Cyclotomic numbers and primitive idempotents in the ring $\text{GF}(q)[x]/(x^{p^n} - 1)$

Anuradha Sharma,1 Gurmeet K. Bakshi, V.C. Dumir, and Madhu Raka*

Department of Mathematics, Centre for Advanced Study in Mathematics, Panjab University, Chandigarh 160014, India

Received 26 June 2003; revised 20 January 2004

Communicated by Vera Pless

Abstract

Let q be an odd prime power and p be an odd prime with $\gcd(p, q) = 1$. Let order of q modulo p be f, $\gcd(p-1, q) = 1$ and $q^f = 1 + p\lambda$. Here expressions for all the primitive idempotents in the ring $R_{p^n} = \text{GF}(q)[x]/(x^{p^n} - 1)$, for any positive integer n, are obtained in terms of cyclotomic numbers, provided p does not divide λ if $n \geq 2$. The dimension, generating polynomials and minimum distances of minimal cyclic codes of length p^n over $\text{GF}(q)$ are also discussed.

© 2004 Elsevier Inc. All rights reserved.

Keywords: Cyclic codes; Cyclotomic cosets; Idempotents; Periods

1. Introduction

Let $\text{GF}(q)$ be a field of prime power order q, q odd. Let $m \geq 1$ be an integer with $\gcd(q, m) = 1$. Let $R_m = \text{GF}(q)[x]/(x^m - 1)$. A cyclic code of length m over $\text{GF}(q)$ is an ideal in the ring R_m. The set $\{0, 1, \ldots, m - 1\}$ is divided into disjoint cyclotomic cosets C_s, $0 \leq s \leq m - 1$, given by $C_s = \{s, sq, sq^2, \ldots, sq^{m-1}\}$ modulo m, where m_s is the smallest positive integer such that $sq^{m_s} \equiv s \pmod{m}$. If α denotes a primitive mth root of unity in some extension field of $\text{GF}(q)$, then the polynomial

*Corresponding author.
E-mail address: mraka@pu.ac.in (M. Raka).

1 Research supported by N.B.H.M., India is gratefully acknowledged.
\(M^{(s)}(x) = \prod_{i=0}^{l} (x - \lambda^i)\) is the minimal polynomial of \(\lambda^i\) over \(GF(p^n)\) and the ideal \(M_s\) generated by \(\lambda^{m-1}\) is a minimal ideal in \(R_m\) (For reference see [12] and Chapter 8 of [8]). Every cyclic code of length \(m\) over \(GF(q)\) has a unique generator \(e(x)\) which is also an idempotent, i.e. \((e(x))^2 = e(x)\). The generator idempotent of the minimal ideal \(M_s\) is called the primitive idempotent and is denoted by \(\theta_s(x)\). It is known that

\[
\theta_s(x^j) = \begin{cases}
1 & \text{if } j \in C_s, \\
0 & \text{if } j \notin C_s.
\end{cases}
\]

(1)

Any \(q\)-ary cyclic code of length \(m\) is a direct sum of the minimal ideals, generated by the primitive idempotents in \(R_m\). Thus the problem is to determine the primitive idempotents.

Construction of binary idempotents from the cyclotomic cosets is easy. In general, however, as stated by Pless [11, Section 3, p. 95], “we do not have much information about the codes generated. Only in special situations do we know the dimension.”

We consider non-binary cyclic codes only, i.e. we take \(q\) to be always odd. Berman [1, p. 22] gave explicit expression (without proof) for all the primitive idempotents in \(R_{p^n}\), where \(p, q\) are odd primes and \(q\) a primitive root modulo \(p^n\); Arora and Pruthi [9] verified it. Pruthi and Arora [10] also obtained all the primitive idempotents in \(R_{2p^n}\), where \(p\) is an odd prime and \(q\) a primitive root modulo \(2p^n\).

In a previous paper [4], Bakshi and Raka have derived all the primitive idempotents in the ring \(R_{p^n\ell}\), where \(p, \ell\) are distinct odd primes, \(q\) a primitive root modulo \(p^n\) and also modulo \(\ell\), with \(\gcd(\phi(p^n), \phi(\ell)) = 1\). Bakshi and Raka [3] obtained all the primitive idempotents in \(R_{2m, m \geq 3}\), when \(q \equiv 3\) or \(5 \pmod{8}\). Later the conditions on \(q\) were dropped and for all odd prime power \(q\), Bakshi et al. [2] derived all the primitive idempotents in \(R_{2m, m \geq 3}\).

In this paper, we generalize the result of Berman [1]. We take \(q\) to be an odd prime power, not necessarily a primitive root mod \(p^n\), where \(p\) is an odd prime, \(\gcd(p, q) = 1\). Let order of \(q\) modulo \(p\) be \(f\) and \(q^f = 1 + p\lambda\). Further suppose that \(p\) does not divide \(\lambda\), if \(n \geq 2\). Let \(\gcd(e, q) = 1\), where \(p = 1 + ef\). We give an algorithm to determine all the primitive idempotents in the ring \(R_{p^n} = GF(q)[x]/(x^{p^n} - 1)\), some of whose coefficients are eigenvalues of a special matrix \(\mathcal{A}\) (see Theorem 3, Section 4). When \(q\) is a primitive root mod \(p^n\), then \(f = p - 1\) and the result of Berman [1] follows as a corollary (see Corollary 2). In Corollary 3, we obtain all the primitive idempotents when \(e = 2\). The primitive idempotents of the quadratic residue codes mod \(p\) (see [8, Theorem 4, Chapter 16]) follow as a special case from Corollary 3. In Section 2, we obtain all the cyclotomic cosets modulo \(p^n\) (see Theorem 1). In Section 3, cyclotomic numbers and periods are defined and it is proved that the periods are eigenvalues of a special matrix \(\mathcal{A}\), occurring in a specific order (see Theorem 2). We also discuss, in Section 5, the dimension, generating polynomials and minimum distances of minimal cyclic codes of length \(p^n\). In Section 6, we give examples of all the ternary minimal cyclic codes of length 23 (here \(e = 2\)) and all the ternary and 5-ary minimal cyclic codes of length 13 (here \(e = 4\) and 3, respectively).
In another paper, we will generalize the result of Pruthi and Arora [10] and derive all the primitive idempotents in the ring \(R_{2p^n} \), where \(q \) is any odd prime power, not necessarily a primitive root mod \(2p^n \), \(p \) being an odd prime.

2. Cyclotomic cosets modulo \(p^n \)

Throughout this paper, we assume that \(p \) is an odd prime, \(n \) is a positive integer, \(q \) is an odd prime power, \(\gcd(p, q) = 1 \). Let order of \(q \) modulo \(p \) be \(f = \frac{p-1}{e} \), where \(e \) is a positive integer and let \(f' = 1 + p\lambda \). Further suppose that \(p \) does not divide \(\lambda \), if \(n \geq 2 \). Let \(O_m(q) \) denote the order of \(q \) modulo \(m \). With these assumptions, we have

Lemma 1. \(O_{p^n}(q) = fp^{n-1} \) for all \(n \geq 1 \).

Proof. First note that for any integer \(r \geq 1 \),

\[
q^{f' r} = 1 + p^{r+1} \lambda_r,
\]

(2)

where \(p \) does not divide \(\lambda_r \). Let \(O_{p^n}(q) = t_n \). Since from (2), for \(r = n - 1 \), we have \(q^{f' p^{n-1}} \equiv 1 \pmod{p^n} \), so \(t_n \) divides \(fp^{n-1} \). Also \(q^n \equiv 1 \pmod{p} \) and \(O_p(q) = f \); therefore \(f \) divides \(t_n \). Let \(t_n = fp^u \) for some \(u, 0 \leq u \leq n - 1 \). Now \(q^n = q^{fp^u} = 1 + p^{u+1} \lambda_u \equiv 1 \pmod{p^n} \) which gives \(p^{u+1} \equiv 0 \pmod{p^n} \) as \(p \) does not divide \(\lambda_u \) which implies \(n \leq (u + 1) \). Hence \(u = n - 1 \) and so \(t_n = fp^{n-1} \). □

Lemma 2. Let \(g \) be a primitive root mod \(p \) such that \(\gcd\left(\frac{p^n-1}{p}, p\right) = 1 \), then \(g \) is a primitive root mod \(p^n \) also for all integers \(n \geq 1 \).

Proof. Let \(g^{p^n-1} = 1 + p\mu \), where \(p \) does not divide \(\mu \). Then working as in Lemma 1 with \(q \) replaced by \(g \) and with \(f = p - 1 \), we find that \(O_{p^n}(g) = \phi(p^n) \) for all \(n \geq 1 \). So \(g \) is a primitive root mod \(p^n \) for all \(n \geq 1 \). □

Remark 1. On replacing \(g \) by \(g + p \) (if necessary), we can always ensure that \(\gcd\left(\frac{p^n-1}{p}, p\right) = 1 \), so that there always exists a \(g \), which is a primitive root mod \(p^n \), for all \(n \geq 1 \).

Theorem 1. For each integer \(n \geq 1 \), there are \((en + 1) \) distinct \(q \)-cyclotomic cosets mod \(p^n \), given by

\[
C_0 = \{0\},
\]

\[
C_{p^{j}g^{k}} = \{p^{j}g^{k}, p^{j}g^{k}q, p^{j}g^{k}q^{2}, \ldots, p^{j}g^{k}q^{p^{n-j+1}-1}\},
\]

for \(0 \leq j \leq n - 1 \) and \(0 \leq k \leq e - 1 \), where \(g \) is a primitive root mod \(p^n \).
Proof. The cosets $C_{p^{j}q^{k}}$, $0 \leq j \leq n - 1$ and $0 \leq k \leq e - 1$ are distinct mod p^{n}. For if there exists some j, j', k, k', u, u' with $0 \leq j \leq j' \leq n - 1$, $0 \leq k, k' \leq e - 1$ and $0 \leq u \leq fp^{n-j-1} - 1$, $0 \leq u' \leq fp^{n-j'-1} - 1$ such that

$$p^{j}g^{k}q^{u} \equiv p^{j'}g^{k'}q^{u'} \pmod{p^{n}},$$

then

$$p^{j-j'}g^{k-k'}q^{u-u'} \equiv 1 \pmod{p^{n-j}}.$$

As $p^{j-j'}$ divides p^{n-j}, we must have $p^{j-j'}|1$ which is possible if and only if $j = j'$. Therefore $g^{k-k'}q^{u-u'} \equiv 1 \pmod{p^{n-j}}$, which implies

$$g^{(k-k)(fp^{n-j-1})}q^{u-u}(fp^{n-j-1}) \equiv 1 \pmod{p^{n-j}}.$$

By Lemma 1, $O_{p^{n-j}}(q) = fp^{n-j-1}$, so we get

$$g^{(k-k)(fp^{n-j-1})} \equiv 1 \pmod{p^{n-j}}.$$

But g is a primitive root mod p^{n-j}, so e must divide $k' - k$. Also $0 \leq |k' - k| \leq e - 1$, so we must have $k' = k$. Thus $q^{u-u'} \equiv 1 \pmod{p^{n-j}}$ which implies that fp^{n-j-1} divides $u - u'$. But $0 \leq |u - u'| \leq fp^{n-j-1} - 1$, so we must have $u' = u$. Hence all these cyclotomic cosets are disjoint mod p^{n}. Further these are all the cyclotomic cosets as

$$|C_{0}| = \sum_{j=0}^{n-1} \sum_{k=0}^{e-1} |C_{p^{j}q^{k}}| = 1 + \sum_{j=0}^{n-1} \sum_{k=0}^{e-1} fp^{n-j-1} = 1 + \sum_{j=0}^{n-1} \phi(p^{n-j}) = p^{n}. \quad \square$$

Remark 2.

1. If f is even, then $-1 \equiv q^{p^{n-1}f} / 2 \pmod{p^{n}}$. So $-1 \in C_{1}$.
2. If f is odd, there exist some u, $0 \leq u \leq p^{n-1}f - 1$, such that $g^{u}q^{u} \equiv 1 \pmod{p^{n}}$. So $-1 \in C_{g^{u}}$

3. Cyclotomic numbers and periods

For the definition of cyclotomic numbers and some results involving these, we refer to the Part 1 of [13]. Let g be a primitive root mod p (p an odd prime) and $p = 1 + ef$. The Reduced Residue System (RRS) mod p given by $\{1, g, g^{2}, \ldots, g^{p-2}\}$ is divided into e disjoint classes C_{i}, for $i = 0, 1, 2, \ldots, e - 1$, where

$$C_{i} = \{g^{es+i} : s = 0, 1, 2, \ldots, f - 1\}.$$

Clearly $C_{i} = C_{i+m}$ for any integer m. As the odd prime power q has order $f = p^{-1} \pmod{p}$, q is an eth power residue mod p. Therefore $q \equiv g^{es} \pmod{p}$ for some s,
0 ≤ s ≤ f − 1. Thus the class \hat{C}_i is equal to \{g^i, g^{i+q}, g^{i+q^2}, \ldots, g^{i+q^{f-1}}\} modulo p, for each i, 0 ≤ i ≤ e − 1. If n = 1, the class \hat{C}_i is same as C_g^i, defined earlier.

Definition 1. For fixed i and j, 0 ≤ i ≤ e − 1, 0 ≤ j ≤ e − 1, the cyclotomic number A_{ij} is defined to be the number of solutions of the equation

\[z_i + 1 = z_j, \]
where $z_i \in \hat{C}_i$, $z_j \in \hat{C}_j$, i.e. A_{ij} is the number of ordered pairs (s, t), such that

\[g^{es+i} + 1 = g^{et+j}, \quad 0 ≤ s, t ≤ f − 1. \]

Definition 2. The cyclotomic matrix is the $e \times e$ matrix N whose (i, j)th entry is the cyclotomic number A_{ij}.

Lemmas 3–6, stated below, follow from Lemmas 3, 6, 7, 19 and 19' of [13, Part I].

Lemma 3.

(a) For any integers m and n, $A_{ij} = A_{(i+me)(j+ne)}$.

(b) $A_{ij} = A_{(e−i)(j−i)}$.

(c) $A_{ij} = \begin{cases} A_{ji} & \text{if } f \text{ is even,} \\ A_{(j+\frac{e}{2})(i+\frac{e}{2})} & \text{if } f \text{ is odd.} \end{cases}$

(d) $\sum_{j=0}^{e-1} A_{ij} = f - v_i$, where $v_i = \begin{cases} 1 & \text{if } f \text{ is even and } i = 0, \\ 1 & \text{if } f \text{ is odd and } i = \frac{e}{2}, \\ 0 & \text{otherwise.} \end{cases}$

(e) $\sum_{i=0}^{e-1} A_{ij} = f - \mu_j$, where $\mu_j = \begin{cases} 1 & \text{if } j = 0 \\ 0 & \text{otherwise.} \end{cases}$

Lemma 4. When $e = 2$, the cyclotomic matrix N is given by

(i) $N = \begin{bmatrix} f - 2 & f \\ \frac{2}{f} & \frac{2}{f} \end{bmatrix}$ if f is even,

(ii) $N = \begin{bmatrix} f - 1 & f + 1 \\ \frac{2}{f - 1} & \frac{2}{f - 1} \end{bmatrix}$ if f is odd.

Lemma 5. When $e = 3$, the cyclotomic matrix N is given by

$N = \begin{bmatrix} A & B & C \\ B & C & D \\ C & D & B \end{bmatrix}$,
together with the relations

\[9A = p - 8 + c, \]
\[18B = 2p - 4 - c - 9d, \]
\[18C = 2p - 4 - c + 9d, \]
\[9D = p + 1 + c, \]

where \(4p \equiv c^2 + 27d^2 \) (mod q) with \(c \equiv 1 \) (mod 3).

Lemma 6.

(i) When \(e = 4 \) and \(f \) is odd, the cyclotomic matrix \(\mathcal{N} \) is given by

\[
\mathcal{N} = \begin{bmatrix}
A & B & C & D \\
E & E & D & B \\
A & E & A & E \\
E & D & B & E
\end{bmatrix},
\]

together with the relations

\[16A = p - 7 + 2s, \]
\[16B = p + 1 + 2s - 8t, \]
\[16C = p + 1 - 6s, \]
\[16D = p + 1 + 2s + 8t, \]
\[16E = p - 3 - 2s. \]

(ii) If \(e = 4 \) and \(f \) is even, the cyclotomic matrix \(\mathcal{N} \) is given by

\[
\mathcal{N} = \begin{bmatrix}
A & B & C & D \\
B & D & E & E \\
C & E & C & E \\
D & E & E & B
\end{bmatrix},
\]

together with the relations

\[16A = p - 11 - 6s, \]
\[16B = p - 3 + 2s + 8t, \]
\[16C = p - 3 + 2s, \]
\[16D = p - 3 + 2s - 8t,\]
\[16E = p + 1 - 2s,\]

where \(p \equiv s^2 + 4t^2 \pmod{q}\), \(s \equiv 1 \pmod{4}\) is the proper representation of \(p\) if \(p \equiv 1 \pmod{4}\). (A representation \(p = x^2 + dy^2\) is said to be proper if \(\gcd(p, x) = 1\).

Remark 3.

(i) The sign of \(d\) in Lemma 5 and the sign of \(t\) in Lemma 6 are also uniquely determined. For this, see Katre and Rajwade [6,7].

(ii) The cyclotomic numbers are known for all values of \(e\) in terms of Jacobi sums. For reference, see Katre [5] and Paul Van Wamelen [14].

Definition 3. For \(0 \leq k \leq e - 1\), the period \(\eta_k\) is defined as

\[
\eta_k = \sum_{t=0}^{f-1} \beta^{tq^e} = \sum_{t=0}^{f-1} \beta^{te+k} = \sum_{j \in C_k} \beta^j, \tag{3}
\]

where \(\beta\) is a primitive \(p\)th root of unity in some extension field of \(GF(q)\).

The periods defined above are similar to the periods defined in [13, p. 38] with \(\alpha = 1\) except that our \(\beta\) is not a complex primitive \(p\)th root of unity, it is a primitive \(p\)th root of unity in \(GF(q')\).

The following result holds true for this \(\beta\) also; for a proof see Corollary to Lemmas 8 and 9 of [13, pp. 38–40].

Lemma 7.

(i) \(\eta_k = \eta_{k+me}\) for any integer \(m\).

(ii) \(\sum_{k=0}^{e-1} \eta_k = -1\).

(iii) \(\eta_i \eta_{i+k} = \sum_{h=0}^{e-1} A_{kh} \eta_{i+h} + f v_k\).

(iv) \(\sum_{j=0}^{e-1} \eta_j \eta_{j+k} = pv_k - f, \quad 0 \leq k \leq e - 1\),

where \(v_k\) is as defined in Lemma 3.

Definition 4. Let \(X = (x_0, x_1, x_2, \ldots, x_{e-1})\) be a vector over \(GF(q)\). For \(0 \leq k \leq e - 1\), we define \(\sigma^k(X)\) as the \(k\)th cyclic shift of \(X\) i.e.

\[\sigma^k(X) = (x_k, x_{k+1}, x_{k+2}, \ldots, x_{k-1}).\]

Definition 5. Let \(\mathcal{A} = (a_{ij}), 0 \leq i \leq e - 1, 0 \leq j \leq e - 1\) be any \(e \times e\) matrix over \(GF(q)\). Let \(X = (x_0, x_1, x_2, \ldots, x_{e-1})^T\) be an eigenvector of \(\mathcal{A}\), where \(^T\) stands for the
transpose of a matrix. We say that \(X \) has cyclic property if for each \(k, 0 \leq k \leq e - 1 \), \(\sigma^k(X) \) is also an eigenvector of \(\mathcal{A} \).

Let \(\mathcal{A} \) denote the \(e \times e \) matrix given by

\[
\begin{bmatrix}
A_{00} - f & A_{01} - f & A_{02} - f & \cdots & A_{0(e-1)} - f \\
A_{10} & A_{11} & A_{12} & \cdots & A_{1(e-1)} \\
A_{20} & A_{21} & A_{22} & \cdots & A_{2(e-1)} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
A_{(e-1)0} & A_{(e-1)1} & A_{(e-1)2} & \cdots & A_{(e-1)(e-1)}
\end{bmatrix}
\]

if \(f \) is even

and is given by

\[
\begin{bmatrix}
A_{00} & A_{01} & A_{02} & \cdots & A_{0(e-1)} \\
A_{10} & A_{11} & A_{12} & \cdots & A_{1(e-1)} \\
A_{20} & A_{21} & A_{22} & \cdots & A_{2(e-1)} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
A_{(\frac{e}{2})0} - f & A_{(\frac{e}{2})1} - f & A_{(\frac{e}{2})2} - f & \cdots & A_{(\frac{e}{2})(e-1)} - f \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
A_{(e-1)0} & A_{(e-1)1} & A_{(e-1)2} & \cdots & A_{(e-1)(e-1)}
\end{bmatrix}
\]

if \(f \) is odd,

where \(A_{ij} \)'s are the cyclotomic numbers defined in Definition 1. The matrix \(\mathcal{A} \) is obtained from the matrix \(\mathcal{N} \) by subtracting \(f \) from the first row, if \(f \) is even and from the \((\frac{e}{2} + 1) \)th row, if \(f \) is odd.

Theorem 2. Let \(\gcd(e, q) = 1 \).

(i) The period \(\eta_i \) is an eigenvalue of the matrix \(\mathcal{A} \) with \(P_i = (\eta_i, \eta_{i+1}, \eta_{i+2}, \ldots, \eta_{i-1})^T \) as a corresponding eigenvector with first entry \(\eta_i \), for each \(i, 0 \leq i \leq e - 1 \).

(Thus the eigenvector \(P_i \), for each \(i \), has the cyclic property.)

(ii) The matrix \(P = (P_0 \ P_1 \ P_2 \ \cdots \ P_{e-1}) \) having the eigenvector \(P_i \) as its \((i + 1)\)th column is nonsingular, so that \(\eta_0, \eta_1, \eta_2, \ldots, \eta_{e-1} \) are all the eigenvalues of \(\mathcal{A} \), counted with multiplicity.

(iii) If \(X = (\rho_0, \rho_1, \rho_2, \ldots, \rho_{e-1})^T \) is another eigenvector of \(\mathcal{A} \) with cyclic property, then \(X = \alpha P_j \) for some \(j, 0 \leq j \leq e - 1 \) and for some scalar \(\alpha \in \text{GF}(q) \).

In addition, if \(\sum_{i=0}^{e-1} \rho_i = -1 \), then \(X = P_j \) for some \(j \).

Proof. (i) We prove the result when \(f \) is even. The case when \(f \) is odd, being similar, is left to the reader. By Lemma 7(iii), for any \(i, 0 \leq i \leq e - 1 \), we have

\[
\eta_i^2 = A_{00}\eta_i + A_{01}\eta_{i+1} + A_{02}\eta_{i+2} + \cdots + A_{0(e-1)}\eta_{i-1} + f
\]

\[
\eta_i\eta_{i+1} = A_{10}\eta_i + A_{11}\eta_{i+1} + A_{12}\eta_{i+2} + \cdots + A_{1(e-1)}\eta_{i-1}
\]
\[\eta_i \eta_{i+2} = A_{20} \eta_i + A_{21} \eta_{i+1} + A_{22} \eta_{i+2} + \cdots + A_{2(e-1)} \eta_{i-1} \]
\[\cdots \cdots \]
\[\eta_i \eta_{i+e-1} = A_{(e-1)0} \eta_i + A_{(e-1)1} \eta_{i+1} + A_{(e-1)2} \eta_{i+2} + \cdots + A_{(e-1)(e-1)} \eta_{i-1}. \]

Using \(f = -f(\eta_0 + \eta_1 + \eta_2 + \cdots + \eta_{e-1}) \), \(\eta_{i+e-1} = \eta_{i-1} \) and rewriting, we get

\[(A_{00} - f - \eta_i) \eta_i + (A_{01} - f) \eta_{i+1} + A_{02} \eta_{i+2} + \cdots + (A_{0(e-1)} - f) \eta_{i-1} = 0 \]
\[A_{10} \eta_i + (A_{11} - \eta_i) \eta_{i+1} + A_{12} \eta_{i+2} + \cdots + A_{1(e-1)} \eta_{i-1} = 0 \]
\[A_{20} \eta_i + A_{21} \eta_{i+1} + (A_{22} - \eta_i) \eta_{i+2} + \cdots + A_{2(e-1)} \eta_{i-1} = 0 \]
\[\cdots \cdots \]
\[A_{(e-1)0} \eta_i + A_{(e-1)1} \eta_{i+1} + A_{(e-1)2} \eta_{i+2} + \cdots + (A_{(e-1)(e-1)} - \eta_i) \eta_{i-1} = 0; \]

i.e.

\[
\begin{pmatrix}
\eta_i \\
\eta_{i+1} \\
\eta_{i+2} \\
\vdots \\
\eta_{i-1}
\end{pmatrix} = 0.
\]

Since \(P = (\eta_i; \eta_{i+1}; \eta_{i+2}; \ldots; \eta_{i-1})^T \) is a nonzero vector (because the sum \(\sum_{i=0}^{e-1} \eta_i = -1 \)), we see that \(\eta_i \) is an eigenvalue of \(\mathcal{A} \) with \(P_i \) as a corresponding eigenvector.

(ii) To show that \(P \) is nonsingular, it is enough to show that the matrix

\[
M = \begin{bmatrix}
\eta_0 & \eta_1 & \eta_2 & \cdots & \eta_{e-1} \\
\eta_{e-1} & \eta_0 & \eta_1 & \cdots & \eta_{e-2} \\
\eta_{e-2} & \eta_{e-1} & \eta_0 & \cdots & \eta_{e-3} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\eta_1 & \eta_2 & \eta_3 & \cdots & \eta_0
\end{bmatrix}
\]

is nonsingular, as \(M \) is obtained from \(P \) by interchange of rows. Let

\[
V = \begin{bmatrix}
1 & 1 & 1 & \cdots & 1 \\
1 & \zeta & \zeta^2 & \cdots & \zeta^{e-1} \\
1 & \zeta^2 & \zeta^4 & \cdots & \zeta^{2(e-1)} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & \zeta^{e-1} & \zeta^{2(e-1)} & \cdots & \zeta^{(e-1)(e-1)}
\end{bmatrix}
\]
be the Vandermonde matrix, where ζ is a primitive eth root of unity in an extension field of $GF(q)$. Then it is easy to see that

$$V^{-1}MV = \text{diag}(F(1), F(\zeta), F(\zeta^2), \ldots, F(\zeta^{e-1})),$$

where $F(x) = \eta_0 + \eta_1x + \eta_2x^2 + \cdots + \eta_{e-1}x^{e-1}$. Also

$$F(\zeta^m)F(\zeta^{-m}) = \left(\sum_{j=0}^{e-1} \zeta^{mj}\eta_j\right)\left(\sum_{k=0}^{e-1} \zeta^{-mk}\eta_k\right) = \left(\sum_{j=0}^{e-1} \zeta^{mj}\eta_j\right)\left(\sum_{k=0}^{e-1} \zeta^{-m(k+j)}\eta_{k+j}\right)$$

$$= \sum_{k=0}^{e-1} \zeta^{-mk} \sum_{j=0}^{e-1} \eta_j\eta_{j+k} = \sum_{k=0}^{e-1} \zeta^{-mk}(p\eta_k - f) \quad \text{(by Lemma 7(iv))}$$

$$= p \sum_{k=0}^{e-1} \zeta^{-mk}v_k = \begin{cases} 1 & \text{if } f \text{ is even,} \\ 0 & \text{if } f \text{ is odd.} \end{cases}$$

Therefore $F(\zeta^m) \neq 0$, for any m, which gives det $M = F(1)F(\zeta)F(\zeta^2)\cdots F(\zeta^{e-1}) \neq 0$. So M and hence P is nonsingular.

Now since $\mathcal{A}P_i = \eta_i P_i$, we have $\mathcal{A}P = \text{diag}(\eta_0, \eta_1, \eta_2, \ldots, \eta_{e-1}), P$, i.e.

$$P^{-1}\mathcal{A}P = \text{diag}(\eta_0, \eta_1, \eta_2, \ldots, \eta_{e-1}).$$

Similar matrices have the same eigenvalues, so η_i, $0 \leq i \leq e-1$ are all the eigenvalues of \mathcal{A}.

(iii) Suppose X corresponds to the eigenvalue η_k, therefore $X \in W_k$ where W_k is the eigenspace of η_k. Suppose W_k is generated by eigenvectors P_k_1, P_k_2, \ldots, P_k_i corresponding to eigenvalues $\eta_{k_1} = \eta_{k_2} = \eta_{k_3} = \cdots = \eta_{k_r}$. Let

$$X = x_1P_k_1 + x_2P_k_2 + \cdots + x_rP_k_r, \quad (4)$$

where $x_i \in GF(q)$.

We assert that exactly one of x_i's is non-zero. For this, we will show that for any pair (x_i, x_j), $1 \leq i, j \leq r$, $i \neq j$, at least one of x_i, x_j is zero by taking a suitable cyclic shift of (4).

Without loss of generality, consider the pair (x_1, x_2). Since P_k_1 and P_k_2 are distinct vectors, there exists some t such that $\eta_{k_1+t} \neq \eta_{k_2+t}$. Taking tth cyclic shift of (4), we have

$$\sigma^t(X) = x_1\sigma^t(P_k_1) + x_2\sigma^t(P_k_2) + \cdots + x_r\sigma^t(P_k_r). \quad (5)$$

By parts (i) and (ii) of Theorem 2 and the given hypothesis, each of $\sigma^t(P_k_j)$, $1 \leq j \leq r$, and $\sigma^t(X)$ is also an eigenvector of the matrix \mathcal{A}. Also $\sigma^t(P_k_1)$ and $\sigma^t(P_k_2)$ are in different eigenspaces, say W_{k_1+t} and W_{k_2+t}; as they correspond to distinct eigenvalues η_{k_1+t} and η_{k_2+t}. We group the vectors on the right hand side of (5) according as they lie in W_{k_1+t} or W_{k_2+t} or in eigenspaces different from these two,
to get
\[
\sigma^i(X) = \left(\lambda_1\sigma^i(P_{k_1}) + \sum_i \lambda_i \sigma^i(P_{k_i})\right) + \left(\lambda_2\sigma^i(P_{k_2}) + \sum_j \lambda_j \sigma^i(P_{k_j})\right) + \left(\sum_r \lambda_r \sigma^i(P_{k_r})\right).
\]

Now the eigenvectors \(\sigma^i(P_{k_i}), 1 \leq i \leq \ell\) are linearly independent. So, we must have \(\lambda_2 = 0\) if \(\sigma^i(X) \in W_{k_1+\ell}\); \(\lambda_1 = 0\) if \(\sigma^i(X) \in W_{k_2+\ell}\); \(\lambda_1 = \lambda_2 = 0\) if \(\sigma^i(X)\) is not in \(W_{k_1+\ell} \cup W_{k_2+\ell}\). This proves our assertion for the pair \((\lambda_1, \lambda_2)\). Hence we must have \(X = \lambda_j P_{k_j}\) for some \(j, 1 \leq j \leq \ell\). Further if \(\sum_{i=0}^{e-1} \rho_i = -1\), then we must have \(\lambda_j = 1\) as \(\sum_{i=0}^{e-1} \eta_i = -1\).

Corollary 1. For each \(j, 0 \leq j \leq e - 1\), let \(\chi_j\) be the character defined on a group of reduced residue classes mod \(p\), by
\[
\chi_j(g^{ex+i}) = \zeta^{ij} \quad \text{for } 0 \leq i \leq e - 1, \ 0 \leq s \leq f - 1,
\]
where \(\zeta\) is a primitive \(e\)-th root of unity in an extension field of \(GF(q)\). Then the Gaussian sums \(\tau(\chi_j)\) (having values in a finite field) for \(0 \leq j \leq e - 1\) defined as
\[
\tau(\chi_j) = \sum_{x \in RRS \mod p} \chi_j(x) \beta^x = \sum_{i=0}^{e-1} \sum_{s=0}^{f-1} \chi_j(g^{ex+i}) \beta^{\rho^{ex+i}} = \sum_{i=0}^{e-1} \sum_{s=0}^{f-1} \beta^{\rho^{ex+i}}
\]
\[
= \sum_{i=0}^{e-1} \eta_i \zeta^i = \eta_0 + \eta_1 \zeta + \eta_2 \zeta^2 + \eta_{e-1} \zeta^{(e-1)} = F(\zeta^j)
\]
can be evaluated once the values of the periods \(\eta_0, \eta_1, \ldots, \eta_{e-1}\) are determined by Theorem 2.

Lemma 8.

(i) If \(e = 1\), the only eigenvalue \(\eta_0 = -1\).

(ii) If \(e = 2\), we can take \(\eta_0 = \frac{-1+\delta}{2}, \ \eta_1 = \frac{-1-\delta}{2}\), where \(\delta \in GF(q)\) is given by
\[
\delta^2 = \begin{cases}
p & \text{if } p \equiv 1 \pmod{4},
-p & \text{if } p \equiv 3 \pmod{4}.
\end{cases}
\]

(iii) If \(e = 3\), the characteristic equation of the matrix \(\mathcal{A}\) is given by
\[
x^3 + x^2 - \left(\frac{p - 1}{3}\right)x - \left(\frac{p(c + 3) - 1}{27}\right) = 0,
\]
where \(c\) is as defined in Lemma 5.
(iv) If \(e = 4 \), the characteristic equation of the matrix \(\mathcal{A} \) is given by
\[
x^4 + x^3 - 3\left(\frac{p - 1}{8}\right)x^2 + \left(\frac{1 - 3p + 2ps}{16}\right)x + \left(\frac{1 - 6p + 8ps - 4ps^2 + p^2}{256}\right) = 0,
\]
if \(f \) is even and by
\[
x^4 + x^3 + \left(\frac{p + 3}{8}\right)x^2 + \left(\frac{1 + p + 2ps}{16}\right)x + \left(\frac{1 + 2p + 8ps - 4ps^2 + 9p^2}{256}\right) = 0,
\]
if \(f \) is odd; where \(s \) is as defined in Lemma 6.

Proof.
(i) This is trivial because \(A_{00} = p - 2 = f - 1 \) and \(\mathcal{A} = (A_{00} - f) = (-1) \).
(ii) By Lemma 4, the characteristic equation of the matrix \(\mathcal{A} \) is
\[
x^2 + x - \left(\frac{p - 1}{4}\right) = 0 \quad \text{if } p \equiv 1 \pmod{4},
\]
\[
x^2 + x + \left(\frac{p + 1}{4}\right) = 0 \quad \text{if } p \equiv 3 \pmod{4}.
\]
Solving this, we can take \(\eta_0 = -\frac{1 + \delta}{2}, \eta_1 = -\frac{1 - \delta}{2} \), where \(\delta^2 = p \) if \(p \equiv 1 \pmod{4} \), and \(\delta^2 = -p \) if \(p \equiv 3 \pmod{4} \).
Using Lemmas 5 and 6 and the definition of the matrix \(\mathcal{A} \), (iii) and (iv) are obtained after a simple calculation (with the help of Maple8).

4. Primitive idempotents in the ring \(R_{p^n} \)

Let \(z \) be a primitive \((p^n)\)th root of unity in the extension field \(GF(q^{p^n-1}f) \) of \(GF(q) \). For a fixed \(s \), define the polynomial
\[
\Omega_s(x) = \sum_{j \in C_{p^n-1}} x^j.
\]

4.1. An algorithm to compute primitive idempotents in the ring \(R_{p^n} \)

Step I: Find a primitive root \(g \mod p \) such that \(\gcd(g^{p^n-1}-1, p) = 1 \).
Step II: Evaluate all the \(e^2 \) cyclotomic numbers \(A_{ij} \), \(0 \leq i, j \leq e - 1 \).
Step III: Find all the eigenvalues of matrix \(\mathcal{A} \).
Step IV: Fix an eigenvalue \(\rho_0 \) of \(\mathcal{A} \). Corresponding to \(\rho_0 \), find an eigenvector \(P_0 = (\rho_0, \rho_1, \rho_2, \ldots, \rho_{e-1}) \), whose first entry is \(\rho_0 \) and other entries \(\rho_i \), for \(1 \leq i \leq e - 1 \), are the remaining eigenvalues of \(\mathcal{A} \) with \(\sum_{i=0}^{e-1} \rho_i = -1 \) and \(P_0 \) having cyclic property. (Such a \(P_0 \) exists uniquely by Theorem 2).
Step V: Compute the following polynomials over $GF(q)$, for $0 \leq j \leq n - 1$,

$$
\theta_0(x) = \frac{1}{p^n} (1 + x + x^2 + x^3 + \cdots + x^{p^n-1}),
$$

$$
\theta_{pj}(x) = \frac{f}{p^{j+1}} \sum_{i=0}^{p^n-1} x^i + \frac{1}{p^{j+1}} \{ \rho_0 \Omega_j(x) + \rho_1 \Omega_j(x^q) + \cdots + \rho_{e-1} \Omega_j(x^{q^{e-1}}) \},
$$

$$
\theta_{gpj}(x) = \frac{f}{p^{j+1}} \sum_{i=0}^{p^n-1} x^i + \frac{1}{p^{j+1}} \{ \rho_1 \Omega_j(x) + \rho_2 \Omega_j(x^{q}) + \cdots + \rho_0 \Omega_j(x^{q^{e-1}}) \},
$$

$$
\theta_{pj^{e-1}}(x) = \frac{f}{p^{j+1}} \sum_{i=0}^{p^n-1} x^i + \frac{1}{p^{j+1}} \{ \rho_{e-1} \Omega_j(x) + \rho_e \Omega_j(x^{q^{e-1}}) \}.
$$

Theorem 3. Let p be an odd prime and q be an odd prime power, with $\gcd(p, q) = 1$. Let order of q modulo p be f and $q^f = 1 + p\lambda$. Further suppose that p does not divide λ, if $n \geq 2$. Let $\gcd(e, q) = 1$, where $p = 1 + ef$. Then we can choose α, a primitive (p^n)th root of unity, suitably, so that Step V of the above Algorithm gives all the $(en + 1)$ primitive idempotents in R_{p^n}.

To prove the Theorem, we need the following results:

Lemma 9. If α is a primitive (p^n)th root of unity, the primitive idempotent $\theta_s(x)$ corresponding to the cyclotomic coset C_s, is given by

$$
\theta_s(x) = \sum_{i=0}^{p^n-1} e_i^{(s)} x^i, \quad \text{where } e_i^{(s)} = \frac{1}{p^n} \sum_{j \in C_s} \alpha^{-ij}.
$$

This is Theorem 6, Chapter 8 of [8] generalized to nonbinary case.

Lemma 10. Let $\gcd(a, p) = 1$, $p = 1 + ef$.

(i) For any integer $k \geq 1$, a is an eth power residue mod p^k if and only if

$$
a^{p^{k-1}} \equiv 1 \pmod{p^k}.
$$

(ii) If a is an eth power residue mod p, then $a + \mu p$, for any μ, is an eth power residue mod p^k, for all $k \geq 1$.

(iii) The set

$$
S = \left\{ a + \mu p : a \text{ runs over eth power residues mod } p, \mu \text{ runs over Complete Residue System (CRS) mod } p^{k-1} \right\}
$$

consists of all the fp^{k-1} incongruent eth power residues mod p^k.
Proof. (i) Write \(a \equiv g^x \pmod{p^k} \) and \(x \equiv g^t \pmod{p^k} \). Then \(x^e \equiv a \pmod{p^k} \) has a solution in \(x \) if and only if \(g^{te} \equiv g^t \pmod{p^k} \) has a solution in \(t \). As \(g \) is a primitive root mod \(p^k \), this is so if and only if \(te \equiv s \pmod{\phi(p^k)} \) has a solution in \(t \) i.e. if and only if \(\gcd(e, \phi(p^k)) = e \) divides \(s \). If \(s = er \) for some \(r \), this is so if and only if \(a^{f_{p^k-1}} \equiv g^{f_{p^k-1}} \equiv 1 \pmod{p^k} \).

(ii) Write \(a^f = 1 + pt \) for some \(t \). Then

\[
(a + \mu p)^{f_{p^k-1}} \equiv a^{f_{p^k-1}} \equiv (1 + pt)^{f_{p^k-1}} \equiv 1 \pmod{p^k}
\]

and the result follows by Case(i).

(iii) It is obvious as \(a + \mu_1 p \equiv a + \mu_2 p \pmod{p^k} \) iff \(\mu_1 \equiv \mu_2 \pmod{p^{k-1}} \) and there are exactly \(f \) incongruent \(e \)th power residues mod \(p \).

\[\square\]

Lemma 11. Let \(\gamma \) be a primitive \((p^k) \)th root of unity with \(k \geq 2 \). Then the sums

\[S_i = \gamma^{g^i} + \gamma^{g^2} + \cdots + \gamma^{g^{f_{p^k-1}}} \]

have value equal to zero for every \(i, 0 \leq i \leq e - 1 \).

Proof. Since, for every \(j \), \((q^j)^f \equiv 1 \pmod{p} \), \(q^j \) is an \(e \)th power residue mod \(p \) and hence, by Lemma 10(ii), an \(e \)th power residue mod \(p^k \). So the set \(\{1, q, q^2, \ldots, q^{f_{p^k-1}}\} \) consists of \(e \)th power residues mod \(p^k \). Their number being exactly \(f_{p^k-1} \), we see, using Lemma 10(iii), that modulo \(p^k \)

\[
\{1, q, q^2, \ldots, q^{f_{p^k-1}}\} = S = \left\{ a + \mu p : \begin{array}{c} a \text{ runs over } e \text{th power residues mod } p, \\ \mu \text{ runs over CRS mod } p^{k-1}. \end{array} \right\}
\]

Therefore

\[
S_i = \sum_{j=0}^{f_{p^k-1}-1} \gamma^{g^j} = \sum_a \sum_\mu \gamma^{g^j(a+\mu p)} = \sum_a \gamma^{g^a} \sum_\mu \zeta^\mu,
\]

where \(\zeta = \gamma^g \) is a primitive \((p^{k-1}) \)th root of unity; \(a \) runs over \(e \)th power residues mod \(p \) and \(\mu \) runs over CRS mod \(p^{k-1} \). As \(k \geq 2 \), \(\zeta \neq 1 \), \(\zeta^{p^{k-1}} = 1 \), so we get

\[
\sum_\mu \zeta^\mu = 1 + \zeta + \zeta^2 + \cdots + \zeta^{f_{p^k-1}-1} = \frac{\zeta^{p^{k-1}} - 1}{\zeta - 1} = 0.
\]

Hence, from (6), we get that \(S_i = 0 \), for each \(i, 0 \leq i \leq e - 1 \). \[\square\]
Proof of Theorem 3. By Lemma 9,

$$\theta_0(x) = \sum_{i=0}^{p^n-1} e_i^{(0)} x^i,$$

where $$e_i^{(0)} = \frac{1}{p^n} \sum_{h \in C_0} \alpha^{-ih} = \frac{1}{p^n},$$

for every $$i$$, as $$C_0 = \{0\}$$. Thus

$$\theta_0(x) = \frac{1}{p^n} (1 + x + x^2 + x^3 + \cdots + x^{p^n-1}).$$

For any $$j$$, $$0 \leq j \leq n - 1$$, we have, by Lemma 9,

$$\theta_p(x) = \sum_{i=0}^{p^n-1} e_i^{(p')} x^i,$$

where $$e_i^{(p')} = \frac{1}{p^n} \sum_{h \in C_{p'}} \alpha^{-ip'q^{j}} = \frac{1}{p^n} \sum_{h=0}^{p^{n-j-1}f-1} \alpha^{-ip'q^{j}}.$$

As the value of $$e_i^{(p')}$$ remains same for all $$i$$ in a cyclotomic coset, we have

$$\theta_{p'}(x) = e_0^{(p')} + \sum_{r=0}^{e-1} \sum_{s=0}^{n-1} e_{i\gamma^r p'}^{(p')} \sum_{i \in C_{\gamma^r p'}} x^i.$$

Now

$$e_0^{(p')} = \frac{1}{p^n} \sum_{h=0}^{p^{n-j-1}f-1} \alpha^{-hp'q^{j}} = \frac{f}{p^{j+1}}.$$

If $$s \geq n - j$$,

$$e_{i\gamma^r p'}^{(p')} = \frac{1}{p^n} \sum_{h=0}^{p^{n-j-1}f-1} \alpha^{-ip'\gamma^r q^{j}} = \frac{f}{p^{j+1}}.$$

If $$0 \leq s \leq n - j - 1$$, then

$$e_{i\gamma^r p'}^{(p')} = \frac{1}{p^n} \sum_{h=0}^{p^{n-j-1}f-1} \gamma^r q^{j}, \quad (7)$$

where $$\gamma = \alpha^{-p'q^h}$$ is a primitive $$(p^{n-s-j})$$th root of unity.

Now $$\gamma^r q^{j} = \gamma^s q^{h}$$ if and only if $$q^{j} \equiv q^{h} \pmod{p^{n-s-j}}$$ if and only if $$h \equiv h' \pmod{fp^{n-s-j-1}}$$ because $$O_{p^{n-s-j}}(q) = fp^{n-s-j-1}$$.

Thus from (7), we get

$$e_{i\gamma^r p'}^{(p')} = \frac{1}{p^n} \sum_{h=0}^{p^{n-j-1}f-1} \gamma^r q^{j}, \quad (8)$$
If $k = n - s - j \geq 2$ i.e. if $0 \leq s \leq n - j - 2$, then the sum on the right hand side of (8) is S_r, which is zero by Lemma 11.

If $s = n - j - 1$, by (8), we have

$$\frac{\varepsilon_{p^j}(q)}{p^{j+1}} = \frac{1}{p^{j+1}} \sum_{h=0}^{f-1} p^h q^h = \frac{1}{p^{j+1}} \eta_r,$$

where $\beta = \gamma = x^{p^j-1}$ is a primitive pth root of unity and η_r is the period as defined in Section 3. We choose α and hence β suitably to have $\eta_r = p_r$. Therefore

$$\theta_{p^j\alpha}(x) = \frac{f}{p^{j+1}} + f \sum_{r=0}^{e-1} \sum_{s=n-j}^{n-1} \sum_{i \in C_{p^j\alpha}} x^i + \frac{1}{p^{j+1}} \sum_{r=0}^{e-1} \sum_{i \in C_{p^j\alpha}} x^i$$

$$= \frac{f}{p^{j+1}} \sum_{i=0}^{p^n-1} x^i + \frac{1}{p^{j+1}} \{\rho_0 \Omega_j(x) + \rho_1 \Omega_j(x^p) + \cdots + \rho_{e-1} \Omega_j(x^{p^{j-1}})\},$$

as stated in the Theorem. Further since

$$\theta_{p^j\alpha}(x) = \theta_{p^j}(x^{q-1}),$$

we get

$$\theta_{q^{p^j}}(x) = \frac{f}{p^{j+1}} \sum_{i=0}^{p^n-1} x^i + \frac{1}{p^{j+1}} \{\rho_k \Omega_j(x) + \rho_{k+1} \Omega_j(x^p) + \cdots + \rho_{k-1} \Omega_j(x^{p^{j-1}})\}.$$

This proves the theorem. □

Corollary 2. Let p be an odd prime, q an odd prime power such that q is a primitive root mod p^n, $n \geq 1$ an integer. Then there are $(n + 1)$ primitive idempotents in R_{p^n} given by

$$\theta_0(x) = \frac{1}{p^n} \{1 + x + x^2 + \cdots + x^{p^n-1}\},$$

$$\theta_{p^j}(x) = \frac{p-1}{p^{j+1}} \sum_{i=0}^{p^n-1} x^i - \frac{1}{p^{j+1}} \sum_{i \in C_{p^j-1}} x^i,$$

for $0 \leq j \leq n - 1$.

Corollary 3. If q is a quadratic residue modulo p, then for a suitable choice of α, all the $(2n + 1)$ primitive idempotents in R_{p^n} are given by

$$\theta_0(x) = \frac{1}{p^n} \{1 + x + x^2 + \cdots + x^{p^n-1}\},$$

$$\theta_{p^j} = \frac{p-1}{2p^{j+1}} \sum_{i=0}^{p^n-1} x^i + \frac{1}{p^{j+1}} \left\{\frac{-1 + \delta}{2} \sum_{i \in C_{p^j-1}} x^i + \frac{-1 - \delta}{2} \sum_{i \in C_{q^{p^j-1}}} x^i\right\},$$
\[\theta_{gp} = \frac{p - 1}{2p + 1} \sum_{i=0}^{p^n - 1} x^i + \frac{1}{p + 1} \left\{ \frac{-1 - \delta}{2} \sum_{i \in C_{p, j - 1}} x^i + \frac{-1 + \delta}{2} \sum_{i \in C_{gp, j - 1}} x^i \right\}, \]

for \(0 \leq j \leq n - 1 \), where \(\delta \in \mathbb{GF}(q) \) is given by

\[\delta^2 = \begin{cases} p & \text{if } p \equiv 1 \pmod{4}, \\ -p & \text{if } p \equiv 3 \pmod{4}. \end{cases} \]

Proof follows from Theorem 3 using Lemma 8(i) and (ii).

5. The dimension, generating polynomials and minimum distances of minimal codes of length \(p^n \)

The dimension of the minimal code \(\mathcal{M}_s \) is the number of non-zeros of the generating idempotent \(\theta_s(x) \), which is the cardinality of the cyclotomic coset \(C_s \).

Lemma 12. If \(\mathcal{C} \) is a cyclic code of length \(m \) generated by \(g(x) \) and is of minimum distance \(d \), then the code \(\hat{\mathcal{C}} \) of length \(mk \) generated by \(g(x)(1 + x^m + x^{2m} + \cdots + x^{(k-1)m}) \) is a repetition code of \(\mathcal{C} \) repeated \(k \) times and its minimum distance is \(dk \).

Proof is trivial.

The generating polynomial of the code \(\mathcal{M}_0 \) is clearly

\[\frac{x^{p^n} - 1}{x - 1} = 1 + x + x^2 + \cdots + x^{p^n - 1} \]

and its minimum distance is \(p^n \).

Let \(0 \leq j \leq n - 1 \), \(j \) fixed. We have

\[x^{p^n - 1} = (x^{p^n - j} - 1)(1 + x^{p^n - j} + x^{2p^n - j} + \cdots + x^{(p'-1)p^n - j}), \]

where

\[x^{p^n - j} - 1 = (x^{p^n - j - 1} - 1)(1 + x^{p^n - j - 1} + x^{2p^{n - j - 1}} + \cdots + x^{(p-1)p^{n-j-1}}). \]

One notes that

\[\prod_{k=0}^{c-1} M^{(g^p)^{(p^k)}}(x) = (1 + x^{p^n - 1} + x^{2p^{n-j-1}} + \cdots + x^{(p-1)p^{n-j-1}}). \]

Let \(\mathcal{C}_j \) be the code of length \(p^n - j \) generated by \(g(x) = x^{p^n - j - 1} - 1 \). Then by Lemma 12, the code \(\hat{\mathcal{C}}_j \) of length \(p^n \) generated by \((x^{p^n} - 1) / \prod_{k=0}^{c-1} M^{(g^p)^{(p^k)}}(x) \) is the repetition code of \(\mathcal{C}_j \), repeated \(p^j \) times and its minimum distance is \(2p^j \). The minimal cyclic
Let M code $a \in M$ codes d further, if f is odd, by Remark 1, $-1 \in \mathbb{Z}_q$, so that the minimal polynomial of a^{δ^j} is the reciprocal of the minimal polynomial of a^{δ^j}. Therefore the generating polynomial of $M_{g^k, \frac{q}{p^j}}$ is negative of reciprocal of the generating polynomial of the $M_{g^k, \frac{q}{p^j}}$ and thus the minimum distance of the minimal codes $M_{g^k, \frac{q}{p^j}}$ and $M_{g^k, \frac{q}{p^j}}$ is same, for $0 \leq k \leq \frac{q}{2} - 1$ and f odd.

6. Some examples of minimal ternary and 5-ary cyclic codes

Example 1. Let $p = 23$, $q = 3$. Since $3^{11} \equiv 1 \pmod{23}$, but $gcd(\frac{3^{11}-1}{23}, 23) = 1$, we have $e = 2$, $f = 11$. Here $g = 5$ is a primitive root mod 23. The 3-cyclotomic cosets mod 23 are

\[
C_0 = \{0\}, \quad C_1 = \{1, 2, 3, 4, 6, 8, 9, 12, 13, 16, 18\}, \quad C_5 = \{5, 7, 10, 11, 14, 15, 17, 19, 20, 21, 22\}.
\]

Further $\delta^2 \equiv -23 \pmod{3}$ gives $\delta = 1$ or -1, so that, by Lemma 9(ii), we can take $\eta_0 = \frac{-1+\delta}{2} = 0$, $\eta_1 = \frac{-1-\delta}{2} = -1$.

Thus the three ternary primitive idempotents mod 23 are given by

\[
\begin{align*}
\theta_0(x) &= 2(1 + x + x^2 + \cdots + x^{22}), \\
\theta_1(x) &= 1 + x^5 + x^7 + x^{10} + x^{11} + x^{14} + x^{15} + x^{17} + x^{19} + x^{20} + x^{21} + x^{22}, \\
\theta_5(x) &= 1 + x + x^2 + x^3 + x^4 + x^6 + x^8 + x^9 + x^{12} + x^{13} + x^{16} + x^{18}.
\end{align*}
\]

Further

\[
x^{23} - 1 = (x - 1)(x^{11} - x^8 - x^6 + x^4 + x^3 - x^2 - x - 1) \\
\times (x^{11} + x^{10} + x^9 - x^8 - x^7 + x^5 + x^3 - 1).
\]

If we take $M^{(1)}(x) = (x^{11} - x^8 - x^6 + x^4 + x^3 - x^2 - x - 1)$ then the minimal ternary cyclic codes M_0, M_1, M_5 of length 23 have the following parameters:

<table>
<thead>
<tr>
<th>Code</th>
<th>dimension</th>
<th>minimum distance</th>
<th>generating polynomial</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_0</td>
<td>1</td>
<td>23</td>
<td>$(1 + x + x^2 + \cdots + x^{22})$</td>
</tr>
<tr>
<td>M_1</td>
<td>11</td>
<td>9</td>
<td>$(x^{12} + x^9 + x^7 + x^6 - x^5 + x^4 - x^3 - x + 1)$</td>
</tr>
<tr>
<td>M_5</td>
<td>11</td>
<td>9</td>
<td>$(x^{12} - x^{11} - x^9 + x^8 - x^7 + x^6 + x^5 + x^3 + 1)$</td>
</tr>
</tbody>
</table>
Example 2. Let \(p = 13 \), \(q = 5 \). Since \(5^4 \equiv 1 \pmod{13} \), but \(\gcd(5^4-1, 13) = 1 \), we have \(e = 3 \), \(f = 4 \). Here \(g = 2 \) is a primitive root mod 13. The 5-cyclotomic cosets mod 13 are

\[
C_0 = \{0\},
\]

\[
C_1 = \{1, 5, 8, 12\},
\]

\[
C_2 = \{2, 3, 10, 11\},
\]

\[
C_4 = \{4, 6, 7, 9\},
\]

where, by Lemma 9(iii), the characteristic equation of matrix

\[
\mathcal{A} = \begin{bmatrix}
-4 & -3 & -2 \\
1 & 2 & 1 \\
2 & 1 & 1
\end{bmatrix}
\]

is given by

\[
x^3 + x^2 + x + 1 = 0;
\]

so that eigenvalues of \(\mathcal{A} \) are 2,3,4. Also \((2, 4, 3)^T \) is an eigenvector corresponding to the eigenvalue 2. Therefore by Corollary 1, we can take \(\eta_0 = 2 \), \(\eta_1 = 4 \), \(\eta_2 = 3 \).

Thus the four 5-ary primitive idempotents mod 13 are given by

\[
\theta_0(x) = 2(1 + x + x^2 + \cdots + x^{12}),
\]

\[
\theta_1(x) = 3 + 4(x + x^5 + x^8 + x^{12}) + 3(x^2 + x^3 + x^{10} + x^{11}) + (x^4 + x^6 + x^7 + x^9),
\]

\[
\theta_2(x) = 3 + 3(x + x^5 + x^8 + x^{12}) + (x^2 + x^3 + x^{10} + x^{11}) + 4(x^4 + x^6 + x^7 + x^9),
\]

\[
\theta_4(x) = 3 + (x + x^5 + x^8 + x^{12}) + 4(x^2 + x^3 + x^{10} + x^{11}) + 3(x^4 + x^6 + x^7 + x^9).
\]

Further

\[
x^{13} - 1 = (x - 1)(x^4 + x^3 - x^2 + x + 1)(x^4 + 2x^3 + x^2 + 2x + 1)(x^4 - 2x^3 - 2x + 1).
\]

If we take \(M^{(1)}(x) = (x^4 + x^3 - x^2 + x + 1) \), we have \(M^{(2)}(x) = (x^4 + 2x^3 + x^2 + 2x + 1) \), and \(M^{(4)}(x) = (x^4 - 2x^3 - 2x + 1) \); then the minimal 5-ary cyclic codes \(\mathcal{M}_0 \),
\mathcal{M}_0, \mathcal{M}_2, \mathcal{M}_4 of length 13 have the following parameters:

<table>
<thead>
<tr>
<th>Code</th>
<th>dimension</th>
<th>minimum distance</th>
<th>generating polynomial</th>
</tr>
</thead>
<tbody>
<tr>
<td>\mathcal{M}_0</td>
<td>1</td>
<td>13</td>
<td>$(1 + x + x^2 + \cdots + x^{12})$</td>
</tr>
<tr>
<td>\mathcal{M}_1</td>
<td>4</td>
<td>8</td>
<td>$(x^9 - x^8 + 2x^7 + x^6 + x^5 - x^4 - x^3 - 2x^2 + x - 1)$</td>
</tr>
<tr>
<td>\mathcal{M}_2</td>
<td>4</td>
<td>8</td>
<td>$(x^9 - 2x^8 - 2x^7 - x^6 + 2x^5 - 2x^4 + x^3 + 2x^2 + 2x - 1)$</td>
</tr>
<tr>
<td>\mathcal{M}_4</td>
<td>4</td>
<td>8</td>
<td>$(x^9 + 2x^8 - x^7 - 2x^5 + 2x^4 + x^2 - 2x - 1)$</td>
</tr>
</tbody>
</table>

Example 3. Let $p = 13$, $q = 3$. Since $3^3 \equiv 1 \pmod{13}$, but $gcd(\frac{3^3 - 1}{13}, 13) = 1$, therefore we have $e = 4$, $f = 3$. Here $g = 2$ is a primitive root mod 13. The ternary cyclotomic cosets mod 13 are

\[
C_0 = \{0\}, \\
C_1 = \{1, 3, 9\}, \\
C_2 = \{2, 5, 6\}, \\
C_4 = \{4, 10, 12\}, \\
C_8 = \{7, 8, 11\},
\]

where, by Lemma 8(iv), the characteristic equation of matrix

\[
\mathcal{A} = \begin{bmatrix}
0 & 1 & 2 & 0 \\
1 & 1 & 0 & 1 \\
-3 & -2 & -3 & -2 \\
1 & 0 & 1 & 1
\end{bmatrix}
\]

is given by

\[
x^4 + x^3 - x^2 - x = 0;
\]

so that eigenvalues of \mathcal{A} are 0, -1, -1. Also $(0, -1, -1)^T$ is an eigenvector belonging to the eigenvalue 0. Therefore, by Corollary 1, we can take $\eta_0 = 0$, $\eta_1 = -1$, $\eta_2 = -1$, $\eta_3 = 1$.

Thus the five ternary primitive idempotents mod 13 are given by

\[
\theta_0(x) = (1 + x + x^2 + \cdots + x^{12}), \\
\theta_1(x) = -(x^2 + x^5 + x^6) - (x^4 + x^{10} + x^{12}) + (x^8 + x^7 + x^{11}),
\]
\[\theta_2(x) = -(x + x^3 + x^9) + (x^4 + x^{10} + x^{12}) - (x^2 + x^5 + x^6), \]
\[\theta_4(x) = -(x + x^3 + x^9) + (x^2 + x^5 + x^6) - (x^8 + x^7 + x^{11}), \]
\[\theta_8(x) = (x + x^3 + x^9) - (x^4 + x^{10} + x^{12}) - (x^8 + x^7 + x^{11}). \]

Further
\[x^{13} - 1 = (x - 1)(x^3 - x - 1)(x^3 + x^2 - 1)(x^3 + x^2 + x - 1)(x^3 - x^2 - x - 1). \]

If we take \(M^{(1)}(x) = (x^3 - x - 1) \), we have \(M^{(2)}(x) = (x^3 + x^2 + x - 1) \), \(M^{(4)}(x) = (x^3 + x^2 - 1) \) and \(M^{(8)}(x) = (x^3 - x^2 - x - 1) \), then the minimal ternary cyclic codes \(\mathcal{M}_0, \mathcal{M}_1, \mathcal{M}_2, \mathcal{M}_4, \mathcal{M}_8 \) of length 13 have the following parameters:

<table>
<thead>
<tr>
<th>Code</th>
<th>dimension</th>
<th>minimum distance</th>
<th>generating polynomial</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mathcal{M}_0)</td>
<td>1</td>
<td>13</td>
<td>((1 + x + x^2 + \cdots + x^{12}))</td>
</tr>
<tr>
<td>(\mathcal{M}_1)</td>
<td>3</td>
<td>9</td>
<td>((x^{10} + x^8 + x^7 + x^6 - x^5 - x^4 + x^2 - x + 1))</td>
</tr>
<tr>
<td>(\mathcal{M}_2)</td>
<td>3</td>
<td>9</td>
<td>((x^{10} - x^9 - x^7 + x^5 + x^4 + x^3 - x^2 + x + 1))</td>
</tr>
<tr>
<td>(\mathcal{M}_4)</td>
<td>3</td>
<td>9</td>
<td>((x^{10} - x^9 + x^8 - x^6 - x^5 + x^4 + x^3 + x^2 + 1))</td>
</tr>
<tr>
<td>(\mathcal{M}_8)</td>
<td>3</td>
<td>9</td>
<td>((x^{10} + x^9 - x^8 + x^7 + x^6 + x^5 - x^3 - x + 1))</td>
</tr>
</tbody>
</table>

References