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Abstract

Malignant peripheral nerve sheath tumors (MPNST) are

sarcomas with poor prognosis and limited treatment

options. Factors contributing to tumor progression are

largely unknown. We therefore examined MPNST from

22 neurofibromatosis type 1 (NF1) patients, 14 non-

NF1 patients, and 14 neurofibroma patients for matrix

metalloproteinase 13 (MMP-13) expression. Because

wild-type and mutant p53 were shown to differentially

regulate MMP-13 expression, TP53 status and pro-

tein levels were also determined. MMP-13 expression

was detected in 58% of MPNST and was significantly

associated with recurrent MPNST (P = .019). p53 was

observed in 78% of MPNST and was found to be

strongly associated with MMP-13 expression (P =

.005). In contrast, 14 neurofibromas lacked MMP-13

and p53 expressions. TP53 mutations were found in

only 11% of MPNST and were associated with high

tumor grades (P = .029). No significant association be-

tween mutant TP53 and MMP-13 was observed, indi-

cating that other factors drive MMP-13 expression in

MPNST. The presence of metastasis was linked to

p53Pro72 polymorphism (P = .041) and shorter survival.

In summary, our data suggest that MMP-13 expression

in nerve sheath tumors is coupled with malignant pro-

gression. Therefore, MMP-13 may serve as a marker for

progression and as a therapeutic target.
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Introduction

Malignant peripheral nerve sheath tumors (MPNST) are ag-

gressive soft-tissue sarcomas with poor prognosis. MPNST

grow invasively and often metastasize to the lungs and

other organs. With an incidence of 1:100,000, MPNST are

rare in the general population [1]. However, 8% to 13% of

neurofibromatosis type 1 (NF1) patients develop MPNST.

In NF1 patients, MPNSTare the major cause of reduced life

expectancy, with only 21% of patients surviving longer than

5 years after diagnosis [2].

NF1 is a tumor syndrome caused by mutations in the NF1

tumor-suppressor gene and occurs with an incidence of 1:3500

[3]. A hallmark of NF1 is the development of multiple benign

dermal neurofibromas (dNF). Approximately one third of NF1

patients develop plexiform neurofibromas (pNF). MPNST in NF1

patients generally arise by malignant progression of preexisting

pNF. Knowledge on molecular alterations causing malignant

transformation is limited. However, TP53 mutations likely con-

tribute to the development of some MPNST [4–6]. Our previous

screening for progression-associated genes identified matrix

metalloproteinase 13 (MMP-13) [7], which was later confirmed

by another study [8]. Matrix metalloproteinases (MMP) are endo-

peptidases involved in the degradation of extracellular matrix

(ECM) components. MMP-13, also known as collagenase-3,

degrades a wide spectrum of substrates, including collagens of

types I, II, III, IV, V, X, and XIV; aggrecan; versican; fibronectin;

tenascin; and fibrillin-1 [9–12]. Degradation of the ECM is a

prerequisite for tumor cell invasion and development of metas-

tasis. MMP can be expressed either by tumor cells or by sur-

rounding stromal cells, thereby promoting tumor cell invasion.

In squamous cell carcinomas, MMP-13 transcripts have been

primarily detected in tumor cells at the invading edge [13].

Meanwhile, MMP-13 expression has been detected in different

tumor entities and has been shown to correlate with invasive

andmetastatic behaviors [13–16]. In vitro studies demonstrated

that overexpression of MMP-13 leads to increased invasion of

fibrosarcoma cells [17]. Inhibition of MMP-13 in squamous cell

carcinoma cells resulted in impaired invasion through Matrigel

and reduced tumor growth in mice [18].
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A regulatory link between MMP-13 and the tumor-

suppressor p53 has been reported. Wild-type p53 repressed

MMP-13 transcription [19], whereas mutant p53 lacked this

inhibitory effect. It is worth noting that ‘‘gain-of-function’’ p53

mutants even stimulated MMP-13 expression [20]. To in-

vestigate whether mutant p53 is responsible for MMP-13

expression in vivo, we studied a panel of MPNSTand neuro-

fibromas for both features and compared them with clinical

and pathological findings.

Materials and Methods

Tumor Samples and DNA Extraction

Tumor samples were collected at the University Hospital

Eppendorf (Hamburg, Germany), Robert-Rössle-Hospital

(Berlin, Germany), Otto-von-Guericke-University (Magde-

burg, Germany), and Charité-Universitätsmedizin Berlin

(Berlin, Germany). Following initial diagnosis in local neuro-

pathologies, all tumor samples were reviewed by the same

pathologist (A.F.O.). Histologic grading was based on the

modified and updated French Federation Nationale des

Centres de Lutte Contre Ie Cancer (FNCLCC) system

[21,22]. A second surgery after clinical progression was de-

fined as recurrence. The study examined MPNST from 22

NF1 patients, 14 non-NF1 patients (Table 1), and 14 neuro-

fibroma patients (five pNF and nine dNF). MPNST cell lines

S462 and ST88-14 (kindly provided by Dr. Andreas Kurtz;

Charité-Universitätsmedizin Berlin) were also analyzed. Cell

line S462 was established from MPNST 24472. Investiga-

tions were carried out with informed consent. Tumor sam-

ples were examined histologically before the extraction of

Table 1. Patient and Tumor Characteristics.

ID Sex/Age

(Years)

NF1 Follow-Up

Month

Localization Grade Metastasis

Localization/

Month

Relapse

Month

MMP-13 IF p53 IHC p53 Mut p53 Pol

Codon 72

TP53 Pol

Intron 2

TP53 Pol

Intron 3

21852 M/29 Yes 24y Intraspinal 2 – 6 + + – Arg/Arg G/G N/N

24256 F/21 Yes 161y Arm distal 3 Lungs, liver,

pancreas,

lymph

nodes/132

108 ++ ++ p53321STOP Arg/Pro C/LOH Dup/LOH

24320 M/56 Yes 46 Leg 1 – – + ++ – Arg/Pro C/G Dup/N

24626 M/58 Yes 49 Back 2 – – � + – Arg/Arg G/G N/N

24472 F/19 Yes 11y Leg proximal 3 – 2 + ++ p53Pro110 Arg/Arg G/G N/N

21914 F/21 Yes 30 Leg proximal 2 – 4 + + – Arg/Pro C/G Dup/N

24304 M/27 Yes 17y Plexus

cervicobrachialis

1 Paravertebral,

lumbar,

thoracic/0

14 ++ + – Arg/Arg G/G N/N

24308 M/21 Yes 14y Leg proximal 3 Lung, thoracic

wall/6

– + +++ – Arg/Pro C/G Dup/N

24310 M/66 Yes 8y Trunk 2 Lung/2 5 � � – Arg/Pro C/G N/N

24326 M/32 Yes 8y Plexus

cervicobrachialis

2 Lung/2 – � + – Arg/Arg G/G N/N

24332 F/30 Yes 192 Arm distal 2 – 10 ++ + – Arg/Arg C/G N/N

24354 F/33 Yes 200 Leg distal 1 – 96 + + – Arg/Arg C/G Dup/N

24476 F/13 Yes 99y Arm distal 2 – – � � – Arg/Arg G/G N/N

24480 F/20 Yes 7y Mediastinal 2 – – � � – Arg/Arg G/G N/N

24484 F/31 Yes 18y Gluteal 3 – 4 � ++ – Arg/Arg G/G N/N

24534 F/28 Yes 44 Thoracic wall 3 – – � + – Arg/Arg G/G Dup/N

24668 F/14 Yes 9y Intraspinal 3 Lung/0 3 +++ +++ – Arg/Pro C/C Dup/N

24670 M/31 Yes 13y Inguinal 3 Lung/4 4 � + – Arg/Pro C/G A11992/N

24694 F/79 Yes 29 Leg proximal 2 – – + ++ – Arg/Arg G/G N/N

24748 M/34 Yes 12y Gluteal 2 – 2 +++ ++ – Arg/Arg G/G N/N

24772 M/15 Yes 42y Retroperitoneal 2 – – � + – Arg/Arg C/G N/N

24776 M/39 Yes 48 Right axilla 1 – – ++ + – Arg/Arg G/G N/N

26580 F/78 No 4y Gluteal 3 Lung/0 – � � – Arg/Arg G/G N/N

26582 M/43 No 126 Os ileum 3 – – + ++ p53Ala258 Arg/Pro C/G A11992/N

26584 M/41 No 47 Plexus

cervicobrachialis

2 – – � ++ – Arg/Pro G/G N/N

26586 M/28 No 27y Leg distal 2 Lung/0 – � + – Arg/Arg G/G N/N

26588 F/73 No 63 Leg proximal 3 – – + +++ p53Met173 Arg/Pro C/G Dup/N

26590 F/50 No 11y Gluteal 2 Lung/0 – � � – Arg/Arg G/G Dup/N

26592 F/72 No 0y Liver 2 – – + + – Arg/Pro C/G A11992/N

26594 F/55 No 29y Leg proximal 3 Retroperitoneal/25 – � � – Arg/Pro G/G N/N

28650 F/16 No 12 Intraspinal, lumbar 2 – 12 + + – Arg/Arg G/G N/N

27722 M/69 No 3 Leg proximal 3 – 3 + +++ – Arg/Arg G/G N/N

28652 M/73 No 15 Arm distal 1 – 15 ++ � – Arg/Arg G/G N/N

27724 M/47 No 14y Leg proximal 3 Lung/7 – + + – Arg/Pro G/G Dup/N

30342 F/34 No 5y Intraspinal 2 Skin/4 2 +++ + – Arg/Pro C/G Dup/N

27732 M/55 No 23 Gluteal 3 Lung/0 – � � – Arg/Pro G/G N/N

ID = tumor identification number; NF1 = NF1 status of the patient; Grade = tumor grade according to the modified FNCLCC system; IF = immunofluorescence;

IHC = immunohistochemistry; p53 mut = p53 mutation status; p53 pol = p53 polymorphism; N = C11992; Dup = 16-bp duplication.

(y) Deceased patient.
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DNA and lysates. Tumor areas were scraped from slides for

subsequent extraction. In case of frozen tissues, DNA was

extracted using Trizol reagent (Invitrogen, Karlsruhe, Ger-

many). DNA extraction from paraffin-embedded material

was carried out according to the QIAamp DNA Mini Kit

protocol (Qiagen, Hilden, Germany).

Immunofluorescence and Immunohistochemistry

Monoclonal MMP-13 antibody (AB-4; 1:50 dilution) from

Oncogene (Bad Soden, Germany) and anti-mouse Cy3–

conjugated antibody (1:100 dilution) from Dianova (Hamburg,

Germany) were used for immunofluorescence. p53 (mono-

clonal antibodyDO-7, 1:100 dilution; DakoCytomation, Hamburg,

Germany) was detected by immunohistochemistry using a

Ventana Benchmark immunostainer (Ventana, Strasbourg,

France). Tissues were counterstainedwith hematoxylin. Anti-

gen presentation was enhanced by heating. Negative con-

trols without primary antibodies were performed and did not

produce signals. Scoring was performed according to the per-

centage of immunopositive cells. Two different scoring sys-

tems were used for p53 immunohistochemistry [(+) 1–5%

positive cells; (++) 6–25% positive cells; (+++) > 25% positive

cells] and MMP-13 immunofluorescence [(+) 5–30% of

stained cells; (++) 31–60% of stained cells; (+++) > 60% of

stained cells].

Immunocytochemistry

MPNST (2 � 104 cells/well) were seeded on Permanox

chamberslides (Nunc, Wiesbaden, Germany). Cells were

fixed with methanol on the following day. p53 and MMP-13

antibodies were diluted 1:50 and incubated overnight at

4jC. DAPI I (Vysis, Inc., Downers Grove, IL) and secondary

Cy3-labeled antibody (1:100 dilution; Dianova) were incu-

bated simultaneously for 1 hour at room temperature. Nega-

tive controls without primary antibodies were carried out and

did not produce signals.

Western Blot Analysis

Tumor protein lysates were heat-denatured and run on a

7.5% acrylamide gel. After transfer of proteins, the nitro-

cellulose membrane was blocked in 5% nonfat milk with 0.5%

Tween–Tris–buffered saline for 1 hour and incubated over-

night at 4jC with p53 (DO-7, 1:300 dilution; DakoCytomation)

or MMP-13 (AB-4, 1:300 dilution). Membranes were then

incubated for 1 hour with biotin-conjugated second antibodies,

washed, and incubated for 1 hour with Extravidin (1:2000

dilution) from Sigma (Munich, Germany). Visualization was

performed with ECL (Amersham Biosciences, Freiburg, Ger-

many). Lysates were adjusted to b-actin expression levels.

The anti–b-actin antibody AC-15 (1:6000 dilution) was ob-

tained from Sigma.

Single-Strand Conformation Polymorphism and Sequencing

Electrophoresis of polymerase chain reaction (PCR) prod-

ucts was performed on a polyacrylamide gel at 500 V and

6 mA for 18 hours. All PCR products showing mobility shift

were reanalyzed by an independent PCR and were compared

with PCR products generated from blood DNA of corre-

sponding patients. Aberrantly migrating bands were excised,

and DNA was extracted. After reamplification, PCR products

were sequenced bidirectionally on a semiautomated se-

quencer (model 377; Applied Biosystems, Foster City, CA).

TP53 sequence [X54156; National Center for Biotechnology

Information (NCBI) database] was used as the reference se-

quence. Primer sequences, amplifications, and gel conditions

are available on request.

Statistical Methods

SPSS version 14.0 (SPSS, Inc., Chicago, IL) was used for

statistical analysis. Survival rates were determined using the

Kaplan-Meier method and the log rank test. The mean age

differences between groups were examined using t test.

Association of parameters was assessed with Pearson corre-

lation, Fisher’s exact test, or chi-square test. P < .05 was

considered significant.

Results

Information on 36 patients and MPNST is provided in Table 1.

Twenty-two MPNST patients were diagnosed with NF1,

whereas 14 patients developed sporadic MPNST. The fe-

male/male ratio in both groups was 1:1. The mean age at

diagnosis was 32.6 years for patients with NF1 and 52.4 years

for patients without NF1 (t test, P = .003).

MMP-13 Expression and p53 Accumulation

MMP-13 and p53 expressions were analyzed by immuno-

histochemistry and/or Western blot analysis. MMP-13 was

detected in 58% (21 of 36) of MPNST and was generally

restricted to distinct areas of the tumor. However, MPNST

from three patients (8%) showed homogeneous MMP-13

distribution, including > 60% of the cells (Figure 1C). p53 was

detected in 78% (28 of 36) of MPNST. Five pNF cases and

nine dNF cases that were also analyzed for the presence of

MMP-13 and p53 were negative for both (data not shown).

The frequencies of MMP-13 expression in sporadic (8 of

14; 57%) and NF1-associated (13 of 22; 59%) MPNST were

similar. Although not significant, p53 was detected more

often in NF1-associated tumors (19 of 22; 86%) than in spo-

radic ones (9 of 14; 64%) (Fisher’s exact test, P = .216).

Immunocytochemistry of S462 cells demonstrates nuclear

accumulation of p53 (Figure 1C) and cytoplasmic localiza-

tion of MMP-13 (Figure 1, A and B).

Detection of MMP-13 and p53 by Western blot analysis

was performed with five MPNST and MPNST cell lines S462

and ST88-14 (Figure 1). MMP-13 expression was detected

in three MPNST (21914, 24472, and 21852) and in both cell

lines. Bands at 48 kDa correspond to the active form of

MMP-13. p53 was detected in MPNST 21914 and 24472

and in cell line S462. Western blot analysis results were in

accordance with immunohistochemistry and cytochemistry.

TP53 Mutations and Polymorphisms

Ten coding exons (exons 2–11) of TP53, including the

exon–intron boundary and promoter sequence (exon 1), were

screened for sequence alterations. The results are compiled

MMP-13 and p53 in Progression of MPNST Holtkamp et al. 673
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in Table 1. Somatic mutations were detected in 4 (11%) of

36 MPNST in exons 4, 5, 7, and 9. MPNST 24256 from

an NF1 patient carried a nonsense mutation at position

321 (AAA!TAA). MPNST 24472 and the corresponding cell

culture S462 carried a mutation in codon 110 (CGT!CCT;

Arg!Pro). Two TP53 mutations were detected in sporadic

MPNST. MPNST 26582 carried a mutation in codon 258

(GAA!GCA; Glu!Ala), and MPNST 26588 carried a muta-

tion in codon 173 (GTG!ATG; Val!Met).

We detected four different polymorphisms in intron 2, in-

tron 3, and exon 4 of TP53 (Table 2). Thirteen patients were

heterozygous, and one was homozygous for the C11827 allele

in intron 2. The allele frequency was f(C11827) = 0.21. Eleven

patients were heterozygous for the 16-bp duplication in in-

tron 3 [ f(dup16 bp) = 0.15], and three patients were hetero-

zygous for the A11992 allele corresponding to f(A11992) =

0.041. Fifteen patients were heterozygous for the p53Pro72

allele corresponding to f(Pro72) = 0.21 and f(Arg72) = 0.79.

To exclude the possibility of loss of heterozygosity (LOH) in

tumors, corresponding blood DNA was examined in the case

of codon 72 polymorphism.

Statistical Analysis

A highly significant association between p53 immuno-

positivity and MMP-13 immunopositivity was found (Fisher’s

exact test, P = .005). Taking different staining levels into

account, the association was still significant (Pearson cor-

relation, P = .02). TP53 mutations were not significantly as-

sociated with MMP-13 expression (Fisher’s exact test, P =

.141) but with histologic grade (chi-square test, P = .029).

All MPNST with mutant TP53 were of histologic grade 3.

MMP-13 expression was significantly associated with re-

lapse (Fisher’s exact test, P = .019). When MMP-13 stain-

ing levels were taken into account, the association was even

more significant (Fisher’s exact test, P = .013). In detail,

MPNST without MMP-13 expression relapsed in only 20%

of cases. With increasing MMP-13 expression, the propor-

tion of patients with relapse increased [(+) 46% with relapse;

(++) 80% with relapse; and (+++) 100% with relapse].

Cumulative survival analysis was of borderline significance,

as shown in Figure 2A (log rank test, P = .055). The presence

of metastasis was associated with p53Pro72 polymorphism

(Fisher’s exact test, P = .041) and correlated with a shorter

survival of patients (log rank test, P = .0007) (Figure 2B). No

significant association was detected for MMP-13 expression

with p53Pro72 polymorphism. Furthermore, MMP-13 was not

linked to metastasis.

Discussion

MMP-13 Expression in MPNST

More than half of the 36 MPNST analyzed expressed

MMP-13. MMP-13 expressions were similar in NF1-associated

Figure 1. Western blot analyses of MPNST and MPNST cell lines S462 and

ST88-14 with antibodies to MMP-13, p53, and �-actin. (A–D) Immuno-

cytochemistry of S462 cells. (A) Detection of MMP-13. (B) MMP-13 merged

with nuclear DAPI staining. (C) Detection of p53. (D) The same section with

DAPI filter. (E) MMP-13 immunofluorescence in MPNST 24748. Original mag-

nification, �400.

Table 2. TP53 Polymorphisms in MPNST Patients.

Localization DNA Alteration Cases (n) Allele Frequency of

MPNST Patients

Allele Frequency

of Controls

Intron 2 Nucleic acid 11827 G!C 13 (heterozygous), 1 (homozygous) 0.21 (C11827) 0.31 (C11827)

Intron 3 Nucleic acid 11951 Duplication, GGGGACCTGGAGGCT 11 (heterozygous) 0.15 (16-bp dup) 0.16 (16-bp dup)

Intron 3 Nucleic acid 11992 C!A 3 (heterozygous) 0.032 (A11992) 0.041 (A11992)

Exon 4 Codon 72 CGC!CCC 15 (heterozygous) 0.21 (p53Pro72) 0.26 (p53Pro72)

The position of polymorphisms is given according to reference X54156 (NCBI database).
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and sporadic MPNST, and were associated with a higher risk

for recurrence. We detected the expression of MMP-13 in

MPNST but not in 14 neurofibromas, further supporting an

association with malignancy. This assumption is in accor-

dance with a study reporting that MMP-13 is expressed in

carcinomas but is generally absent in premalignant or benign

lesions [23].

TP53 Mutation and MMP-13 Expression

Previous studies have reported that MPNST harbor TP53

mutations. However, the proportion of MPNST carrying mu-

tant TP53 differs strongly among those studies [4–6,24].

This may be explained by the analysis of small tumor panels.

In addition, most studies restricted their analysis to selected

TP53 exons. We analyzed TP53 mutation frequency in

a larger panel of MPNST screening all coding exons. Fur-

thermore, we determined whether an association between

TP53 status and MMP-13 expression is present. It has

been previously shown that wild-type p53 represses the

MMP-13 promoter and that this effect could be reversed by

the overexpression of several p53 mutants [20]. p53Gly 281

mutant even stimulated MMP-13 promoter up to two-fold to

three-fold. Based on these observations, we asked whether

MMP-13 expression in MPNST is linked to mutant TP53.

Our analysis revealed that mutant TP53 is rare in MPNST.

Although all four MPNST with TP53 mutation (11%) ex-

pressed MMP-13, the association was not significant. Be-

cause most MMP-13–positive MPNST carried wild-type

TP53, mutant p53 is not likely to be a major driver of MMP-

13 expression in MPNST. Factors such as interleukin-1,

tumor necrosis factor-a, tumor growth factor-b (TGF-b),
keratinocyte growth factor, basic fibroblast growth factor,

acidic fibroblast growth factor, platelet-derived growth fac-

tor, and epidermal growth factor have been reported to drive

MMP-13 expression in different tumors [25,26]. Most of

these growth factors have been shown to be expressed

in nerve sheath tumors [27] and may, therefore, induce

MMP-13 expression in MPNST. TP53 mutation frequency

in sarcomas has been evaluated in many studies and oc-

curs in 10% to 30% [28,29]. Therefore, our data showing

that 11% of MPNST carry TP53 mutations fit within this

range. TP53 mutations correlate with histologic grade (all

MPNST with mutant TP53 were of histologic grade 3). An

NF1 mouse model is based on the haploinsufficiency of Nf1

and Trp53. These mice develop high-grade sarcomas, in-

cluding MPNST [30,31]. However, MPNST are uncommon

in mice and humans with hereditary defects in TP53 (Li-

Fraumeni syndrome). Taken together, these observations

suggest that mutant p53 plays a minor role in humanMPNST

and that other gene alterations must also contribute to their

development.

p53 Immunoreactivity Is Linked to MMP-13 Expression

Although no significant association between mutant TP53

DNA sequence and MMP-13 expression existed, we detected

a strong association between p53 and MMP-13 expression.

The majority of MPNST were p53-immunopositive (78%).

This is in accordance with a previous study that found p53

positivity in 83% of MPNST [5]. We provide evidence that

p53 expression in peripheral nerve sheath tumors is, simi-

lar to MMP-13, restricted to MPNST and absent in neuro-

fibroma. Immunodetection of p53 may hint toward mutant

TP53. Mutant p53 often accumulates in the nucleus because

its degradation is impaired. However, we and others did not

find a significant association between nuclear p53 and

mutant TP53 [5,29,32]. In fact, we show that the number

of p53-positive MPNST exceeds, by far, those carrying

mutant TP53. Nevertheless, all MPNST with mutant p53

were p53-immunopositive. p53 positivity without an under-

lying mutation suggests a stronger expression or a longer

half-life of p53. The strong overlap of p53 immunoreactivity

and MMP-13 expression may be explained by cellular

stresses (such as hypoxia) known to induce the expression

Figure 2. Kaplan-Meier curves showing (A) relapse-free survival in patients

with and without MMP-13 expression, and (B) cumulative survival of pa-

tients with and without metastasis.
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or stabilization of these proteins [33,34]. Our results fit to an

immunohistochemical study that detected increased levels

of p53 and TGF-b in areas of MPNST compared to adjacent

neurofibroma areas [35]. Notably, TGF-b is an inducer of

MMP-13 [36]. At first sight, it may appear contradictory

that p53 and MMP-13 are often coexpressed because wild-

type p53 has been described as a repressor of MMP-13

transcription. However, cytokines and growth factors, often

expressed in cancers, are MMP-13 inducers and may over-

ride the inhibitory effect of p53.

Western blot analysis results show that MMP-13 and p53

signals were stronger in the S462 cell line than in the origi-

nal MPNST 24472 (Figure 1). Mutant TP53 in these sam-

ples presumably results in accumulation of p53 most likely

due to impaired degradation. Stronger signals of MMP-13

and p53 in S462 cells compared to the primary tumor hint

toward a selection of subclones with these features during

culturing conditions.

TP53 Polymorphisms and Correlation with

Clinical Characteristics

The frequencies of TP53 variants in MPNST were com-

pared with data from controls published in earlier studies

(Table 2). The 16-bp duplication variant in intron 3 and the

polymorphism in exon 4 were compared to a German con-

trol group (n = 549) [37]. Intron 2 polymorphism was com-

pared to that of a study containing 154 individuals [38], and

the frequency of A11992 (intron 3) was compared to that of

Caucasian controls from the NCBI database. The allele dis-

tribution in MPNST patients was similar to that observed in

control groups. This observation indicates that these poly-

morphisms are unlikely to contribute to the development

of MPNST, although the 16-bp duplication in intron 3 has

previously been associated with an increased risk of can-

cers (Wang-Gohrke et al. [37], no. 2654). However, p53Pro72

was more frequently detected in MPNST patients with

metastasis (Fisher’s exact test, P = .041), and metastatis

correlated with shorter survival (log rank test, P = .0007)

(Figure 2B). This observation fits the functional differences

reported for this variant. p53Pro72 suppresses cellular

transformation less efficiently [39] and is less susceptible

than p53Arg72 to degradation by the human papillomavirus

18–encoded protein E6 [40]. In addition, p53Arg72 induces

apoptosis markedly better than p53Pro72 [41]. Therefore,

p53Pro72 may promote the development of metastasis

more than p53Arg72. Although not significant, an associa-

tion between increasing histologic grade and p53Pro72

polymorphism (chi-square test, P = .084) was present,

further supporting the idea of p53Pro72 contribution to ma-

lignant progression. In summary, our data are in accordance

with previous inconsistent reports that did not find a clear

correlation between general cancer risk and codon 72 poly-

morphism, but an association between p53Pro72 and

cancer progression, survival, age of onset, and response to

therapy [42].

Taken together, our data suggest that MMP-13 and p53

immunopositivities, but also p53Pro72 allele, are associated

with tumor progression. Therefore, MPNST patients with these

determinants may need a closer follow-up and more aggres-

sive therapy. Especially the absence of MMP-13 expression in

healthy tissues of adults makes MMP-13 an attractive thera-

peutic target. Furthermore, MMP-13 may serve as a marker for

malignant progression in MPNST.
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