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Abstract

This is a survey paper presenting selected results on Embeddings of categories, Homeomorphisms of products and coproducts
of spaces and Clones.
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Introduction

In 1976, at the IVth Prague Topological Symposium, M. Hušek and I delivered a joint talk “Categorical aspects
are useful for topology”. We were speaking about several themes where categorical aspects gave or at least inspired
some topological results. In 1986, at the VIth Prague Topological Symposium, there was a continuation: “Categorical
aspects are useful for topology—after 10 years”. In my talk presented at Xth Prague Topological Symposium, “Cat-
egorical aspects are useful for topology—after 30 years”, I tried to continue this tradition. I prepared to speak about
three themes, namely

1. Embeddings of categories,
2. Homeomorphisms of products and coproducts of spaces,
3. Clones,

which were, more or less, influenced by categorical aspects. Because of time limitations, I was speaking only about
themes 2 and 3.

The present paper is a survey of selected results from all three themes. Methods of the proofs are outlined only very
seldom, but the references are always given so that the paper brings complete information about the results it describes.
The concluding remarks outline a field of problems, possibly rich and promising, while single open problems appear
within the text.
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Finally, let me mention that very little knowledge of category theory is expected from the reader: only the definitions
of several basic notions.

1. Embeddings of categories

1.1. Older results on this topic are summarized in the monograph [16] by A. Pultr and myself. For the sake of com-
pleteness, I recall some facts from this book.

Definition. A full embedding F of a category K into a category H is a one-to-one functor of K onto a full subcategory
of H, i.e. for every pair a, b of objects of K, F sends the set K(a, b) of all K-morphisms with the domain a and the
codomain b bijectively onto H(F (a),F (b)).

1.2. Let me recall that a concrete category is a pair (K,U), where K is a category and U :K → Set is a faithful
[i.e. one-to-one on every set K(a, b)] functor of K into the category Set of all sets and all maps (sometimes called
“forgetful functor”). For every object a of K, U(a) is called the underlying set of a.

A category K is called concretizable if there exists a functor U :K → Set such that (K,U) is a concrete category.
Not all categories are concretizable—an example of non-concretizable category was given by J.R. Isbell in [6]. We
say that a category K is universal iff every concretizable category can be fully embedded into K.

1.3. Three basic topological results about full embeddings. The following three categories are universal:

TopO , the category of all topological spaces and all their open continuous maps (see [16], p. 245),
M UnifO , the category of all metric spaces and all their open uniformly continuous maps (see [16], p. 232),
Top Smg, the category of all topological semigroups and all their continuous homomorphisms (see [40]).

1.4. Applications of the above results. For every universal category K, there exists a congruence on it [i.e. a system

of equivalences
a,b∼ on every set K(a, b) such that they are preserved by the composition: (c

γ−→ a
α

⇒
β

b
δ−→ d) and

(α
a,b∼ β) implies (δαγ

c,d∼ δβγ )] such that the factor category K/∼ is hyperuniversal in the sense that it contains an
isomorphic copy of every category (not only of a concretizable one) as a full subcategory. This follows immediately
from the existence of a hyper-universal category H (in the Bernays–Gödel set-theory with the axiom of choice, its
existence is proved in [26] where it is called universal) and the Kučera theorem (see [11]) stating that for every
category L there exists a concretizable category C and a congruence ∼ on C such that C/∼ is isomorphic to L. In fact,
start from the hyperuniversal category H, find a concretizable C and a congruence ∼ on C such that C/∼ is isomorphic
to H, by the Kučera theorem; then fully embed the concretizable C into a given universal category K and extend the
congruence ∼ from the copy of C within K onto the whole K (we denote the extended congruence by ∼ again). Then
K/ ∼ contains a copy of H as a full subcategory and hence it is hyperuniversal [41].

Thus each of the three categories TopO,M UnifO and Top Smg has a congruence on it such that the corresponding
factor category is hyperuniversal.

Problem. Could such a congruence on TopO or on M UnifO or on Top Smg be described by means of the inter-
nal structure of objects of the category in question (such as, e.g., the homotopy classes of continuous maps or the
conjugacy classes of homomorphisms)?

1.5. In topology, the basic choice of morphisms are all continuous maps. But the category Top of all topological spaces
and all their continuous maps is not universal because of the constant maps, carefully avoided in TopO and in M UnifO
by the restriction to open maps only, and in Top Smg by the restriction to homomorphisms. If one simply removes the
constant maps, the resulting torso is generally not a category because the composite of two non-constant maps may
well be constant. Hence the notion of full embedding has to be adapted to this situation.

Definition. A one-to-one functor F :K → Top of a category K into the category Top is called almost full if, for
any K-objects a, b, the functor F sends the set K(a, b) precisely onto the set of all non-constant continuous maps
F(a) → F(b).
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1.6. Three basic topological results about almost full embeddings. Every small category (i.e., such that all its
morphisms form a set) can be almost fully embedded into

M Top, the category of all metric spaces and all their continuous maps ([27], see also [16], p. 218), and into
CompH, the category of all compact Hausdorff spaces and all their continuous maps ([29], see also [16], p. 257)

and every concretizable category can be almost fully embedded into

Par, the category of all paracompact spaces and all their continuous maps ([9], see also [16], p. 251).

1.7. An application of the above results. Let the embedded category K be a discrete category, i.e. all its morphisms
are the unit morphisms only. Then its almost full image is a rigid class of spaces, i.e. it is a class X of spaces such that

(i) cardX > 1 for every X ∈X [because the image of every unit morphism of K must be non-constant],
(ii) for every X,Y ∈X ,X �= Y , every continuous map X → Y is constant, and

(iii) for every X ∈ X , every continuous map X → X is either the identity or constant.

By the basic results of 1.6, M Top and CompH contain arbitrarily large rigid sets of spaces and Par contains even
a rigid proper class of spaces [because the category O of all one-element sets without non-identical morphisms is
discrete and it is concretizable (because the inclusion functor O → Set is faithful) though O is not small].

Do M Top and CompH also contain a rigid proper class of spaces? The positive answer to this question is proved
in [17] to be equivalent to the negation of the set-theoretical Vopěnka Principle VP. This principle is stated in the
monograph [7] as follows:

for every finitary first order theory, every class of its models such that none of these models
has an elementary embedding into another one, is a set.

Hence the categorical reasoning gives rather simple topological formulation of the negation of VP, namely the exis-
tence of a rigid proper class in CompH (or in M Top). In Par, the analogous statement is absolute.

1.8. Another application of the results in 1.6. Let the embedded category K have precisely one object, say a. Then
the whole category K is in fact the monoid K(a, a). An almost full embedding of K into M Top and into CompH gives
an essential strengthening of the classical result of de Groot [4] that

every group can be represented as the group of all homeomorphisms of a space onto itself.

This strengthening states that

every monoid can be represented as the monoid of all non-constant continuous selfmaps of a metric space
and of a compact Hausdorff space.

Let me mention explicitly that all the non-constant continuous selfmaps of a space do not form a monoid in general
because the composition of two such maps can be constant. But the above result states that for every monoid there
exists a metric (and a compact Hausdorff) space such that its non-constant continuous selfmaps are closed with respect
to the composition and they form a monoid isomorphic to the given one.

The reasoning gives a stronger result for countable monoids: then the space can be a compact metric space
(see [29]).

1.9. Simultaneous representations are investigated in [37,38,48]. The constructions there allow representation of
more monoids by a single space; for instance, for every monoid M1 and its submonoid M2,

• there is a Tychonoff space X such that M2 is isomorphic to the monoid of all non-constant continuous selfmaps
of X and M1 of its β-compactification βX (see [38]) or, more generally,

• there exists a space X such that M2 is represented by the non-constant continuous selfmaps of X and M1 of its
given reflection or its given coreflections whenever the reflection or the coreflection satisfy rather mild conditions
(see [48]),
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or every triple of monoids M1 ⊆ M2 ⊆ M3 can be represented by a single metric space X such that its non-constant
selfmaps which are non-expanding (i.e., distances-non-increasing) form a monoid isomorphic to M1, uniformly con-
tinuous a monoid isomorphic to M2 and continuous a monoid isomorphic to M3 (see [37]).

1.10. As mentioned in 1.3, the category Top Smg of all topological semigroups is universal. Recently, V. Koubek
started to investigate which varieties of topological algebras are universal. In [10], he characterized all the regular
varieties V of unary algebras such that the corresponding category TopV is universal. For non-unary varieties of
algebras, the analogous question remains open.

2. Homeomorphisms of products and coproducts of spaces

2.1. Let me start with the basic definition.

Definition. Let K be a category with finite products. A representation of a commutative semigroup (S, ·) by products
in K is any map

X :S → objK
of the underlying set S of the semigroup into the class objK of all objects of K such that

(i) X(s1 · s2) is always isomorphic to X(s1) × X(s2) and
(ii) if s �= s′, then X(s) is not isomorphic to X(s′).

Hence, in fact, we create “a large semigroup”
∏

K: elements of
∏

K are isomorphism types of objects of K, the
semigroup operation of

∏
K is given by forming products in K; the above representation of a semigroup (S, ·) by

products in K is then simply a semigroup embedding of (S, ·) into
∏

K.

2.2. Isomorphism types of structures and operations on them were investigated by A. Tarski and B. Jónsson, see [22],
but they were oriented to algebra and they investigated mainly the algebraic structures. The first topological result
on this topic was given by W. Hanf, who constructed a Boolean algebra B isomorphic to B3 = B × B × B but not
isomorphic to B2 = B ×B (see [5]). Hence, he constructed a representation of the cyclic group c2 = {0,1} by products
in the category Bool of all Boolean algebras. In fact, 1 + 1 + 1 = 1 in c2 precisely corresponds to B × B × B � B in
Bool; and, since B is not isomorphic to B2, putting

X(1) = B and X(0) = B2

we get precisely the representation of c2 in Bool in the sense of the above definition.

2.3. Generalizing and handling the Hanf’s method in more involved way, J. Adámek, V. Koubek and myself obtained a
representation of every Abelian group in Bool (see [1]). The main result about this topic was proved by J. Ketonen, who
constructed a representation of every countable commutative semigroup by products of countable Boolean algebras
(see [8]). He does not use the Hanf’s method but his proof is built on a deep analysis of the internal structure of
countable Boolean algebras. As a byproduct, he solved the long-open “Tarski cube problem” of whether there exists
a countable Boolean algebra B isomorphic to B3 but not to B2.

Problem. Which commutative semigroups have representation by products in Bool?

2.4. By means of the Stone Duality, we see that all the above results about representations by products of Boolean
algebras are results about representations by coproducts of topological spaces.

Let us investigate the dual problems, i.e. representations by products of topological spaces. The first space X

homeomorphic to X3 but not to X2 was constructed in 1973, see [28], and this space was already rather nice: it was
metric, separable and locally compact. However, the dual to the above Ketonen’s result is no more true.

2.5. YES and NO results. The Stone spaces of countable Boolean algebras are precisely compact metric 0-
dimensional spaces. And every compact metric 0-dimensional space X homeomorphic to X3 is already homeomorphic
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to X2 (see [32]) so that the cyclic group c2 does not have a representation by products within this class of spaces. But
this NO result is rather tightly surrounded by YES results. Any pair of the three properties

(comp. + metr. + 0-dim.)

suffices.

(i) Omitting the zero-dimensionality. A compact metric space X homeomorphic to X3 but not to X2 was constructed
in [30]. Later on, A. Orsatti and N. Rodino improved the result (see [15]): they constructed a compact metric
connected space X admitting the structure of a compact Abelian group, X homeomorphic to X3 but not to X2.

(ii) Omitting the metrizability. The first compact Hausdorff 0-dimensional space X homeomorphic to X3 but not to
X2 was constructed by V. Koubek and myself in [49]; later on, I added the separability (see [35]) (quite distinct
construction was created there; in the construction, the spaces, named Seq now, were used).

(iii) Omitting the compactness. The metric 0-dimensional space X homeomorphic to X3 but not to X2 was con-
structed by J. Vinárek in [50]; later on, I added the separability, see [36].

2.6. More general results. In all the above cases, more general results were obtained. In the compact cases (i) and
(ii), a representation of any finite Abelian group by products of the spaces in question was constructed. And in (iii),
J. Vinárek even constructed a representation of every commutative semigroup by products of 0-dimensional metric
spaces; and every countable commutative semigroup was proved to have a representation by products of separable
such spaces. Also the NO result is more general: no commutative semigroup having a non-trivial group part has a
representation by compact metric 0-dimensional spaces.

2.7. Sets of the Cantor discontinuum. Compact metric 0-dimensional spaces are, up to homeomorphism, just closed
subsets of the Cantor discontinuum C and we have the NO result for them. But the construction of representations
of all countable commutative semigroups in [36] proceeds in C as well and all the representing spaces are always
Fσδ-subsets of C. Thus, there is still a gap between these NO and YES results.

Problem. Does there exist an Fσ -subset X of C homeomorphic to X3 but not to X2?

2.8. The countable spaces. The situation concerning the representability by products of countable spaces is in essence
clarified: every countable commutative semigroup has a representation

• by products of countable paracompact spaces, see [33] (in the construction, the spaces, called Seq now, are used);
• by products of countable Hausdorff spaces with countable weight, see [34].

In the last result, Hausdorff spaces cannot be replaced by T3-spaces, otherwise we get NO result: such spaces are
already metrizable and a countable metric space X homeomorphic to X3 is already homeomorphic to X2, see [31].

2.9. Simultaneous representations by products. Let K and H be categories with finite products and let
∏

K and∏
H be their “large semigroups” as in 2.1. If a functor F :K →H preserves finite products, it determines a semigroup

homomorphism
∏

K → ∏
H in the evident way; let us denote it by

∏
F .

Given a semigroup homomorphism h :S → S′, its simultaneous representation by products in F :K → H consists
of semigroup embeddings g :S → ∏

K and g′ :S′ → ∏
H such that the square

S
h

g

S′

g′

∏
K

∏
F ∏

H

commutes, i.e. g′ ◦ h = ∏
F ◦ g.

In [39], every semigroup homomorphism h :S → S′ is proved to have a simultaneous representation by products
in the functor

Metr
c−→ Metrc,
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where Metr denotes the category of all metric spaces and all their non-expanding maps, Metrc is its subcategory of all
complete spaces and c is the completion functor (see [39]).

More complex forms of simultaneous representations by products are introduced in [39] (the definition is evident)
and every diagram

S1
h1−→ S2

h2−→ S3

consisting of arbitrary commutative semigroups S1, S2, S3 and their arbitrary homomorphisms h1, h2 is proved in [39]
to have a simultaneous representation by products in the diagram

Metr
Fm−→ M Unif

Fu−→ M Top,

where Metr or M Unif or M Top are the categories of all metric spaces and their non-expanding or uniformly continu-
ous or continuous maps and Fm,Fu are the corresponding forgetful functors.

A suitable choice of S1, S2, S3 and h1, h2 gives, for example, the following statement: For every triple of natural
numbers a, b, c there exists a metric space X such that

Xp is homeomorphic to Xq iff p ≡ q mod a,

Xp is unif. homeomorphic to Xq iff p ≡ q mod ab,

Xp is isometric to Xq iff p ≡ q mod abc.

3. Clones

3.1. In 1991, I met John R. Isbell at the category theory conference in Montreal. He gave me the following problem:
whether there exist two topological spaces with isomorphic monoids of all continuous selfmaps and non-isomorphic
clones. And I have learned that the clone cloX of a topological space X is the full subcategory of Top generated by all
its finite powers X0,X,X2, . . . ,Xn, . . . , n ∈ ω. Its n-segment clon X is its full subcategory generated by X0, . . . ,Xn.

3.2. Let me recall that the monoid M(X) of all continuous selfmaps of X carries considerable information about the
space X itself. You can always recover the underlying set of X: points of X can be identified with constant selfmaps
of X and these are precisely the left zeros of M(X) [i.e., a map c :X → X is constant iff c ◦ f = c for every map
f :X → X]. The topology of X can be recovered from M(X) whenever X contains a subspace inductively generating
its topology, e.g., two-point space for 0-dimensional Hausdorff spaces or an arc for Tychonoff spaces (see [14]).
Hence to find spaces X,Y with M(X) isomorphic to M(Y) but cloX non-isomorphic to cloY , one has to look for
them outside these classes of spaces. I succeeded in solving of the Isbell’s problem in [42], using semirigid spaces.

3.3. Semirigid spaces

Definition. Let B be a closed subset of a space X. Then X is called B-semirigid if every continuous f :X → X is
either the identity or constant or f (X) ⊆ B .

And a space X = (P, t) is called extremally B-semirigid if B is its closed discrete subset and for arbitrary Haus-
dorff topology τ on B , the space (P, τ̄ ) is B-semirigid whenever it is a Hausdorff space and τ̄ is an extension of τ

onto P coarser than t and coinciding with t on the subset P \ B .

The main result of [42] states that, whenever B is a subset of a set P such that cardB = card(P \ B) � 2ℵ0 , then
a metric ρ on P exists such that X = (P,ρ) is extremally B-semirigid. In the construction, Cook continuum [2] is
used. But once having the extremally B-semirigid space X constructed, you can forget its internal structure and you
can work with it as with a “black box”.

3.4. The principal advantage of extremally B-semirigid spaces is that they allow one to construct B-semirigid spaces
satisfying some recursive conditions. Let us describe it in its simplest case: given a one-to-one map h of P onto B

with cardB = card(P \ B) � 2ℵ0 , you can construct a topology t on P such that h is a homeomorphism of (P, t)

onto (B, t/B) [this is the recursive condition because t appears both in the domain and in the codomain of h] and
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still the space (P, t) is B-semirigid. The topology t is constructed by iterating the following procedure: if, for an
ordinal α, tα is already constructed, you shift it by h onto B , and tα+1 is its “suitable” extension. If this procedure
stops, you have a topology t such that h is a homeomorphism of (P, t) onto (B, t/B). Important: if the starting
topological space (P, t0) is extremally B-semirigid and the “suitable” extensions in the steps from tα to tα+1 are
done so that the requirements in the definition of the extremal B-semirigidity are satisfied [particularly, tα+1 re-
stricted to P \ B coincides with the restriction of tα (hence of t0) on this set], then the resulting space (P, t) is
B-semirigid.

Suitable (more complex and more sophisticated) recursive conditions together with the B-semirigidity of the re-
sulting space allow one to obtain spaces whose clones have some required properties. This method is used in almost
all subsequent constructions.

3.5. Problem 1 of the monograph [23] sounds similarly to the Isbell’s problem. W. Taylor asks there whether the first
order language of clone theory has, for topological spaces, a more expressive power than the first order language of
monoid theory, i.e., whether there exist spaces X,Y with the monoids M(X) and M(Y) elementarily equivalent in the
language of monoid theory such that their clones are not elementarily equivalent in the language of clone theory. Let
me recall briefly some data about these languages (for details see [24]).

3.6. The first order language L of clone theory

(a) has ω sorts of variables; for cloX, the variables of the nth sort range over the set of all continuous maps Xn → X;
(b) it has n constants of the sort n, for every n ∈ ω; for cloX, these are precisely the product projections πn

i :Xn → X,

i ∈ n;
(c) it has countably many operational symbols Sn

m, acting on a variable of the mth sort and an m-tuple of variables of
the nth sort resulting in a variable of the nth sort; for cloX, Sn

m just substitutes, in continuous map g :Xm → X,
an m-tuple of continuous maps f0, . . . , fm−1 :Xn → X, i.e. in cloX, Sn

m(g;f0, . . . , fm−1) = h with

h(x0, . . . , xn−1) = g
(
f0(x0, . . . , xn−1), . . . , fm−1(x0, . . . , xn−1)

)
.

The basic formulas of L are the equalities of correctly formed expressions in the above data and, as usual, more
complex formulas are created from the basic formulas by means of logical connectives and quantifiers; sentences are
closed formulas and elementary equivalence means that precisely the same sentences are satisfied.

The first order language M of monoid theory is a fragment of L: it uses only variables of the 1st sort (for cloX,
ranging over continuous maps X → X), the operation S1

1 only (which is just the composition) and the unique constant

π
(1)
0 (which is just the identity). The first order languages Ln of n-segments of clones are “in between” variants of L

and M.

3.7. In [42], for every n ∈ ω, I constructed metric spaces X = (P,ρ) and Y = (P,σ ) such that

the n-segments clon X and clon Y of their clones are equal

(equal in the sense that they are formed by the same maps among the powers P 0, . . . ,P n of their common underlying
set P ) but

the (n + 1)-segments clon+1 X and clon+1 Y are not elementarily equivalent in the language Ln+1.

This solves both the Isbell’s problem and the Taylor’s problem because the equality implies the isomorphism and the
isomorphism implies the elementary equivalence.

However, the Isbell’s problem and the Taylor’s problem are distinct, as shown by J. Sichler and myself, see below.

Theorem. (See [18].) For every triple of positive natural numbers n1 � n2 � n3, there exist metric spaces X and Y

on a joint underlying set such that the n-segments of their clones are

equal iff n � n1,

isomorphic iff n � n2,

elementarily equivalent iff n � n3.
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3.8. Suitable modifications of the method described in 3.4 led to the following theorems:

Theorem. (See [25].) For every n ∈ ω there exists a space X such that clok X is isomorphic to clok Y precisely
when k � n where Y is a Tychonoff modification (or compactly generated modification or sequential modification or
countable modification) of X.

Theorem. (See [43].) For every n ∈ ω there exists a metric space X such that every continuous map Xk → X is
uniformly continuous precisely when k � n.

In [44], also non-expanding maps Xk → X are investigated.

3.9. The theorem of 3.7 and both theorems in 3.8 are special cases of the following general situation:
Let (K,U) and (H,V ) be concrete categories with concrete finite products, let F :K → H be a functor with

V ◦ F = U , i.e. preserving the underlying sets and maps. For any pair X1,X2 of objects of K with U(X1) = U(X2)

we can compare clones of the following four pairs of objects:

X1 and X2; X1 and FX1; X2 and FX2; FX1 and FX2.

We compare the n-segments of the clones with respect to the elementary equivalence, the isomorphism and, since all
the objects X1,X2,FX1,FX2 have the same underlying set, also to the equality [equality in the sense of 3.7]. For
brevity, denote

1∼ the equality,

2∼ the isomorphism, and
3∼ the elementary equivalence,

and put

r(i) = sup
{
n; clon X1

i∼ clon X2
}
,

s(i) = sup
{
n;n clon FX1

i∼ clon FX2
}
,

t
(i)
j = sup

{
n; clon Xj

i∼ clon FXj

}
, j = 1,2.

Hence we have a 3 × 4 matrix

M =
⎛
⎜⎝

r(1) s(1) t
(1)
1 t

(1)
2

r(2) s(2) t
(2)
1 t

(2)
2

r(3) s(3) t
(3)
1 t

(3)
2

⎞
⎟⎠

of elements of {0,1, . . . ,∞}. The matrix M necessarily has the following properties:

(α) all columns are non-decreasing; this is a trivial consequence of the fact that the equality implies the isomorphism
and the isomorphism implies the elementary equivalence;

(β) all rows are grounded in the sense that no entry of the quadruple is strictly smaller than the remaining three; this

is a trivial consequence of transitivity: for instance, if n � t
(i)
j , j = 1,2, and n � s(i), i.e. clon Xj

i∼ clon FXj and

clon FX1
i∼ clon FX2, the mere transitivity of

i∼ gives clon X1
i∼ clon X2, and hence n � r(i).

Definition. A 3 × 4 matrix A of elements of {0,1, . . . ,∞} is called admissible if it satisfies (α) and (β).

The main question. For which functors F :K → H every admissible matrix A can be realized by F (in the evident
sense that there exist objects X1,X2 in K such that the matrix M obtained from them by the above described procedure
is equal to the given matrix A)? In [19], J. Sichler and I gave some partial answers in the theorems quoted below.
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Theorem. (See [19].) Every admissible matrix can be realized by the forgetful functor M Unif → M Top.

3.10. Topological modifications. Let K be a full subcategory of Top closed with respect to finite products. A functor

m :K → K
is called a lower (or an upper) topological modification if m ◦ m = m, m preserves the underlying sets and maps and,
for every space X in K, the identity map of its underlying set is continuous as a map mX → X (or as a map X → mX)
(see [3]).

Lower Modification Theorem. (See [19].) Let m :K →K be a lower topological modification such that

(a) K contains all metrizable spaces and mX = X for them;
(b) K is closed with respect to closed subspaces and m preserves them;
(c) there exists a Hausdorff totally disconnected space X0 in K such that mX0 �= X0 and mX0 is metrizable.

Then m realizes all admissible matrices.

The reader can verify herself (himself) that many lower modifications satisfy the mild conditions in the theorem.
There is also an Upper Modification Theorem in [19], but since its formulation is rather complicated I omit it here.

Suffice it to say that the Tychonoff modification satisfies its hypothesis, so that it also realizes all admissible matrices.

Problem. Which uniform modifications (i.e. modification on subcategories of the category Unif of all uniform spaces
and all uniformly continuous maps) realize all the admissible matrices? This problem has not yet been attacked.

3.11. Clone properties and monoid properties. Every sentence s of the first order language of clone theory (or of
monoid theory) determines a topological property because the class of all spaces X for which cloX satisfies s is closed
with respect to homeomorphic images. Let us call a topological property a clone property (or a monoid property) iff
it can be expressed by a sentence s of the language of clone theory (or monoid theory).

In the previous proofs, clone properties were heavily used, but sentences determining them were never written out
in whole because they would be too long. There is a natural question whether there is a short and simple sentence s

of the language of clone theory such that the corresponding clone property is distinct from all the monoid properties.
Here is such a sentence (where f (2) denotes a variable of the sort 2 and g(1) a variable of the sort 1):

(∀f (2))(∃g(1))
((

f (2) = S2
1(g(1);π(2)

0 )
) ∨ (

f (2) = S2
1(g(1);π(2)

1 )
))

.

Informally. Every continuous map f :X2 → X factorizes through a product projection.

Spaces with this property were called in [45,46]

coconnected spaces.

Why use this funny name?

3.12. The duality in category theory consists of reversing arrows and adding the syllable CO to the corresponding
notions: products × coproducts.

Hence, entering the “dual world” we have coclones instead of clones, the first order language of coclone theory and
coclone properties (but monoid properties remain monoid properties). Connectedness is a coclone property determined
by the following sentence of coclone theory (written informally): a space X is connected iff

every continuous f :X → X + X factorizes through a coproduct injection.

This is precisely the sentence dual to the above sentence of the clone theory defining the coconnected spaces. Thus

connectedness is a coclone property and

coconnectedness is a clone property dual to it.
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3.13. Let us stay in the “dual world” for the following question: is the connectedness distinct from all the monoid
properties? The answer is trivial

YES within the class of all spaces: the discrete and the indiscrete spaces on a set P have the same monoid of all
continuous selfmaps and if cardP > 1, the indiscrete space is connected and the discrete space is not.

NO within the class of all T1-spaces. It is expressed, e.g., by the following monoid sentence (since all the variables
are of the sort 1, we omit the superscript (1)):

¬((∃g)(∃a)(∃b)((¬(a = b)) ∧ c(a) ∧ c(b)

∧ ((∀x)(c(x) �⇒ (S1
1(g, x) = a) ∨ S1

1(g, x) = b))))

∧ ((∃y)(S1
1 (g, y) = a)) ∧ (∃z)(S1

1 (g, z) = b)))),

where c(u) ≡ (∀v)(S1
1(u, v) = u).

Informally. There exists no continuous g :X → X such that the image Img consists precisely of two distinct points.
The answer is NO already in the class of all T0-spaces, but there the monoid sentence expressing connectedness is
longer.

3.14. Let us return to our “non-trivial” world now. In which classes of spaces is coconnectedness distinct from all
monoid properties? Spaces X and Y with the same monoids M(X) and M(Y) such that Y is coconnected but X is not
were constructed

within the class of Hausdorff spaces, in 2000 (see [45]),
within the class of Tychonoff spaces, in 2004 (see [20]),
within the class of metrizable spaces, recently (see [46]).

3.15. Coconnectedness makes sense in any category with finite products.

Definition. Let (K,U) be a concrete category with finite products. It is called c-comprehensive (= comprehensive
with respect to coconnectedness) if it has objects X and Y with the same underlying set and the same endomorphism
monoids such that precisely one of them is coconnected.

Theorem. (See [20].) The categories Tych, Unif and Metr are c-comprehensive.

3.16. A kind of “simultaneous c-comprehensivity” is given by the following definition:
Let (K,U) and (H,V ) be concrete categories with finite products, F :K → H a finite-products-preserving functor

such that V ◦ F = U . The functor F is called c-comprehensive iff there are objects X,Y in K such that

U(X) = U(Y ) = V (FX) = V (FY),

all the endomorphism monoids M(X),M(Y ),M(FX),M(FY) are formed by the same selfmaps of the set U(X) and

X is not coconnected in K (hence FX in H) and
FY is coconnected in H (hence Y in K).

Clearly, if F is c-comprehensive then both the categories K and H are c-comprehensive. The converse is not true in
general, see the theorem below.

Theorem. (See [46].) Though all the categories

Metr, M Unif, M Top

are c-comprehensive, the forgetful functors Metr → M Unif and Metr → M Top are not c-comprehensive, while the
forgetful functor M Unif → M Top is c-comprehensive.
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3.17. Concluding remarks. There are many interesting clone and monoid properties, e.g., the image determining
property ID (see [47]):

if continuous maps f,g :X → X satisfy Imf = Img then f = g,
and its n-variant n-ID,

if continuous maps f,g :Xn → X satisfy Imf = Img, then
f = g ◦ p, where p only permutes coordinates.

It is not difficult to prove that

m-ID �⇒ n-ID whenever n � m.

Is the converse implication also true? Or does there exist a space X which is ID but not 2-ID? In which classes of
spaces such a space exists? Within which classes of spaces is 2-ID a monoid property? There are many such questions.
Although A. Barkhudaryan observed that none of the “usual” topological properties is a clone property [because there
are rigid spaces X and Y on a set P with cardP = 2ℵ0 (hence they have the same clone, see [23]) such that X is
compact metric while Y is not a Hausdorff space; thus no class of spaces contained in the class of Hausdorff spaces
and containing the class of all compact metric spaces is determined by a sentence of the language L], above results
on clone properties give a deeper insight into them. E.g., given a sentence s of the language L, in which classes of
spaces it is equivalent to a monoid sentence, or s is equivalent to another given sentence s′; or do there exist sentences
s and s′ equivalent within a class of spaces, but not equivalent within a larger class. Thus, the investigation of clone
properties offers a rich and possibly interesting field of problems.

Finally, last but not least, this field of problems is greatly relevant to other parts of mathematics: clones on a set
and abstract clones are heavily used in universal algebra (see, e.g., [21]), and under the name “algebraic theory” in the
categorical approach to universal algebra (see [12,13]). This motivated W. Taylor in [23] to initiate his investigation
of clones in topology.
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