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In the presented work, the characterization of plates using zero group velocity Lamb modes is discussed.
First, analytical expressions are shown for the determination of the k—x location of the zero group veloc-
ity Lamb modes as a function of the Poisson’s ratio. The analytical expressions are solved numerically and
an inverse problem is formulated to determine the unknown wave velocities in plates of known thick-
ness. The analysis is applied to determine the elastic properties of tungsten and aluminum plates based
on the experimentally measured frequency spectra.

� 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Zero group velocity (ZGV) points of the dispersion relations of
plates provide a strong and easily detectable resonance-like fre-
quency of the plate [1]. ZGV resonances can be excited with excel-
lent efficiency using laser sources, making them attractive
candidates for use in laser based ultrasonic inspection of plates
[1–3]. To date, ZGV modes have been proposed for a wide range
of applications including, for example, the determination of
Poisson’s ratio [4], measurement of the thickness and thickness
profile of plates [5], characterization of cylindrical samples [6]
and probing of interfacial stiffnesses between two plates [7].

Although ZGV frequencies possess high quality factors and pro-
vide exceptional sensitivity to material properties, their use in
material characterization is less straightforward compared to con-
ventional ultrasonic pulse-echo techniques [4]. This is primarily
because their location in k—x space is not easily accessible. Never-
theless, one can take advantage of the fact that Lamb wave disper-
sion curves can be normalized by the plate thickness and wave
velocity, leaving the Poisson’s ratio as the sole parameter govern-
ing the shape of the spectrum [8,9]. Measurement of two
well-defined frequencies, such as the ZGV points, thus allows for
the unique determination of Poisson’s ratio in a plate with an
unknown thickness [4].

In this paper, an analytical expression for the location of zero
group velocity points is given and solutions for the lowest two zero
group velocity points over a wide range of Poisson’s ratio are
provided. An inverse problem is formulated to evaluate the elastic
properties of plates based on the measurement of two ZGV fre-
quencies. The approach is demonstrated on aluminum and tung-
sten plates using experimentally measured spectra.

2. Location of the ZGV points

The Lamb wave spectra are found using the Rayleigh–Lamb fre-
quency equations [10] for symmetric modes:

Xs ¼ tanðhqÞ
tanðhpÞ þ

4k2pq

ðq2 � k2Þ2
¼ 0; ð1Þ

and for antisymmetric modes:

Xa ¼ tanðhpÞ
tanðhqÞ þ

4k2pq

ðq2 � k2Þ2
¼ 0; ð2Þ

where

q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x
cT

� �2

� k2
s

; p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x
cL

� �2

� k2
s

: ð3Þ

In Eqs. (1)–(3) h ¼ d
2 denotes the half of the plate thickness d; x is

the angular frequency, cL and cT are the longitudinal and shear wave
velocities, respectively, and k the wave number. A typical Lamb
wave spectrum for a tungsten plate (with m ¼ 0:283 and
cT ¼ 2673 ms�1) is plotted in Fig. 1(a). Two ZGV points are visible
in the spectrum and are associated with the S1 and A2 modes. For
metallic plates ðm � 0:30Þ these are the only two ZGV modes that
exist within the low frequency range shown on the figure. It has
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Fig. 1. (a) Dispersion relation of Lamb waves in a Tungsten plate with m ¼ 0:283. ZGV points are visible for the S1 and A2 modes. (b) and (c) Location of the ZGV points in the
k—x plane for Poisson’s ratios 0 < m < 0:45.

2 C. Grünsteidl et al. / Ultrasonics 65 (2016) 1–4
been shown that these ZGV modes can be excited with high effi-
ciency using a laser source [4,11,12].

For the practical use of the ZGV points, one must determine
their location in the k—x plane. ZGV points represent mathemati-
cally well-defined points within the dispersion relation as the
wave number is nonzero and the group velocity vanishes. The lat-
ter is given through the implicit derivative for the symmetric
modes as [10]:

csG ¼ dx
dk

¼ � dXs

dk
dXs

dx

� ��1

; ð4Þ

or for antisymmetric modes as [10]:

caG ¼ dx
dk

¼ � dXa

dk
dXa

dx

� ��1

: ð5Þ

The system of non-linear equations in Eqs. (1) and (4) or in Eqs. (2)
and (5) describe the k—x coordinates of the ZGV points in the case
that k– 0 and cutoff frequencies if k ¼ 0 [12]. The expressions for csG
and caG are rather lengthy and they are given in Appendix A. The
solution of the system of non-linear equations can be obtained
numerically. Here, a Newton–Raphson iteration is used and the cor-
responding iteration process is given as:

knþ1

xnþ1

� �
¼ kn

xn

� �
� J�1 X

cG

� �
: ð6Þ

where J; X and cG are evaluated at ðkn;xnÞ. The Jacobian J is given
as:

J ¼
@X
@k

@X
@x

@cG
@k

@cG
@x

" #
; ð7Þ

where X and cG must be replaced with Xs; csG for the symmetric
branches and with Xa; caG for the antisymmetric branches. ZGV
points and cutoff frequencies occur at multiple points in k—x space,
and thus the choice of the starting values for the wave number k
and frequency f determines which points will be found. The deriva-
tion is carried out numerically. For the two lowest order modes of
the symmetric and antisymmetric branches with ZGV points
ðS1;A2Þ the normalized k—x coordinates of the ZGV points are plot-
ted in Fig. 1(b) and (c) for a range of Poisson’s ratios ð0 < m < 0:45Þ.
In agreement with previous findings, ZGV points exist only for a
limited range of Poisson’s ratios [4,11,13]. Otherwise, they degener-
ate to the cut-off frequencies of the mode and the wave vector
vanishes. The cut-off frequency for the S1 mode is given as [11,14]:

f ¼ cT
d
; m >

1
3

� �
and f ¼ cL

2d
; m 6 1

3

� �
: ð8Þ
For the A2 mode, the cut-off frequency is given as:

f ¼ 3cT
2d

: ð9Þ

For the S1 mode, the ZGV point exists for a wide range of isotropic
materials having m < 0:45. However, for the A2 mode its existence is
limited to m < 0:32 [11]. Note that the cut-off frequency for the A2

mode scales with cT
d . Hence, for m > 0:32 the normalized frequency

in Fig. 1(b) becomes constant and the wave vector goes to zero as
shown in Fig. 1(c).

3. Solution approach

The Poisson’s ratio of an isotropic plate can be determined with
high accuracy by using two ZGV frequencies [4]. In addition, if the
plate thickness is known then both elastic properties can be found.
Although the basic idea is simple, the calculation of the locations of
the ZGV points is more challenging. In Ref.[4], a set of curves were
used to describe the ratios of the ZGV points. The curves were
derived from the dispersion relation, calculated for a wide range
of Poisson’s ratios. Here, we present an alternative approach in
which four non-linear equations (Eqs. (1)–(5)) are solved directly,
yielding the unknown wave velocities cL and cT (or Poisson’s ratio
m and one wave velocity cT , for example). The wave numbers
ksZGV ; kaZGV , corresponding to the ZGV points, are also determined
from this system, since the four equations allow for the evaluation
of four unknowns. Again, the solution of the system of non-linear
equations can be obtained numerically using a Newton–Raphson
iteration:

mnþ1

cTnþ1

ksnþ1

kanþ1

2
6664

3
7775 ¼

mn
cTn
ksn
kan

2
6664

3
7775� J�1

Xs

csG
Xa

caG

2
6664

3
7775; ð10Þ

where Xs and csG are evaluated at ðmn; cTn; ksn;x1Þ and Xa and caG at
ðmn; cTn; kan;x2Þ. The Jacobian in this case is given as:

J ¼
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@m
@Xs

@cT
@Xs

@k 0
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2
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: ð11Þ

The Jacobian J, is evaluated at ðmn; cTn; ksn;x1Þ for the symmetric
mode and at ðmn; cTn; kan;x2Þ for the antisymmetric mode, where
x1; x2 denote the two experimentally measured ZGV frequencies.
In practice, for most materials ðm < 0:45Þ the lower frequency x1
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Fig. 2. Experimental signal and its Fourier transform for tungsten (a) and (b) and for aluminum (c) and (d) plates. The first two resonances indicated in the spectra are
associated with symmetric and antisymmetric modes, respectively.
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would correspond to the S1 ZGV point and the upper frequency x2

would correspond to either the A2 ZGV point ðm < 0:32Þ or the A2

cutoff frequency ðm > 0:32Þ. We note that in the numerical evalua-
tion of these equations, care must be taken to avoid numerical
instabilities in cases where the ZGV point degenerates to the cutoff
frequency and kaZGV goes to zero. The numerical approach requires
starting values for the four unknowns, and suitable choices can be
obtained by first estimating the Poisson’s ratio and then using
Fig. 1(b) and (c) as a guide to estimate the other unknowns. We give
some examples of starting values in the following section.
4. Experimental results and analysis

The experimental setup is identical to the setup presented in
Ref. [12]. A pulsed, frequency doubled Nd:YAG-laser (pulse energy
� 10 lJ, pulse duration 500 ps, repetition rate 150 Hz) was focused
onto the sample surface for ultrasound generation. The resulting
surface displacement was detected on the opposite side of the
sample with a stabilized Michelson interferometer. The interfer-
ometer output was recorded on an oscilloscope which was
triggered by a photodiode sampling the excitation laser pulse.
Low frequency oscillations associated with the A0 Lambmode were
filtered out by a 1 MHz high-pass filter.

The inverse problem is demonstrated with a tungsten plate
with 0.25 mm thickness and with an aluminum plate with a thick-
ness of 0.125 mm. The recorded time domain signal for the first
case is shown in Fig. 2(a) and the corresponding Fourier transform
in Fig. 2(b). The broad background of the Fourier transforms is due
to the low frequency oscillations during the first couple of ls in the
time domain signals [12]. The two peaks at f 1d ¼ 2:248 MHz mm
and f 2d ¼ 3:997 MHz mm correspond to the S1 and A2 ZGV points,
respectively.

Using thickness-normalized values, the iteration was started at
m ¼ 0:29; cT ¼ 2650 ms�1, ksZGVd ¼ 1:70; kaZGVd ¼ 1:70. The itera-
tion process converged quickly (< 10 iterations) and the material
properties were found as: m ¼ 0:272; cT ¼ 2678 ms�1. The wave
numbers of the ZGV points, as additional outputs of the process,
were found to be: ksZGVd ¼ 1:725; kaZGVd ¼ 1:667.

For aluminum, the Poisson’s ratio is higher and the A2 mode
ZGV point could degenerate to the cut-off frequency of the mode
with kaZGV ¼ 0. An aluminum plate with a thickness of 0.125 mm
was evaluated. The recorded time domain signal is shown in
Fig. 2(c) and the corresponding Fourier transform in Fig. 2(d). The
two peaks at f 1d ¼ 2:750 MHz mm and f 2d ¼ 4:587 MHz mm cor-
respond to the S1 ZGV point and either the A2 ZGV point or cutoff
frequency (depending on the Poisson’s ratio), respectively.

Again using thickness normalized values, the iteration was
started at m ¼ 0:30; cT ¼ 2850 ms�1, ksZGVd ¼ 1:70; kaZGVd ¼ 1:70.
The iteration process converged in < 10 iterations and the material
properties were found as: m ¼ 0:326; cT ¼ 3058 ms�1. The wave
numbers of the ZGV points, as additional outputs of the process,
were found to be: ksZGVd ¼ 1:625; kaZGVd ¼ 0.

The material property estimates for aluminum and tungsten
can be compared to the results of Clorennec et al. [4] who found
cT ¼ 3150 ms�1 and m ¼ 0:3383 for Duralumin, and cT ¼ 2963 ms�1

and m ¼ 0:2839 for tungsten [4]. We note that while reasonable
agreement is found, the properties are dependent on processing
conditions and alloy content, which are not identical in the two
cases and may explain the discrepancies in the reported values.

In conclusion, we have investigated the characterization of
plates using two zero group velocity Lambmodes. We have derived
analytical expression for the determination of the k—x locations of
ZGV points as a function of the material properties and solved the
resulting non-linear equations using a Newton–Raphson tech-
nique. We have formulated an inverse problem to evaluate the
elastic properties of plates based on the measurement of ZGV fre-
quencies, and used the approach to determine the properties of
aluminum and tungsten plates.
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Appendix A. Analytical expressions for the group velocity

The group velocity of the Lamb waves is given through the
implicit derivative of the Lamb wave spectrum shown in Eqs. (1)
and (2). After some manipulations the group velocity of the sym-
metric modes is given as:

cG ¼ ½4k½qð�kp;kðtanpþ p sec2 pÞ � 2p tanpþ q tan qÞ � k2 tan q�
þ q;kðk2 � q2Þ � ½ðq2 þ 2q sin 2q� k2Þ sec2 q
� 4k2p tanp��=½4k2p;xqðtanpþ p sec2 pÞ þ q;x½4k2p tanp

þ ðk2 � q2Þ½k2 � qðqþ 2 sin2qÞ� sec2 q�� ðA:1Þ

and for the antisymmetric modes:

cG ¼ �½4k3p2q;kðtan qþ q sec2 qÞ þ pðk2 � q2Þ
� sec2 p½q2ðsin 2p� kp;kÞ � 2kqq;k sin 2pþ k2

� ðkp;k þ sin 2pÞ� � kp;kðk2 � q2Þ tanp�=k½pðk2 � q2Þ
� sec2 p½p;xðk2 � q2Þ � 2qq;x sin 2p� � p;xðk2 � q2Þ2

� tanpþ 4k2p2q;xðtan qþ q sec2 qÞ� ðA:2Þ

where p;x; q;x; p;k; q;k are the partial derivatives of p; q in Eq. (3).
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