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Abstract

We discuss the geometric engineering ofSO/Sp gauge theories with symmetric or antisymmetric tensor matter and show
the ‘mysterious’ rank zero gauge group factors observed by a few authors can be traced back to the effects of an orie
which survives the geometric transition. By mapping the Konishi constraints of such models to those of theU(N) theory
with adjoint matter, we show that the required shifts in the ranks of the unbroken gauge group components is due to
contribution of the orientifold after the transition.
 2004 Elsevier B.V.Open access under CC BY license.
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1. Introduction

It was recently pointed out [1] that the Konis
constraints [2] of theSp(N) theory with antisymmetric
matter and a tree-level superpotential of degreed + 1
can be mapped to those of theU(N + 2d) theory
with adjoint matter. By noticing that this relatio
involves a shift in the rank of the components of t
unbroken gauge groups, it was shown [1,3] that
apparent discrepancy found in [4] and further explo
in [5] can be removed by relaxing an unwarran
assumption. Moreover, it was speculated that
somewhat mysteriousSp(0) factors involved in this
relation originate in the IIB realization of such fie
theories.
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calin@physik.hu-berlin.de (C.I. Lazaroiu).
0370-2693 2004 Elsevier B.V.
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In the present Letter, we show that the observati
of [1] have a simple interpretation in the geometric e
gineering of such models, and they admit an obvi
generalization. By considering the fourSO/Sp theo-
ries with symmetric or antisymmetric matter, we sh
that their IIB realization involves aZ2 orientifold of
anA1 fibration. As in [6,7], we find that the orientifol
5-plane involved in this construction survives the g
metric transition of [8–11]. This allows us to show th
the phenomena observed in [1] are due to the flux c
tribution of this orientifold after the transition. More
over, we show that the Konishi constraints of all fo
models can be mapped to those of a theory with u
tary gauge group and adjoint matter, and that this m
amounts to replacing the orientifold by its flux co
tribution. This gives an elementary explanation of
relation found in [1].
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We shall be interested inN = 1 gauge theorie
with gauge groupG = SO(N) or Sp(N)1 and a single
chiral superfieldX with XT = εX andε = ±1 for the
symmetric or antisymmetric representation. The ga
transformation is:

(1)X → UXUT ,

with U valued inG. Consider the tree-level superp
tential

(2)Wtree= tr
[
W(Φ)

]
,

whereΦ = X for G = SO(N) andΦ = XJ for G =
Sp(N), where

J =
[

0 1N/2
−1N/2 0

]
.

Here

(3)W(z) =
d+1∑
j=1

tj

j
zj

is a complex polynomial of degreed + 1. Throughout
this Letter, we assume thatW ′(z) has simple zeroes
Since U−T JU−1 = J for U ∈ Sp(N) and UT =
U−1 for U ∈ SO(N), the fieldΦ always transforms
as Φ → UΦU−1. In particular,Φ is in the adjoint
representation for the antisymmetric representatio
SO(N) and the symmetric representation ofSp(N).
In these cases, we can assume thatW is an even
polynomial since only even powers ofΦ contribute
to (2).

2. Geometric engineering

To find the IIB realization of our models, w
distinguish the cases:

(A) SO(N) with symmetric matter orSp(N) with
antisymmetric matter;

(B) SO(N) with antisymmetric matter orSp(N) with
symmetric matter.

The engineering of (A) was given in [7] and that of (
was discussed in [6].2 In both cases, we start with th

1 We use conventions in whichN is even forSp(N).
2 Case (B) had already been engineered in [12,13], but

framework different from the one we shall find useful here.
singularA1 fibration given by:

(4)X0: xy = (
u − W ′(z)

)(
u + W ′(z)

)
,

which admits the two-section:

(5)Σ0: x = y = 0,
(
u − W ′(z)

)(
u + W ′(z)

) = 0.

This is a union of two rational curves which interse
at the critical pointszj of W . Since W is even in
case (B), we letd = 2n + 1 and takej = −n, . . . , n.
For case (A) we takej = 1, . . . , d .

The resolutionX̂ can be described as the comple
intersection:

β
(
u − W ′(z)

) = αx,

α
(
u + W ′(z)

) = βy,

(6)
(
u − W ′(z)

)(
u + W ′(z)

) = xy,

in the ambient spaceP1[α,β] × C4[z,u, x, y]. The
exceptionalP1’s are denoted byDj and sit above
the singular points ofX0, which are determined b
x = y = u = 0 and z= zj . The resolved space admi
theU(1) action:([α,β], z, u, x, y

)
(7)→ ([

e−iθα,β
]
, z, u, eiθx, e−iθ y

)
.

For the two cases, consider the holomorphicZ2
actions:3

k̂A:
([α,β], z, u, x, y

) → ([−β,α], z,−u,y, x
)
,

k̂B:
([α,β], z, u, x, y

)
(8)→ ([−β,α],−z,u,−y,−x

)
,

which obviously preserve (6) (remember th
W ′(−z) = −W ′(z) in case (B)). The first symmetr
preserves each exceptional curve, while the sec
preservesD0 while exchangingDj with D−j .

These symmetries project to the following invol
tions ofX0:

κA0: (z, u, x, y) → (z,−u,y, x),

(9)κB0: (z, u, x, y) → (−z,u,−y,−x),

the approach of [12,13], the IIA T-dual involves an orientifo
4-plane. In this Letter, we use the construction of [6], whose
dual involves an orientifold 6-plane. The relation between the
realizations is discussed in [6].

3 These square to the identity since[−α,−β] = [α,β] in P1.
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whose fixed point sets are given by:

OA0: x = y, u = 0, x2 + W ′(z)2 = 0,

OB0: x = −y, z = 0, x2 + u2 = 0.

The fixed point loci of (8) are:

(10)ÔA: x − y = u = x2 + W ′(z)2 = 0,
α

β
= ±i,

(11)ÔB: x + y = z = x2 + u2 = 0,
α

β
= ±i.

We shall use the geometric symmetries (8) to de
orientifolds of our IIB background upon combin
them with worldsheet parity reversal. More precise
we choose the orientifold projections such thatÔA
corresponds to anO−ε

5 plane andÔB corresponds to
anO+ε

5 plane.
It is not hard to check that this construction e

gineers our theories. The matter content can be
covered geometrically or by a fractional brane co
struction. More directly, one can follow the approa
of [6,7,14] by using T-duality to map our bac
ground to the Hanany–Witten realizations of the
models.

3. Dual configurations

To extract the T-dual Hanany–Witten systems,
use a local description valid on a subsetX̃ ⊂ X̂. This is
given by two copiesU0 andU1 of C3 with coordinates
(xi, ui , zi) (i = 0,1) which are glued according to:

(12)(x1, u1, z1) =
(

1

u0
, x0u

2
0 − 2W ′(z0)u0, z0

)
.

The resolution map is given by:

(z, u, x, y)

= (
z0, x0u0 − W ′(z0), x0, u0

(
x0u0 − 2W ′(z0)

))

(13)

= (
z1, x1u1 + W ′(z1), x1

(
x1u1 + 2W ′(z1)

)
, u1

)
,

while theU(1) action (7) takes the form:

(14)(zi , ui, xi) → (
zi , e

−iθui, e
iθxi

)
.

Its fixed point set is the union of rational curvesx0 =
u0 = 0 and x1 = u1 = 0. This action stabilizes th
exceptional curvesDj : x0 = u1 = z − zj = 0.
The Hanany–Witten construction results by T-du
ity with respect to the circle orbits of this actio
Following [6], we use the following ansatz for th
T-dual coordinates:

w := x4 + ix5 = x0u0 − W ′(z0)

= x1u1 + W ′(z1),

x6 = 1

2

(|x1|2 − |u0|2
)
,

(15)z = x8 + ix9,

together with the periodic coordinatex7 along the
orbits of (14).

Expressing the fixed point set of (14) in the
coordinates, we find that the dual background cont
two NS5-branesN0 andN1 sitting at:

N0: w = −W ′(z), x6 = +∞,

N1: w = +W ′(z), x6 = −∞.

We also have D4-branesDj stretching between th
NS5-branes atz = zj .

The orientifolds (8) act as:

(z0, x0, u0)
κ̂A←→ (z1, u1,−x1),

(16)(z0, x0, u0)
κ̂B←→ (−z1,−u1,−x1).

In the first case, the fixed point set iŝOA: u2
0 + 1 =

x0 + W ′(z)u0 = 0. In the second case, it iŝOB: u2
0 +

1 = z = 0. Both of these are unions of two disjoi
rational curves. The IIA orientifold action is:

(A): x6 → −x6, z → z, w → −w,

(17)(B): x6 → −x6, z → −z, w → w.

Using (15) we find that under T-duality these lo
map to O6-planes sitting atx4 = x5 = x6 = 0 and
x6 = x8 = x9 = 0, respectively (Fig. 1). This recove
the Hanany–Witten realization of our models.4

4. Description after the geometric transition

After the geometric transition of Refs. [8–11], th
Calabi–Yau space (4) is deformed to:

(18)X: xy = u2 − W ′(z)2 − f (z),

4 For a detailed discussion of these constructions and fur
references see [15].
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in the
Fig. 1. Brane configuration for theSO(N)/Sp(N) theories with symmetric or antisymmetric matter. The outer NS5-branes are bent
directionsx4 andx5, which cannot be shown properly in this two-dimensional figure. The orientifold plane has charge−4ε in case (A) and
+4ε in case (B).
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wheref (z) is a polynomial of degree at mostd − 1.
This fibration admits the two-section:

(19)Σ: x = y = 0, u2 − W ′(z)2 − f (z) = 0.

The D5-branes wrapping the exceptional divisors
replaced by fluxes. Writing

W ′(z)2 + f (z) =
∏
j

(z − aj )(z − bj ),

we can choose the cutsIj of (19) to connectaj andbj .
We also choose a symplectic basis of cyclesAj ,Bj

with Aj associated with the cutIj . In case (B) we
can choose these such thatI−j = −Ij . In particu-
lar, we have the cutI0 which passes through the or
gin.

In case (A), the deformed space (18) is still inva
ant under theZ2 action (9) so the orientifold 5-plan
survives the transition. Its internal part is deformed
the irreducible curve:

OA: x = y, u = 0,

(20)x2 + W ′(z)2 + f (z) = 0.

In case (B), the polynomialf (z) must be even
in order to preserve the orientifold symmetry. Aga
the orientifold survives the transition, after which
internal part becomes:
OB: x = −y, z = 0,

(21)x2 + u2 − f (0) = 0.

The Riemann surface (19) arises naturally in
confining phase of theSO(N)/Sp(N) theories with
(anti)symmetric matter [16,17]. This curve can be
tracted by analyzing the generalized Konishi ano
alies of such theories.

5. Relation to generalized Konishi constraints

Consider the field theory quantities

T (z) =
〈
tr

1

z − Φ

〉
, R(z) =

〈
tr

W2

z − Φ

〉
,

whereWα is the superfield strength.

5.1. Case (A)

Using the method of generalized Konishi ano
alies, it was shown in [16,17] thatR(z) andT (z) sat-
isfy:

W ′R = 1

2
R2 − f

2
,

(22)W ′T = T R − 2εR′ + c,
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where f and c are polynomials of degree at mo
d − 1. The solution is:

R = W ′ − u,

(23)T = c

u
− 2ε

W ′′ − u′

u
= T̃ − Ψ,

where T̃ = c̃/u with c̃ = c − 2εW ′′ a polynomial
of degree at mostd − 1, Ψ = −2εu′/u and u =√

(W ′)2 + f is the appropriate branch of the spect
curve (19). The pair(R, T̃ ) satisfies the relations:

W ′R = 1

2
R2 − f

2
,

(24)W ′T̃ = T̃ R + c̃,

which are also obeyed by the quantities

r =
〈
tr

W2

z − φ

〉
, t =

〈
tr

1

z − φ

〉
of a theory with unitary gauge group and an adjo
chiral multipletφ. It is clear thatR dz andT̃ dz have
no poles at finitez on the spectral curve (19), whil
Ψ dz has simple poles at the branching points ofΣ .

At the branching points,Ψ behaves like− ε
z−aj

or

− ε
z−bj

. The quantityA= Ψ dz satisfies:5

(25)

∂̄A = −επ

[
d∑

j=1

δ(z − aj ) +
d∑

j=1

δ(z − bj )

]
dz̄ dz.

ThusA can be viewed as the potential produced
charges equal to−ε placed at branching points ofΣ .
The ‘vacuum’ termT̃ dz in B := T dz = T̃ dz − A
contributes fluxes through the A-cycles ofΣ :

(26)Nj :=
∮
Aj

dz

2πi
T = Ñj + 2ε,

where

Ñj =
∮
Aj

dz

2πi
T̃

with +2ε the contribution from−A. In view of the
above, relation (26) maps a vacuum of our the
with unbroken gauge group

∏d
j=1 SO(Nj ) (ε = +1)

5 Remember that̄∂z
1

z−a = πδ(z − a).
or
∏d

j=1 Sp(Nj ) (ε = −1) to a
∏d

j=1 U(Nj − 2ε)

vacuum of theU(N − 2εd) theory with adjoint
matter.

It is easy to find the IIB interpretation of this ma
Recall that the orientifold survives the geometric tran
sition, giving anO−ε

5 plane whose internal direction
wrap the curve (20). This curve intersects the R
mann surface (19) precisely at its branching po
(z, y) = (aj ,0) or (bj ,0), and contributes to the flu
through the 3-cyclesSj associated with the cutsIj .6

This accounts for the shift by 2ε in relation (26). More
precisely,Nj is the number of D-branes wrappin
the exceptional curvesDj before the transition, while
Ñj = Nj − 2ε is the total RR flux through the ass
ciated 3-cycle produced after the transition. The fl
contributionNj is due to the D-brane wrappingDj ,
which is replaced by a RR flux during the tran
tion, while −2ε is the flux contribution of theO−ε

5
plane (20).7

Thus the shift observed in [1] is explained by t
presence of an O5 plane afterthe geometric transition
Moreover, it is clear that the map(R,T ) → (R, T̃ )

to theU(N − 2εd) theory amounts to replacing th
orientifold by its flux contribution, i.e., considerin
the IIB theory with the same total RR fluxes and
the same geometry (18), but without the orientifo
plane (20). The latter IIB background is well known
engineer theU(N − 2εd) theory with adjoint matter
Hence, the map of [1] has an elementary interpretatio
in geometric engineering.8

6 As in [9,18], the 3-cycles ofX can be constructed by fiberin
two-spheres over the cuts.

7 In our case, the orientifold 5-plane intersects the 3-cycleSj

along a circle. The RR 3-formH is not closed due to the presen
of the orientifold (H has a source supported along the curve (2
One can construct anS2 fibrationS of X over thez-plane whoseS2

fibers are themselves obtained by fibering circles over the inte
Iz = [u−(z),u+(z)] in theu-plane, where

u±(z) := ±
√

W ′(z)2 + f (z).

The fibers ofS collapse to points forz = aj or z = bj . Then the

integral ofH overSj equals the integral of̃A overAj , whereÃ is

a (non-meromorphic) one-form onΣ obtained from1
2H by ‘push-

forward’ along theS2 fibrationS . As in [19] Ã has integral periods
but differs fromA by a one-form whose periods vanish on-shell.

8 Other relations of this type wereconsidered in [6], where the
were shown to have similarly straightforward interpretations.
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Of course, this map only refers to matching
the associated Konishi constraints, and should
be taken at face value regarding other quantities
physical interest. For case of anSO(N) group with
symmetric matter (i.e.,ε = +1) we can haveÑj < 0
for some j . This simply means that the total flu
through the associated 3-cycle is allowed to beco
negative. This is of course purely formal in the cont
of the U(N − 2εd) theory, and only receives it
proper physical interpretation once one considers
orientifold, thereby recovering theSO/Sp model.

For Nj = 2 one finds that anSO(2) factor group
is mapped to aU(0) factor. In the engineering o
the U(N − 2εd) model, this means that there a
no branes wrapping the correspondingP1 before the
transition, and no RR flux through the associa
3-cycle after the transition. In particular, one can ke
this cycle collapsed, in which case the associated
of the spectral curve (19) is reduced to a dou
point. Nevertheless, it isclear that the period ofT
does not vanish in this limit because of the fl
contribution of the orientifold, which passes throu
this double point. This behavior of theSO theory with
symmetric matter was conjectured in [1]. We no
that similar effects were already found in [20] for t
more complicated case ofU(N) theories with adjoint
and symmetric or antisymmetric matter, and explain
in [6] in terms of an orientifold which survives th
geometric transition.

5.2. Case (B)

It was shown in [16,17] thatR(z) andT (z) satisfy:

W ′R = 1

2
R2 − f

2
,

(27)W ′T = T R + 2ε

z
R + c,

where f and c are polynomials of degree at mo
d − 1. The solution is:

R = W ′ − u,

(28)T = c

u
+ 2ε

z

[
W ′

u
− 1

]
= T̃ − Ψ,

where T̃ = c̃/u with c̃ = c + 2εW ′/u a polynomial
of degree at mostd − 1 = 2n (remember thatW ′
is odd!) andΨ = +2ε

z
. The pair(R, T̃ ) satisfies the
relations (24) of a theory with unitary gauge group a
an adjoint chiral multiplet. We have

(29)∂̄Ψ = 2πεδ(z) dz̄

and

Nj :=
∮
Aj

dz

2πi
T = Ñj (for j �= 0),

(30)N0 :=
∮
A0

dz

2πi
T = Ñ0 − 2ε,

with Ñj the contributions from̃T . We haveN−j = Nj

for all j .
The IIB interpretation is as before. After the ge

metric transition, theO+ε
5 plane (21) pierces the spe

tral curve (19) in the two pointsu = ±√
f (0) sitting

abovez = 0. It contributes+2ε to the RR fluxÑ0
through the associatedS3 cycle in X, leading to the
relation Ñ0 = N0 + 2ε. This allows us to identify a
vacuum of our theory with unbroken gauge group

SO(N0) ×
n∏

j=1

SU(Nj ) (ε = −1)

or

Sp(N0) ×
n∏

j=1

SU(Nj ) (ε = +1)

with an

SU(N0 + 2ε) ×
n∏

j=1

(
U(Nj ) × U(Nj )

)
vacuum of theU(N + 2ε) theory with adjoint matter
Again this identification is only formal in the cas
ε = −1 (i.e., SO(N) with antisymmetric matter) an
N0 = 0.

6. Conclusions

We considered the geometric engineering a
T-dual Hanany–Witten realizations of four field th
ories, namely,SO(N) with symmetric or antisymmet
ric matter andSp(N) with symmetric or antisymmetri
matter. As in [6,7], we found that the IIB realization
such models involves aZ2 orientifold which survives
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the geometric transition of [8–11] and therefore co
tributes to the effective superpotential and fluxes. F
lowing [1], we extracted a relation between the Ko
ishi constraints of such theories and those of theU(Ñ)

field theory with adjoint matter, wherẽN = N −
2εd for SO/Sp with symmetric (ε = 1)/antisymmetric
(ε = −1) matter andÑ = N +2ε for SO/Sp with anti-
symmetric/symmetric matter. Its interpretation in ge
metric engineering amounts to the trivial operation
replacing the orientifold 5-plane by its flux contrib
tion.

The fact that the orientifold contributes to the fl
through various 3-cycles after the transition is resp
sible for the phenomena discussed in [1] and form
ized in [3]. In particular, it gives an elementary exp
nation of the rank shifts required by the relation w
theU(Ñ) theory. It also recovers and generalizes
role of Sp(0) factors in theSp(N) theory with anti-
symmetric matter. For the particular case of theSO(N)

theory with symmetric matter, we confirmed the co
jecture of [1] thatT (z) can have non-vanishing perio
even if the associated branch cut on the Riemann
face is collapsed to a double point. As in [6], we fi
that simple operations in geometric engineering
count for non-obvious relations between strongly c
pled field theories.
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