the objective tinction is replaced by a maximum, the following interesting property 

holds: the optimal solution of the sum problem is also an optimal solution to the 

corresponding bottleneck problem. This is due to the fact that both optimal solutions 

are just determined by ordering the given cost coefficients in the same way. 

3. NP-completeness of the minimization problem 

In this section we will prove that the minimization version of the 3AP with decom- 

posable cost coefficients is NP-hard. 

Theorem 3.1. Let three n-element sequences ai, b, and ci of nonnegative rational 

numbers and a bound S be given. Then: 

(i) It is NP-complete to decide whether there exist permutations C$ and $ such 

that C:=, a&(,)ci(i) <S. 

(ii) For each k 3 1, it is NP-hard to approximate the optimum solution within a 

factor of nk. 

Proof. The proof is done by reducing the NP-complete NUMERICAL THREE-DIMENSIONAL 

MATCHING problem (N3DM) to our problem (see [ 10, Problem SP16]). 

Instance: A bound B; three n-element pairwise disjoint sets {wi}, {x,} and {_y*} of 

positive integers with total sum nB, for some n 22. 

Question: Can {Wi} U {xi} U {yi} be partitioned into n disjoint sets {w~,x~(~J,_Q(~)} 

such that w, + x$ci) + ye = B Vi ? 

NOW let {wi}, {xi} and {yi} together with B constitute an N3DM instance. Since the 

N3DM problem even is NP-complete in the strong sense (cf. [IO]), we may assume 
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that all numbers in the instance are represented in ~nury notation (i.e. a string of m 

l’s represents the number m). We use this representation to ensure that our reduction 

indeed is a polynomial time reduction. 

For some k 2 1, we let Z = n“+’ and we define u, = Z”’ , h, = Z’, and c, = Z’ . 

for 1 d i <n. Moreover, we set S to nZB. It is straightforward to see that the hi~ru~, 

representation of all these new numbers can be calculated in an overall time that is 

polynomial in the length of the N3DM instance. (This would not be possible if the 

numbers in the N3DM instance were hinury encoded. For example, the representation of 

a number m in binary representation has length 0( log m). but the binary representation 

of Z” has length m log Z, which gives an exponential increase in the length and. 

consequently, in the time.) 

We claim that the constructed assignment problem has a solution if and only if the 

N3DM instance has a solution. 

(if) Let { ~v~,x,,,,(~), ,v~c,,} be a solution for the N3DM problem. But then it is easy to 

see that c:‘, u,~~(,~c~(~) equals nZB = S. 

(only if) Now we assume that N3DM is not solvable. This implies that tici,. $3 i: 

IL’, + x9r1) + y,/,(,) 3 B + 1. Consequently Cy=, ~,b~(,~c~~,) contains always one term 

that is at least ZB+’ . But then the total sum is bounded from below by ZBS ’ + I -= 

(n k-lpi + 1 > nk(nkB+R+I) = nkS > s, 

Summarizing, the minimum sum either equals S (if the N3DM is solvable) or is at 

least a factor of n’ away from S, if the N3DM is not solvable. U 

Not only the minimization sum problem is NP-hard, but also the corresponding 

bottleneck problem is NP-hard. This is summarized in the subsequent theorem. 

Theorem 3.2. Let three n-element sequences a,, h, und c, of’ nonnegutiw rutionul 

nw&rr.s and u bound S he gillen. Then. 

(i) It is NP-contplete to decide lvhether there esist prrnwtations d, and $ .swh 

that max,{~,b~,~,y+~~~} dS. 

(ii) For euch k > 1, it is NP-hard to crpproxirnatr the optinwn solution withit LI 

,firctor of nl‘, 

Proof. The proof is done in a similar way as the proof for Theorem 3.1. Again we 

reduce N3DM to our problem. Let {wi}, {xl} and {?;,} together with B form an instance 

of NSDM. For some k 3 1, we define Z = nk+’ and CI, = Z’“‘,, h, = Z”l and c, = Z”. 

for 1 <i<n and fix S to Z*. 

We claim that the constructed assignment problem has a solution if and only if the 

N3DM instance has a solution. 

(if) Let {~Gcs(~),_Y~~(,)I be a solution for the N3DM problem. But then it is easy to 

see that max,{a,h~~~,~c~~,~} equals Z5 = S. 

(only if) Now we assume that N3DM is not solvable. This implies that V’&, Ic/ 3i: LL’, + 

x+(~) + .vi(,, >B + 1. Consequently maxi{a,b,b(l)c,b(i)} contains always one term that is 

at least ZB+‘. But then the maximum is at least ZB+’ > n”S. 
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So we have shown that the maximum either equals S (if the N3DM is solvable) or 

is at least a factor of nk away from S, if the N3DM is not solvable. 0 

4. Polynomially solvable special cases 

As the minimization problem is NP-complete and hopelessly hard to approximate, we 

are interested in special cases which are computationally better tractable. In this section 

we will investigate some restrictions that make the problem solvable in polynomial 

time. 

Before formulating our restrictions let us make two observations concerning the given 

sequences. We only have to consider instances with strictly positive sequence elements, 

since a O-element always has to be matched with the largest elements of the other two 

sequences. A second observation is that only sequences with smallest element equal to 

1 have to be considered. This is no restriction, since this can always be reached by 

scaling, i.e. division by the smallest value. 

So, after these evident observations, a first possibility is to bound the number of 

distinct values in the sequences A, B and C. This suggests the following restriction 

which can be seen as a preparation for further more general cases. 

Restriction 1. The sequences are of the form A = (1,. . , 1,x,. ,x), B = (1,. . . , 1, y, 

. ..) y) and C = (l,..., l,z ,..., z) with 1 < x<y<z. Let a, b and c denote the number 

of x’s occurring in the sequence A, of y’s in B and of z’s in C, respectively. 

Lemma4.1. LetS~{l~l~l,x~l~l,l~y~l,l~1~z,x~y~l,x~l~z,1~y~z,x~y~z} 

denote the set of terms occurring in the objectiz;e function in un optimum solution of 

u problem fuQiIling Restriction 1. Then there is un optimal solution such thut S does 

not contuin 

(i) (1.1.1) d un an element of {x.y.l,x.l.z,l.y.z,x.y.z} ut thesume time, 

(ii) {x 1 1} un d an element of { 1 y z, x. y . z} at the same time, 

(iii) { 1 y 1} and an element of {x 1 . z, x . y . z} at the same time, 

(iv) { 1 1 . z} and {x y . z} at the same time. 

Proof. Suppose S would contain the terms 1 1 . 1 and x . y 1. Replacing them by 

x. 1 . 1 and 1 . y. 1 would decrease the sum, as 1 + xy > x + y holds. The other cases 

are settled by analogous arguments. 0 

To derive a polynomial time algorithm, we apply Lemma 4.1 in the following cases 

and subcases. 

Case I: a + b + c < n. This case is demonstrated in Fig. 1. If one of the terms x. y. 1, 

x. 1 ‘z, 1. y. z or x. y. z occurs in the optimum solution, the term 1.1 1 must occur at 

the same time, a contradiction to Lemma 4.1(i). The value c’ of the optimal solution 
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c: r 7. 1 
B: 1 I Y ‘I 1 
A: 1 x I 1 

119 

C: 
B: 
A: 

Fig. 1. Situation of Case I. 

7. I 1 
1 I Y 

1 I x 

Fig. 2. Situation of Case II(i). 

is given by 

1: := a .x + h y + c . z + n - (a + h + c). 

Cuse II: u + h + c > IZ and a + h + c < 2n. Here we distinguish four subcases in 

the following way. 

(i) h + c >n and a + c <n: This situation is depicted in Fig. 2. Since h + (‘>/I 

holds, at least h + c - n times an element _Y E B and an element z E C‘ must be 

paired together. The remaining elements x are fixed to y since _r’<z < yz. The optimal 

solution value is 

1’ := (h-t (‘- n)._vz+ U’.XY +(n --a - c)‘J + (n -/I).:. 

(ii) h + c&n and a + c > n: The elements z and y are matched as in (i), the 

x’s are matched to the y’s. But since this time u + r > n holds, we must give the 

remaining elements x E A to elements z because z <_I’=. The optimal assignment is 

shown in Fig. 3, and has the value 

I’ := (b + c - n) yz + (n - c) ‘xy + (a + L’ - n) ‘XZ + (2n ~ a - h - c.) -z. 

(iii) h+c < n and a+c<n: Since b+c < 17, terms 1ike.u.y.; or 1 .J*‘z are 

not optimal. Therefore, no element z is matched with an ?;. The elements x E A fill up 

the free positions in the assignment and are then combined with JJ, since _r‘<z. The 

optimal solution is illustrated in Fig. 4 and yields 

t’:= (n -b-c)‘x+c’z+(a+h+c-n)‘x_t’+(n -0 -L.)-\‘. 

(iv) h + c < n and u + c > II: This case is similar to (iii), the additional x’s have 

to be matched with elements z E C. Hence, we get the optimal assignment, shown in 

Fig. 5, with value 

v:=(n-h-c).x+b.xy+(n-a).z+(u+c--n)..xz. 

Cuse III: u + b + c>2n + 1. This case is treated similarly to Case I, with the only 

difference that here the blocks of l’s (instead of the blocks containing x, ?: or z) have 



130 R. E. Burkard et al. I Discrete Applied Mathematics 65 (1996) 123-139 

c: 2 I 1 
B: 1 Y I 1 

1 I x A: I I 
. . 

I 

Fig. 4. Optimal assignment of Case II(iii). 

c: 
0: 
A: 

7. I 1 
I Y I 1 

I 1 x 

Fig. 5. Solution of Case II( 

c: 2 1 1 
B: 1 I Y 
A: x I 1 x 

Fig. 3. Illustration of Case II( 

to be arranged. By this we derive the optimal assignment value 

Summarizing, we formulate the following theorem. 

Theorem 4.2. The minimization problem jix an input obeying Restriction 1 can be 

solved in O(n) time. 

Now we are prepared to formulate a more general case in the subsequent restriction : 

Restriction 2. The sequences are of the form A = (1,. . . , 1,x,. . . ,x), B = (1,. , 1, y, 

‘..> y) and C = (cl,~,..., c,) with 1 < x<y and 1 = c~<c~<...<c,. Let a, b 

denote the number of x’s occurring in the sequence A and of y’s in B. 

Lemma 4.3. Let c, < cj and S denote the set of terms occurring in the objective 

function in un optimum solution of u problem fuljilling Restriction 2. Then S does 

not contain 

(i) { 1 1 . ci} and an element of { x. 1 . cj, 1 . y. Cj,X. y. cl} at the same time, 

(ii) {x 1 cj} an d an element of { 1 . y. cj,x. y ’ cj} at the same time, 

(iii) { 1 . y . ci} and {x . y. Cj} at the same time. 

Proof. Assume that 1 ’ 1 . ci and x ’ 1 . cj occur in an optimal solution. Since x. 1 c, + 

1 . 1 . Cj < 1 1 . ci + x . 1 . cj we get a better solution by exchanging 1 and X. The 

other cases are treated in the same way. 0 
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The following algorithm solves our minimization problem fulfilling Restriction 2. 

Al~o~thm 1. 
(0) Start with following initialization: 

a, := 1 Vi = 1 ,...,n 

h, := J‘ Vi = l,...,h 

h;:= 1 Vi=bil,...,n 

;:=I, j:=h+l andk:=a. 

(1) While k > 0 do 

ifj > M then a, := x, i := i + 1 

else 

if c,p<ci then Q( := x, i := i + 1 

else ui :=x, j :== j -!- 1 
k :=k- I. 

(2) Compute t‘ := C:=, aih[C;. 

Theorem 4.4. Algorithm 1 solz;es the minimizution pohlem f~dfiillin~ Restriction 2 in 
O(n) time 

Proof. Using Lemma 4.3 we see that all elements J’ E B have to be paired with 

the h smallest values of sequence C. By this, we get two increasing sequences SI := 

(~cl,~c~,...,~ch) and Sz := (ch+l, . . . , c,! ). Referring to Proposition 2.1 the remaining 

elements x must be assigned to the a smallest values of .Si and &. Therefore, we only 

have to compare the first elements of S1 and &. The minimunl is matched with x and 

deleted from its sequence. Repeating this step till all s are assigned delivers an optimal 

solution to our problem. 

Since C is sorted and at most n iterations have to be computed while matching the 

x’s, we get the claimed time complexity of O(n). iI 

If we use the result of Blum et al. [Yj that the kth largest number of an unsorted 

n-element sequence can be found in O(n), we can relax our assumption that sequence 

C has to be sorted. Searching for the hth largest number in C, splitting it into two 

sequences with smaller and larger values than the h largest element ~ which can also 

be done in O(n) time - and assigning the y’s to the sequence with smaller values 

yield the same result as the initializatioI1 step in Algorithm I. Again applying [5] we 

split the resulting sequence into two parts and assign the elements x to the n smallest 

values. So we can also derive the optimal assignment in O(n), if C is arbitrary. 

If we look at the above special case in more detail, we see that the basic main 

idea is to apply twice Proposition 2.1. Therefore, we consider the following algorithm 

SIMPLE which is a generalization of Algo~thm 1. 

Let three sequences R, S and T be given which are sorted increasingly. Then SIMPIX 

(R,S, r) first constructs a sequence I/ with u, := r, s,,-;~I. Note that according to 

Proposition 2.1 c:=, u, is an optimal value for minb cy=, YiS+(,). Then we arrange the 
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sequences U and T according to Proposition 2.1 by sorting U in increasing and T in 

decreasing order. 

In the following we derive two different conditions on the three sequences A, B and 

C such that algorithm SIMPLE yields an optimal solution. 

Theorem 4.5. Let three sequences A = (1,. . . , 1, X,. . . ,x), B = (yl,yz,. ,yn) and 

C = (cI,cz,...,c,) with l<yi<...<y,, und l<ci<..+c, be given. Then the 

optimal ussignment cun be found in O(n log n) time using SIMPLE, iJ' either 

(i) x>yi Vi = l,...,n or 

(ii) x<yj+i/y, Vi = l,...,n - 1. 

Proof. (i) We claim that we get an optimal solution by applying SIMPLE (A, C,B). 

Given an arbitrary solution X := ai, bj,ck, + . . + ai,, bj,,ck,, we define a function 

h(X) := x3=, i/k/. Note that h(X) is minimal if and only if the sequences A and 

C are arranged according to Proposition 2.1. So assume we have given an arbi- 

trary optimal solution Y, in which the sequences A and C are not arranged as in 

the solution of SIMPLE (A,C, B). But then Y contains either the triples (a) 1 y, . 

ck and x . yj CJ or (b) 1 . yj . ck and x . yi . c/ where i < j and k < r. In 

the following we show that in both cases we get another optimal solution Y’ with 

h(Y’) < h(Y) by exchanging either ck with c/ or x with 1. The inequality x> y, 

for p = l,..., n implies that x . yi 3 1 yi for all i < j. Thus we immediately 

get that 1 . y./ . ~/,+X’Y~‘C/~~.Y~‘C/~X’Y~‘C~. Also from J’j C/ 2 Yi Ck 

we obtain that 1 . y, ck + x yi c/ax y, . ck + 1 . Yj cf. Thus in both cases 

the exchange step yields another optimal solution Y’ with h( Y’) < h(Y). Thus we 

reach after a finite number of exchanges an optimal solution with minimum h-value. 

But this means that the sequences A and C are arranged as in SIMPLE (A, C,B). 

Now we fix the order of the sequences A and C, their product yields a new se- 

quence D = (d,) with d, := a,~,+_~. Applying Proposition 2.1 to the new se- 

quence D and to B shows that the solution generated by SIMPLE (A, C,B) is opti- 

mal. 

(ii) The proof can be done in a similar way to (i) by showing that SIMPLE (B, C, A) 

yields an optimal solution. cl 

Other possibilities of restricting our problem are summarized in the following. 

Restriction 3. Sequences A and B contain together at most k distinct values, where k 

is some fixed integer k > 1. 

Theorem 4.6. The minimization problem for un input obeying Restriction 3 can be 

solved in 0(nk2+’ logn) time. 

Proof. Let vi,. . , uk denote the k values appearing in A U B, and let ai and bi, 

1 <i < k, count the occurrences of Vi in the sequences A and B, respectively. We 



introduce k2 integer variables xi,, 1 <i,,j < k, fulfilling 0 <,x1, <u, and cfi,_, s,,, == 

u,. Intuitively, in an assignment the value of x,, determines how many of the I., 

in A are paired with [‘j’s in B. Observe that as soon as the values of all .Y,, arc 

fixed, we may apply Proposition 2.1 to compute the optimum assignment under these 

X,,. 

As 0 <I,, <u, < y1 holds, there are at most u ” different ways to assign values to 

the x,,. We check all these possibilities and compute each time the optimum value 

according to Proposition 2.1. This yields the claimed time complexity. Ll 

Restriction 4. The sequence A contains (n - k) times the value x, where k is some 

fixed integer k > 1. 

Theorem 4.7. The minimization problenl ,fi)r un input ohe~~ing Restriction 4 cm lx> 

solrcd in 0( n2’ +’ log n) time. 

Proof. Consider the terms in the optimum sum to which sequence A contributes a 

factor of X. By Proposition 2.1, the structure of the contributions of sequences B and 

C’ is uniquely determined. 

Thus, we simply generate O(n”) potential candidates for the optimum solution in 

the following way. We choose for each of the k numbers in A that are not equal 

to x, two arbitrary partners from B and C. Clearly, this can be done in n” different 

ways. The remaining numbers in B and C are paired according to Proposition 2.1. By 

the above paragraph, one of these potential candidates leads to the optimum solution. 

5. Structural properties of cost coefficients 

It turns out that many cost coefficients will never occur in an optimal 

assignment due to the structure of the problem. Those cost coefficients which may 

occur in an optimal solution are called relet’ant. The subsequent theorem specifies 

some irrelewnt cost coefficients, which will never occur in an optimal solution. By 

fixing them to infinity known heuristics and exact solution methods can be 

improved. 

Theorem 5.1. Let A, B and C br sorted increasinyly. Then there csists ~rl~rq~~.s UH 

optimal assignment which does rwt contain any cwffic.iuzt u, h,ci, Ir,ith eitlwr 

(i) i+j+k < n+2 or 

(ii) i+j+k > 2n+ 1. 

Proof. To see (i), let Uibjck be a triple of indices in an optimal solution of the 3AP 

with i + j + k < n + 2. Then this assignment also contains a coefficient with a,+ b,*ch* 

with i < i*, j < j* and k -c k*. 
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Table 1 
Number of feasible solutions before and after 

deletion of irrelevant cost coefficients 

n Before After deletion 

2 4 3 

3 36 17 

4 576 151 

5 14400 1899 

Suppose, ap bpck* with i < i*,J’ < J’* and k < k* does not occur. But then for 

n - i triples of indices in this assignment, namely 

{(if l,w,.n),(i+2, X2,Y2),...,(Iz,X,-,,Y,-,)), 

we must either have x, < j or y, < k V’r = 1,. , n - i. On the other hand 

l{xr:xr <j}l==-I and I{y,,:y, < k}l=k-I. 

So to fulfill the above requirement the three indices i,j and k have to satisfy j - 1 + 

k - 1 >n - i. But this leads to a contradiction, Therefore this solution also contains 

at least one triple ai*b,*ck* with i < i*, j < j* and k < k*. But then, referring to 

Proposition 2.1 

aibjck* $ aitb,*Ck <aibjCk + a,*bpCk*, 

exchanging e.g. cX_ and ck* leads to another optimal solution without cost coefficient 

aibjCk. 

The proof of (ii) is done analogously to (i). 0 

The immediate consequence of Theorem 5.1 is that by fixing those cost coefficients 

to infinity which fulfill above inequalities the number of the remaining relevant cost 

coefficients can be reduced. Instead of n3 only n(n2 - 1)/3 relevant cost coefficients 

remain. Therefore also those feasible assignments containing at least one irrelevant cost 

coefficient need not to be taken into account any more. Table 1 shows the number of 

feasible solutions before and after “deleting” all irrelevant cost coefficients. 

6. Computational results 

Since the minimization problem is NP-hard, we investigate several heuristics to ob- 

tain “good” solutions. 

The straightforward Greedy heuristic which selects in every step the smallest 

cost coefficient is not suited for our case. It is easy to see that it yields the solution 
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Table 2 

Comparison of the average objective val- 

ues of MAXREGRET and its improved verston 

MAXREGRET -2 

n MAXREGRET MAXKFGRt I-2 
‘2 value 2’ value 

4 583.99 62 I .79 

6 954.14 946 27 

8 1361.77 1289.20 

IO 1741.42 1569.90 

12 2351.02 2071 26 

14 2967.13 2630.59 

I6 3264.38 2788.2 I 

c:=, dvJ(lFi(,) where (a;), (bd,(,)) and (c,~(~J) are ordered increasingly. Thus the 

Greedy solution is an optimum solution of the maximization problem and thus the 

worst solution for the problem under investigation 

In the following we shall compare the heuristic MAXREGRET proposed by Balas and 

Saltzman [3] for the general 3AP with two special heuristics SIMPI.F_~ and Lstt tailored 

for the decomposable case. 

The heuristic MAXREGRET works as follows: For each of the 3rz possible two-di- 

mensional submatrices contained in the cost coefficient cube the regret is calculated. 

The regret is defined as difference between the two smallest cost coefficients in that 

two-dimensional submatrix. Then MAXREGRET selects the minima1 cost coefficient in that 

two-dimensional matrix for which the regret is maximal. After forcing this coefficient 

into the assignment the problem size is reduced by one. Again a new regret is calculated 

and another coefficient is selected until all n triples of a three-dimensional assignment 

are fixed. 

Note that MAXREGRET can also choose irrelevant cost coefficients. To avoid this. we 

improve the quality of MAXREGRET by exploiting the special structure of the problem and 

therefore consider a modified version of MAXREGRET, say MAXREC;RET_~. This heuristic 

works as follows: First all irrelevant coefficients described by Theorem 5.1 are set to 

infinity and then MAXREGRET is applied to the modified cost array. Table 2 shows the 

differences in the optimal objective values of applying MAXREGRET to the cost array 

with and without irrelevant cost coefficients, i.e. the differences between MAXREGR~T. 

and MAXREGRET -2. 

To exploit the structure of the coefficients even more we propose two other heuristics. 

The heuristic SIMPLE-~ is based on the algorithm SIMPLY and works as follows: Given 

three sequences A, B and C then SIMPLI, -3 executes SIMPLE (A, B, C), SIMPILF (B, <‘,A ) 

and SIMPLE (C.A,B) - the three possibilities of applying Proposition 2.1 twice ~ and 

reports the best solution value of these three different constructed thee-dimensior,al 

assignments. 

To illustrate SIMPLE-~ consider the following example: Let three sequences. say 

A = (1,2,3,4), B = (1,2,4,5) and C = (2,3,3,6), be given. Then all three different 
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solutions generated by SIMPLE-~ are given by: 

[;#;#;I 7 (;#K;) 7 [;#G) 

with the objective values: 73, 79 and 74, SIMPLE-~ delivers 73. 

A further improvement is obtained by the following local search heuristic, LSH (see 

also [15]), which again is based on the special structure of the problem and Proposi- 

tion 2.1. It runs as follows: 

Heuristic LSH 

0. Start with arbitrary permutations 4 and $. 

1. Apply Proposition 2.1 and set 

7? := argmin min 
.i: a, Wn(i) with IVY := b4(i) ci(,) 

i=l 

Redefine I$ := 72 o 4 and II/ : = it o $. 

2. Apply Proposition 2.1 and set 

it := argmin min X 5 K(c))(i)) wi with wi := ai ctici). 
i=l 

Redefine q5 := 72 o 4. 

3. Apply Proposition 2.1 and set 

5 := argmin min 
.i: G($(i)) . wi 

1 

with wi := a; . b,++cj). 

r=l 

Redefine $ := fi o I/. 

4. Goto 1. as long as improvements are reached by Steps 1-3. 

To illustrate heuristic LSH consider again the above example with A = (1,2,3,4), 

B=(1,2,4,5)andC=(2,3,3,6).Letusstartwith~=(3,2,1,4)and~=(4,1,2,3). 

This solution has the objective value 82. 

Performing Step 1 we determine ii = (1,3,4,2). Thus 4 = (4,3,1,2) and $ = 

(2,1,3,4). The objective value decreases to 74. 

Step 2 yields iE = (2, 1,3,4) and therefore the new permutation 4 = (4,3,2,1). The 

value of the objective function is 73. 

Computing Step 3 leads to no improvement as well as Steps 1 and 2 do not change 

the current solution. So LSH stops with 4 = (4,3,2,1) and $ = (2,1,3,4), the value 

73 and the rearrangement of A = (1,2,3.4), B = (5,4,2,1) and C = (3,2,3,6). 

Additionally we consider the heuristic SIMPLE_LSH where the starting permutations 

in LSH are chosen from the result of SIMPLE-~. 



Table 3 

Comparison of LSH with SIWLE~~. SI\IPLE_LSH and the improved heuristic 

MAXRKRET; the cost coefficients a,. h, and CL are uniformly draun from [I. IO] 

II 

4 

6 

x 
I 0 

12 

14 

16 

SlMPLt -3 

Z’ value 

LSH 

\’ value 
____ 

62 I .I9 0.007 468.17 443.69 

946.27 0.036 661.97 634.46 

1289.20 0.086 871 02 820.26 

1569.90 0.199 1015.79 960.48 

207 I .26 0.394 1256.68 I 188.2X 

2630.59 0.697 1565.55 1469.19 

27X8.21 I I 62 1576.04 1476.80 

time 
__- 

0.003 

0.01 I 
0.019 

0.025 

0.03 I 

0.033 

0.04 I 

sl\rPl I. -LSH 

value i time 

443.70 0.007 

634.20 0.009 

x19.94 0.0 I6 

960.55 0.02-1 

I I X8.02 0.021 

I469 27 0.03 I 
1476.99 0.036 

Table 4 

Comparison of LSH with SIWLE_~. SIWI E-LSH and the Improved heuristic 

MAYRKRET: the cost coefficients a,, h, and (‘1 are uniformly distributed in [I, 501. 

I, MASREGREI -2 SIMPLE _ 3 LSH SlhlP1.t. _LSll 

value 12 time (‘8 value : value time value time 

3 64428 0.007 50089 47443 0.008 47414 0.005 

6 92177 0.033 62912 58295 0 014 58306 0.0 I? 

x I07096 0.092 75935 70581 0016 70562 0.017 

I 0 151016 0.203 98618 00151 0.030 90147 0.0 I 8 

I2 I86680 0.406 120798 110330 0.033 II0293 0.027 

I4 213976 0.728 13693 I 124753 0.041 I24746 0.035 

I 6 22985 I I.200 I42953 129064 0 053 I2YOXh 0.046 

To test the heuristics we generated for each n between 4 and 16 one hundred different 

problems with integer cost coefficients a,, h, and ck uniformly distributed in [I, IO] and 

[ 1.501, respectively. All test runs were performed on a PC 386/387 with 20 MHz clock. 

In Tables 3 and 4 average running times in CPU-seconds and average values of the 

objective function of the considered heuristics are compared. Table 3 shows the results 

of problems with values in [l, lo] whereas Table 4 of those problems with values in 

[I, 501. One can see the quite good behaviour of Lstj and SIMPL~_LSH in comparison 

with the improved version of MAXREGRET and Slnlt>Le -3. (Since for SIZIPLL~ the 

running time is negligible, only the objective values are listed.) 

7. Conclusion 

In this paper a special case of an axial three-dimensional assignment problem was 

investigated, in which the cost coefficients dijk can be decomposed into the product 

of three values ai, bj and ck. We have shown that the maximum version is easy 

to solve just by sorting the sequences ai, 6, and c, in increasing order, whereas the 

minimization problem remains NP-hard. So several special cases were considered and 
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general types of problems which can be solved in polynomial time are summarized 

in Theorems 4.54.7. Besides these a structural property of the cost coefficients which 

occur in an optimal solution is given by Theorem 5.1. With the help of this the- 

orem one can improve the performance of heuristics as well as of exact solution 

methods. For the general minimization case the heuristics LSH and SIMPLE-LSH were 

presented which showed a quite good behaviour in comparison with other heuris- 

tics. 
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